Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.241
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(28): 41208-41220, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38849616

RESUMO

Reasonable treatment of large amounts of sludge excavated from landfills has gained increasing attention due to the diminishing availability of landfill space in China. In this study, five landfill sludge (LS) treatment technologies using life cycle assessment (LCA) and life cycle cost (LCC) were investigated, i.e., co-incineration in coal-fired power plants (CFPP) and waste incineration power plant (WIPP), co-processing in cement kiln, bricks production, and sintering ceramsite. The LCA results demonstrate that sintering ceramsite outperforms other technologies and LCC results indicate sintering ceramsite also provides the highest economic benefit ($869.94). To further enhance environmental and economic performances of the LS treatment, the substitution of coal with natural gas and biomass can reduce Energy Conservation and Emission Reduction (ECER) index by 74% and 98%, respectively. This substitution can increase economic returns by 24% and 26%, respectively. Furthermore, national-level economic benefit and carbon emission reduction potential of different LS treatment technology alternative scenarios were assessed. Results display that a combination of 50% CFPP, 25% bricks, and 25% ceramsite (biomass) offers the highest economic gain, which is 3.02 times that of 50% CFPP and 50% cement (original case). Conversely, the replacement of 25% brick with 25% cement in the above combination result in the lowest carbon reduction, which is 9.35 times that of the original case.


Assuntos
Esgotos , Instalações de Eliminação de Resíduos , China , Incineração , Carvão Mineral
2.
Environ Sci Technol ; 58(26): 11685-11694, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38905014

RESUMO

A regular tetrahedron model was established to pierce the fractionation of dissolved organic matter (DOM) among quaternary components by using high-resolution mass spectrometry. The model can stereoscopically visualize molecular formulas of DOM to show the preference to each component according to the position in a regular tetrahedron. A classification method was subsequently developed to divide molecular formulas into 15 categories related to fractionation ratios, the relative change of which was demonstrated to be convergent with the uncertainty of mass peak area. The practicality of the regular tetrahedron model was verified by seven kinds of sludge from waste leachate treatment and sewage wastewater treatment plants by using stratification of extracellular polymeric substances coupled with Orbitrap MS as an example, presenting the DOM chemodiversity in stratified sludge flocs. Sensitivity analysis proved that classification results were relatively stable with the perturbation of four model parameters. Multinomial logistic regression analysis could further help identify the effect of molecular properties on the fractionation of DOM based on the classification results of the regular tetrahedron model. This model offers a methodology for the assessment of specificity of sequential extraction on DOM from solid or semisolid components and simplifies the complex mathematical expression of fractionation coefficients for quaternary components.


Assuntos
Espectrometria de Massas , Esgotos , Esgotos/química , Compostos Orgânicos/química , Fracionamento Químico , Modelos Teóricos , Águas Residuárias/química
3.
Waste Manag ; 186: 236-248, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38941734

RESUMO

Proper management of wastewater treatment plant side streams in pulp and paper mills is a matter of great interest. This study evaluates the environmental impact of different strategies in the management of biosludge from pulp and paper mills in Finland through a Life Cycle Assessment methodology. The base industrial standard practice, biosludge incineration for energy recovery and ash landfill disposal (Scenario 1), was compared to the alternative process of hydrothermal carbonization. The hydrochar generated from hydrothermal carbonization was evaluated for energy recovery through incineration (Scenario 2), or for use in composting for nutrient recovery (Scenario 3). The results showed that the hydrothermal process improved the overall environmental performance of the sludge management, particularly in terms of energy consumption and greenhouse gas emissions. The use of hydrochar as a soil amendment in composting also resulted in a significant reduction on the environmental impact compared to the other two scenarios. Overall, this study highlights the potential of hydrothermal carbonization and hydrochar utilization as sustainable options for managing biosludge from pulp mills.


Assuntos
Incineração , Resíduos Industriais , Papel , Esgotos , Finlândia , Incineração/métodos , Resíduos Industriais/análise , Eliminação de Resíduos Líquidos/métodos , Compostagem/métodos
4.
Arch Microbiol ; 206(7): 296, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856816

RESUMO

Environmental contamination from petroleum refinery operations has increased due to the rapid population growth and modernization of society, necessitating urgent repair. Microbial remediation of petroleum wastewater by prominent bacterial cultures holds promise in circumventing the issue of petroleum-related pollution. Herein, the bacterial culture was isolated from petroleum-contaminated sludge samples for the valorization of polyaromatic hydrocarbons and biodegradation of petroleum wastewater samples. The bacterial strain was screened and identified as Bacillus subtilis IH-1. After six days of incubation, the bacteria had degraded 25.9% of phenanthrene and 20.3% of naphthalene. The treatment of wastewater samples was assessed using physico-chemical and Fourier-transform infrared spectroscopy analysis, which revealed that the level of pollutants was elevated and above the allowed limits. Following bacterial degradation, the reduction in pollution parameters viz. EC (82.7%), BOD (87.0%), COD (80.0%), total phenols (96.3%), oil and grease (79.7%), TKN (68.8%), TOC (96.3%) and TPH (52.4%) were observed. The reduction in pH and heavy metals were also observed after bacterial treatment. V. mungo was used in the phytotoxicity test, which revealed at 50% wastewater concentration the reduction in biomass (30.3%), root length (87.7%), shoot length (93.9%), and seed germination (30.0%) was observed in comparison to control. When A. cepa root tips immersed in varying concentrations of wastewater samples, the mitotic index significantly decreased, suggesting the induction of cytotoxicity. However, following the bacterial treatment, there was a noticeable decrease in phytotoxicity and cytotoxicity. The bacterial culture produces lignin peroxidase enzyme and has the potential to degrade the toxic pollutants of petroleum wastewater. Therefore the bacterium may be immobilised or directly used at reactor scale or pilot scale study to benefit the industry and environmental safety.


Assuntos
Bacillus subtilis , Biodegradação Ambiental , Petróleo , Águas Residuárias , Bacillus subtilis/metabolismo , Bacillus subtilis/crescimento & desenvolvimento , Águas Residuárias/microbiologia , Águas Residuárias/química , Petróleo/metabolismo , Petróleo/toxicidade , Fenantrenos/metabolismo , Fenantrenos/análise , Fenantrenos/toxicidade , Naftalenos/metabolismo , Naftalenos/toxicidade , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Esgotos/microbiologia , Metais Pesados/metabolismo , Metais Pesados/toxicidade , Metais Pesados/análise
5.
Chemosphere ; 362: 142639, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38909865

RESUMO

Anaerobic digestion of floated paperboard sludge (PS) cake suffers from volatile fatty acids (VFAs) accumulation, nutrient unbalanced condition, and generation of digestate with a risk of secondary pollution. To overcome these drawbacks, sewage sludge (SS) was added to PS cake for biogas recovery improvement under a co-digestion process followed by the thermal treatment of solid fraction of digestate for biochar production. Batch experimental assays were conducted at different SS:PS mixing ratios of 70:30, 50:50, 30:70, and 20:80 (w/w), and their anaerobic co-digestion performances were compared to the mono-digestion systems at 35 ± 0.2 °C for 45 days. The highest methane yield (MY) of 241.68 ± 14.81 mL/g CODremoved was obtained at the optimum SS:PS ratio of 50:50 (w/w). This experimental condition was accompanied by protein, carbohydrate, and VFA conversion efficiencies of 47.3 ± 3.2%, 46.8 ± 3.2%, and 56.3 ± 3.8%, respectively. The synergistic effect of SS and PS cake encouraged the dominance of Bacteroidota (23.19%), Proteobacteria (49.65%), Patescibacteria (8.12%), and Acidovorax (12.60%) responsible for hydrolyzing the complex organic compounds and converting the VFAs into biomethane. Further, the solid fraction of digestate was subjected to thermal treatment at a temperature of 500 °C for 2.0 h, under an oxygen-limited condition. The obtained biochar had a yield of 0.48 g/g dry digestate, and its oxygen-to-carbon (O/C), carbon-to-nitrogen (C/N), and carbon-to-phosphorous (C/P) ratios were 0.55, 10.23, and 16.42, respectively. A combined anaerobic co-digestion/pyrolysis system (capacity 50 m3/d) was designed based on the COD mass balance experimental data and biogenic CO2 market price of 22 USD/ton. This project could earn profits from biogas (12,565 USD/yr), biochar (6641 USD/yr), carbon credit (8014 USD/yr), and COD shadow price (6932 USD/yr). The proposed project could maintain a payback period of 6.60 yr. However, further studies are required to determine the associated life cycle cost model that is useful to validate the batch experiment assumptions.


Assuntos
Carvão Vegetal , Ácidos Graxos Voláteis , Metano , Esgotos , Esgotos/química , Carvão Vegetal/química , Ácidos Graxos Voláteis/análise , Anaerobiose , Reatores Biológicos , Eliminação de Resíduos Líquidos/métodos , Biocombustíveis , Papel
6.
J Environ Manage ; 362: 121348, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38824891

RESUMO

Heterotrophic-sulfur autotrophic denitrification (HAD) has been proposed to be a prospective nitrogen removal process. In this work, the potential of fermentation liquid (FL) from waste-activated sludge (WAS) as the electron donor for denitrification in the HAD system was explored and compared with other conventional carbon sources. Results showed that when FL was used as a carbon source, over 99% of NO3--N was removed and its removal rate exceeded 14.00 mg N/g MLSS/h, which was significantly higher than that of methanol and propionic acid. The produced sulfate was below the limit value and the emission of N2O was low (1.38% of the NO3--N). Microbial community analysis showed that autotrophic denitrifiers were predominated in the HAD system, in which Thiobacillus (16.4%) was the dominant genus. The economic analysis showed the cost of the FL was 0.062 €/m3, which was 30% lower than that in the group dosed with methanol. Our results demonstrated the FL was a promising carbon source for the HAD system, which could reduce carbon emission and cost, and offer a creative approach for waste-activated sludge resource reuse.


Assuntos
Carbono , Desnitrificação , Fermentação , Nitrogênio , Esgotos , Carbono/metabolismo , Nitrogênio/metabolismo , Eliminação de Resíduos Líquidos/métodos
7.
Bioresour Technol ; 404: 130914, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823563

RESUMO

As a new technology for accurate utilization of sludge resources, sludge inorganic-organic matter separation (IOMS) has attracted wide attention. This study examined the impact of this pretreatment on environmental and economic performance of sludge composting and incineration using life cycle assessment (LCA) and whole life costing (WLC). LCA results indicated that IOMS pretreatment reduced the energy conservation and emission reduction (ECER) values of composting and incineration by 56 % and 76 %, respectively. Meanwhile, WLC exhibited that IOMS pretreatment could cut the break-even year of incineration from 11 years to 4 years. The combination of organic sludge incineration/composting with inorganic sludge sintering ceramsite reveals excellent environmental and economic performance. The application optimization hypothesis analysis of these two routes in various provinces of China indicates that Jiangsu has the greatest development potential and should become a major promotion region.


Assuntos
Esgotos , Compostagem/métodos , Incineração , Meio Ambiente , China
8.
Chemosphere ; 362: 142589, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38866334

RESUMO

The enrichment of phosphorus (P) and nitrogen (N) in aquatic systems can cause eutrophication. Moreover, P rocks may become exhausted in the next 100 years. A slow-release fertilizer called struvite (MgNH4PO4.6H2O) can reduce surface runoff. However, the high cost of raw material or chemicals is a bottleneck in their economical production. Therefore, incinerated sewage sludge ash, food wastewater, and bittern were combined as the sources of P, N, and Mg, respectively. Sawdust biochar was used to enhance the adsorptive recovery of nutrients. First, recovery kinetics was studied by comparing bittern-impregnated biochar (BtB) with the Mg-impregnated biochar (MgB). Subsequently, the synergistic physical and chemical interactions were observed for P and N recovery. Almost complete PO43-P recoveries were achieved within 10 min for both biochars. However, NH4+-N recovery was stable after 2 h, with 26% recovery by MgB and 20% recovery by BtB. Biochars activated with steam (steam-activated biochar) and KOH (KOH-activated biochar) gave superior activities to those of unactivated biochars and activated carbon (AC) nutrient recovery and struvite purity. Moreover, the activated biochars showed a lower risk of surface runoff, similar to that of AC. Therefore, activated biochars can be used as an alternative to AC for economical struvite production from a combination of wastewater sources.


Assuntos
Carvão Vegetal , Fertilizantes , Nitrogênio , Fósforo , Estruvita , Eliminação de Resíduos Líquidos , Águas Residuárias , Estruvita/química , Carvão Vegetal/química , Águas Residuárias/química , Fósforo/química , Fósforo/análise , Nitrogênio/química , Nitrogênio/análise , Fertilizantes/análise , Eliminação de Resíduos Líquidos/métodos , Nutrientes/análise , Esgotos/química , Adsorção , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Compostos de Magnésio/química , Fosfatos/química
9.
Environ Sci Pollut Res Int ; 31(26): 38251-38264, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38797756

RESUMO

Paper mill sludge (PMS) is featured with a high content of cellulose and hemicellulose, and using its characteristics to make paperboard can achieve a high-value utilization of PMS, which has attracted growing interest. In this study, currently prevalent landfill, incineration technologies (generating heat and electricity by incineration), and three paperboard technologies (medium density fiberboard, pulp board, and corrugated paper) were evaluated and compared via life cycle assessment (LCA) and life cycle costing (LCC) methods. LCA results show that the PMS-to-pulp board outperforms others with an energy conservation and emission reduction (ECER) value of - 2.86 × 10-8, while the landfill exhibits the highest overall environmental impact with an ECER value of 4.80 × 10-9. LCC results reveal that the PMS-to-pulp board delivers the highest economic profit with $257.357, while the landfill is the lowest with $ - 35.63. The PMS paperboard technologies are more economically friendly than the incineration technologies due to additional electricity/steam consumption during the PMS pre-drying process in incineration. In addition, different scenarios were set up to explore national GHG emission reduction potential by increasing paperboard technologies application rate and reducing the proportion of landfill and incineration. The scenario analysis suggests that replacing 90% of landfill and incineration ratio with PMS paperboard technologies could tremendously improve the overall emission reduction performance with - 9.08 × 1010 kg CO2 eq. This result indicates that the PMS treatment technology transformation has a significant favorable impact on the achievement of the "carbon neutrality" target.


Assuntos
Incineração , Papel , Esgotos , China
10.
Bioresour Technol ; 402: 130822, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729582

RESUMO

Three different technological solutions, namely acidogenic fermentation and chemical extraction (alkaline or acidic), followed by precipitation with 1% Ca(OH)2, were investigated in the view of integrating phosphorus recovery into existing wastewater treatment plants. Experiments were conducted at the lab-scale using (i) sludge taken from biologically and chemically promoted phosphorus removal activated sludge processes and (ii) ashes obtained from sludge muffle incineration. Results highlighted the benefits of enhanced biological phosphorus removal (EBPR) systems rather than chemically promoted phosphorus removal in not only phosphorus extraction (up to 40% with EBPR) and recovery directly from secondary sludge (P precipitation between 66 and 92%), but after sludge incineration as well (P extraction up to 96% and precipitation above 96%). Acidogenic fermentation ensured the highest phosphorus release from EBPR sludge (equal to a concentration in solution of 122 mg/L P-PO43-), while the derived ashes had a lower level of metal contamination (particularly Fe and Al content < 2%). The phosphorus-rich product obtained by means of the recovery process showed relevant metal contamination (Cu, Zn, and Ni) under some operating conditions, suggesting the need for further treatments.


Assuntos
Fósforo , Esgotos , Águas Residuárias , Purificação da Água , Esgotos/química , Purificação da Água/métodos , Águas Residuárias/química , Fermentação , Eliminação de Resíduos Líquidos/métodos
11.
Water Res ; 257: 121658, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38696983

RESUMO

Addressing urban water management challenges requires a holistic view. Sustainable approaches such as blue-green infrastructure (BGI) provide several benefits, but assessing their effectiveness demands a systemic approach. Challenges are magnified in informal areas, leading to the combination of integrated urban water management (IUWM) with BGI as a proposed solution by this research. We employed the Urban Water Use (UWU) model to assess the effectiveness index (EI) of BGI measures in view of IUWM after stakeholder consultation. The procedure in this novel assessment includes expert meetings for scenario building and resident interviews to capture the community's vision. To assess the impact of IUWM on the effectiveness of BGI measures, we proposed a simulation with BGI only and then three simulations with improvements to the water and sewage systems. The results of the EI analysis reveal a substantial improvement in the effectiveness of BGI measures through IUWM combination. Moreover, we offer insights into developing strategies for UWU model application in informal settlements, transferrable to diverse urban areas. The findings hold relevance for policymakers and urban planners, aiding informed decisions in urban water management.


Assuntos
Abastecimento de Água , Cidades , Conservação dos Recursos Hídricos , Conservação dos Recursos Naturais , Esgotos
12.
Water Res ; 257: 121710, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38728784

RESUMO

Sewage treatment involves a trade-off of land vs. energy and the location of installing Sewage Treatment Plants (STPs) strongly impacts the decisions regarding treatment technologies. In the wake of rapid urbanization, deteriorating freshwater quality and water scarcity, it is crucial to plan adequate and low-cost sewerage infrastructure that can improve the quality of life in rural and urban areas. The present work involves a novel life cycle analysis through six scenarios generated from a holistic perspective that can aid urban planners and urban local bodies in planning the sewage treatment facilities in their cities, towns or villages. Instead of planning sewerage infrastructure for a long-term period of thirty years, it is suggested to create and operate the STPs only for the upcoming decade. Further, owing to the drawbacks of mechanized and natural treatment systems, adopting a mix of these treatment approaches in planning infrastructure is suggested and the benefits of implementing the same are quantified and discussed. Implementing these strategies results in almost 30 % cost savings and 40 % reduction in greenhouse gas emissions, hence, investing in land for natural treatment systems is suggested instead of incurring heavy electricity bills for mechanized treatment systems. The land cost significantly affects the decision-making regarding treatment technology selection; hence, the variation in the life cycle cost of different sewage treatment approaches is assessed for varying land rates in India.


Assuntos
Esgotos , Instalações de Eliminação de Resíduos , Eliminação de Resíduos Líquidos , Eliminação de Resíduos Líquidos/economia , Eliminação de Resíduos Líquidos/métodos , Custos e Análise de Custo , Urbanização , Recursos Hídricos/provisão & distribuição , Conservação dos Recursos Naturais , Índia , Humanos , População Rural , População Urbana , Gases de Efeito Estufa , Abastecimento de Água/estatística & dados numéricos , Instalações de Eliminação de Resíduos/economia , Instalações de Eliminação de Resíduos/estatística & dados numéricos
13.
Environ Pollut ; 350: 124003, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38641037

RESUMO

Smouldering combustion of oily sludge (OS) was carried out to learn the characteristics of heavy metals (HMs) in ash products. Ash collected from four different height layers of the column reactor was analysed for the chemical speciation and environmental risk of six HMs, including Cr, Ni, Cu, Zn, As, and Pb. The results showed that after smouldering combustion, only 21.3-32.2 % of the total HMs was remained in the ash products. The retention of HMs in ash was closely relevant to the carbonaceous destruction efficiency of OS. Smouldering combustion led to the decrease of HMs in acid-soluble/exchangeable fraction from 21.5-49.3 to 0.8-19.8% and oxidizable fraction from 22.6-49.6 to 5.3-21.3, and the increase of reducible fraction from 13.6-38.0 to 30.5-89.1% and residue fraction from 7.8-27.3 to 24.1-63.6%. Upward migration of HMs during smouldering was evidenced by their occurrence in the top clean sand layer, which was dominated in acid-soluble/exchangeable and reducible fractions, accounting for 89.7-99.1% in total. Toxicity extraction and environmental risk studies indicated that smouldering combustion would effectively reduce the toxicity and pollution risk of HMs; however, attention should be paid to the disposal of the top sand layer after smouldering operation due to its high pollution risk of HMs according to the evaluation of Risk assessment code.


Assuntos
Metais Pesados , Esgotos , Metais Pesados/análise , Medição de Risco , Esgotos/química , Incineração , Monitoramento Ambiental/métodos
14.
Environ Pollut ; 350: 123946, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38643932

RESUMO

In recent years, the malodorous gases generated by sewage treatment plants have gradually received widespread attention due to their sensory stimulation and health hazards. The emission concentration, sensory evaluation and health risk assessment of volatile sulfur compounds (VSCs) were all explored in two municipal wastewater treatment plants (WWTPs) with oxidation ditch and anaerobic/oxic treatment process, respectively. The VSCs concentration showed the highest amount in the primary treatment unit in both the two WWTPs (73.3% in Plant A and 93.0% in Plant B), while the H2S took the main role in the composition of VSCs. However, H2S took a larger percentage in Plant A (84.5% âˆ¼ 87.0%) rather than Plant B (61.2% âˆ¼ 83.5%), which may be due to the different operating conditions and sludge properties in different treatment process. Besides, H2S also gained the first rank in the sensory evaluation and health risk assessment, which may cause considerable sensory irritation and health risk to workers and surrounding residents. Furthermore, the influencing factor analyses of VSCs emission showed that the temperature of water and air, ORP of sludge made the greatest effect on VSCs release. This study provides theoretical and data support for the research of VSCs emission control in WWTPs.


Assuntos
Compostos de Enxofre , Eliminação de Resíduos Líquidos , Águas Residuárias , Medição de Risco , Águas Residuárias/química , Compostos de Enxofre/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Esgotos , Humanos
15.
Bioresour Technol ; 401: 130744, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677384

RESUMO

Paper sludge biomass represents an underutilized feedstock rich in pulped and processed cellulose which is currently a waste stream with significant disposal cost to industry for landfilling services. Effective fractionation of the cellulose from paper sludge presents an opportunity to yield cellulose as feedstock for value-added processes. A novel approach to cellulose fractionation is the sidehill screening system, herein studied at the pilot-plant scale. Composition analysis determined ash removal and carbohydrate retention of both sidehill and high-performance benchtop screening systems. Sidehill screening resulted in greater carbohydrates retention relative to benchtop screening (90% vs 66%) and similar ash removal (95% vs 98%). Techno-economic analysis for production of sugar syrup yielded a minimum selling price of $331/metric ton of sugar syrup including disposal savings, significantly less than a commercial sugar syrup without fractionation. Sensitivity analysis showed that screening conditions played a significant role in economic feasibility for cellulosic yield and downstream processes.


Assuntos
Biomassa , Celulose , Papel , Esgotos , Projetos Piloto , Celulose/química , Fracionamento Químico
16.
Int J Phytoremediation ; 26(10): 1611-1625, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38644582

RESUMO

Relative efficacy of five common weeds-of the kind that are either rooted in soil or which freely float over water-was assessed in rapid, effective and sustainable treatment of sewage at pilot plant scale in the recently developed and patented SHEFROL® bioreactors. The plants were utilized in a unit of capacity 12,000 liters/day (LPD) which, after two years of use, was enlarged to handle 40,000 LPD of sewage. It was then further expanded after an year to treat 57,000 LPD. All the five weeds, of which none has previously been tested in a pilot-scale SHEFROL, were able to foster highly efficient primary treatment (in terms of suspended and total solids) and secondary treatment (in terms of BOD and COD) to levels exceeding 85% in most cases. Additionally, the weeds also helped in achieving significant tertiary treatment. At different hydraulic retention times, and at steady state, the five weeds achieved treatment of BOD, COD, suspended solids, nitrogen, phosphorous, copper, nickel, zinc, and manganese in the ranges, 80-95, 79-91, 82-95, 61-71, 51-73, 37-43, 30-38, 39-47, and 27-35%, respectively. It all occurred in a single process step and without the use of any machine or chemical. This made the system not only simple and inexpensive to install but also to maintain. Over continuous long-term operation for four years, the system was seen to be very robust as it was able to handle wide variations in the volumes and characteristics of sewage, as well as absorb shock loads without compromising the reactor performance. The sustainability of the system can be further enhanced by upgrading it to a circular biorefinery. Energy sources in the form of volatile fatty acids (VFAs) can be extracted from the weeds removed from SHEFROL and then the weeds can be converted into organic fertilizer using high-rate vermireactors recently developed by the authors.


A novel and inexpensive, yet very efficient sewage treatment system is presented.The versatility and robustness of the system has been assessed at pilot plant scale for several years.The long-term continuous studies establish the efficacy of five common weeds­not hitherto explored at pilot plant level­which can serve as the main bioagent(s) in the sewage treatment system.The system has the potential of being transformed in to a closed-loop-no-waste biorefinery.


Assuntos
Biodegradação Ambiental , Reatores Biológicos , Plantas Daninhas , Esgotos , Eliminação de Resíduos Líquidos , Projetos Piloto , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/metabolismo
17.
Sensors (Basel) ; 24(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38676155

RESUMO

This study aims to enhance diagnostic capabilities for optimising the performance of the anaerobic sewage treatment lagoon at Melbourne Water's Western Treatment Plant (WTP) through a novel machine learning (ML)-based monitoring strategy. This strategy employs ML to make accurate probabilistic predictions of biogas performance by leveraging diverse real-life operational and inspection sensor and other measurement data for asset management, decision making, and structural health monitoring (SHM). The paper commences with data analysis and preprocessing of complex irregular datasets to facilitate efficient learning in an artificial neural network. Subsequently, a Bayesian mixture density neural network model incorporating an attention-based mechanism in bidirectional long short-term memory (BiLSTM) was developed. This probabilistic approach uses a distribution output layer based on the Gaussian mixture model and Monte Carlo (MC) dropout technique in estimating data and model uncertainties, respectively. Furthermore, systematic hyperparameter optimisation revealed that the optimised model achieved a negative log-likelihood (NLL) of 0.074, significantly outperforming other configurations. It achieved an accuracy approximately 9 times greater than the average model performance (NLL = 0.753) and 22 times greater than the worst performing model (NLL = 1.677). Key factors influencing the model's accuracy, such as the input window size and the number of hidden units in the BiLSTM layer, were identified, while the number of neurons in the fully connected layer was found to have no significant impact on accuracy. Moreover, model calibration using the expected calibration error was performed to correct the model's predictive uncertainty. The findings suggest that the inherent data significantly contribute to the overall uncertainty of the model, highlighting the need for more high-quality data to enhance learning. This study lays the groundwork for applying ML in transforming high-value assets into intelligent structures and has broader implications for ML in asset management, SHM applications, and renewable energy sectors.


Assuntos
Teorema de Bayes , Biocombustíveis , Redes Neurais de Computação , Anaerobiose , Calibragem , Método de Monte Carlo , Esgotos , Aprendizado de Máquina
18.
Water Sci Technol ; 89(8): 1928-1945, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38678400

RESUMO

Rainfall-derived inflow/infiltration (RDII) modelling during heavy rainfall events is essential for sewer flow management. In this study, two machine learning algorithms, random forest (RF) and long short-term memory (LSTM), were developed for sewer flow prediction and RDII estimation based on field monitoring data. The study implemented feature engineering for extracting physically significant features in sewer flow modelling and investigated the importance of the relevant features. The results from two case studies indicated the superior capability of machine learning models in RDII estimation in the combined and separated sewer systems, and LSTM model outperformed the two models. Compared to traditional methods, machine learning models were capable of simulating the temporal variation in RDII processes and improved prediction accuracy for peak flows and RDII volumes in storm events.


Assuntos
Aprendizado de Máquina , Chuva , Esgotos , Modelos Teóricos , Movimentos da Água
19.
Water Sci Technol ; 89(7): 1741-1756, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619900

RESUMO

Wastewater treatment plants (WWTPs) have positive and negative impacts on the environment. Therefore, life cycle impact assessment (LCIA) can provide a more holistic framework for performance evaluation than the conventional approach. This study added water footprint (WF) to LCIA and defined ϕ index for accounting for the damage ratio of carbon footprint (CF) to WF. The application of these innovations was verified by comparing the performance of 26 WWTPs. These facilities are located in four different climates in Iran, serve between 1,900 and 980,000 people, and have treatment units like activated sludge, aerated lagoon, and stabilization pond. Here, grey water footprint (GWF) calculated the ecological impacts through typical pollutants. Blue water footprint (BWF) included the productive impacts of wastewater reuse, and CF estimated CO2 emissions from WWTPs. Results showed that GWF was the leading factor. ϕ was 4-7.5% and the average WF of WWTPs was 0.6 m3/ca, which reduced 84%, to 0.1 m³/ca, through wastewater reuse. Here, wastewater treatment and reuse in larger WWTPs, particularly with activated sludge had lower cumulative impacts. Since this method takes more items than the conventional approach, it is recommended for integrated evaluation of WWTPs, mainly in areas where the water-energy nexus is a paradigm for sustainable development.


Assuntos
Águas Residuárias , Purificação da Água , Humanos , Esgotos , Eliminação de Resíduos Líquidos/métodos , Pegada de Carbono
20.
Bioresour Technol ; 400: 130671, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583678

RESUMO

Hydrothermal liquefaction (HTL) aqueous phases derived from mixed sludge and digested sludge of two wastewater treatment plants (WWTP) were characterized considering variations in primary-secondary sludge ratios, an aspect previously overlooked in the literature. Mixed sludge was obtained by mixing primary and secondary sludge to simulate high primary sludge, average, and high secondary sludge cases. Aerobic and mesophilic/thermophilic anaerobic biodegradability tests were conducted. Higher chemical oxygen demand, total ammonium-N, orthophosphate-P, fatty acids, and N-heterocycles in HTL aqueous samples were detected as the secondary sludge ratio increased in mixed sludge. A similar trend was observed in the biodegradability tests. Characteristics of HTL aqueous derived from mixed sludge of WWTP 1 showed much higher variation, whereas WWTP 2 mixed sludge was not affected significantly by primary-secondary sludge ratios. Finally, the biodegradability levels of HTL aqueous samples were determined to be 69-78 % under aerobic, 58-70 % under mesophilic anaerobic, and 42-56 % under thermophilic anaerobic conditions.


Assuntos
Biodegradação Ambiental , Esgotos , Análise da Demanda Biológica de Oxigênio , Água/química , Temperatura , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Cidades
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA