Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 348: 119303, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37832303

RESUMO

Animal husbandry is increasing yearly due to the growing demand for meat and livestock products, among other reasons. To meet these demands, prophylactic antibiotics are used in the livestock industry (i.e., poultry farming) to promote health and stimulate animal growth. However, antibiotics are not fully metabolized by animals, and they are evacuated to the environment with excreta. Animal manure is used as fertilizer to reduce the volume of waste generated in the livestock sector. However, manure often contains microorganisms harboring antibiotic resistance genes (ARGs). Then, the microbiome of manure applicate to the soil may contribute to the spread of antibiotic resistance in the environment, including autochthonous soil-dwelling microorganisms. The present study was conducted during the crops growing season in Poland (May to September 2019) to determine the influence of poultry manure as well as poultry manure supplemented with selected antibiotics on the diversity of the soil microbiome in treatments that had not been previously fertilized with manure and the ability of antibiotic-resistant bacteria to transfer ARGs to other soil bacteria. Antibiotic concentrations were elevated at the beginning of the study and decreased over time. Poultry manure induced significant changes in the structure of microbial communities in soil; the diversity of the soil microbiome decreased, and the abundance of bacterial genera Bradyrhizobium, Streptomyces, and Pseudomonas, which are characteristic of the analyzed manure, increased. Over time, soil microbial diversity was restored to the state observed before the application of manure. Genes conferring resistance to multiple drugs as well as genes encoding resistance to bacitracin and aminoglycosides were the most frequently identified ARGs in the analyzed bacteria, including on mobile genetic elements. Multidrug resistance was observed in 17 bacterial taxa, whereas ARGs were identified in 32 bacterial taxa identified in the soil microbiome. The results of the study conclude that the application of poultry manure supplemented with antibiotics initially affects soil microbiome and resistome diversity but finally, the soil shows resilience and returns to its original state after time, with most antibiotic resistance genes disappearing. This phenomenon is of great importance in sustainable soil health after manure application.


Assuntos
Antibacterianos , Solo , Animais , Solo/química , Antibacterianos/farmacologia , Esterco/microbiologia , Genes Bacterianos , Aves Domésticas/genética , Promoção da Saúde , Resistência Microbiana a Medicamentos/genética , Bactérias/genética , Criação de Animais Domésticos , Microbiologia do Solo
2.
Genes (Basel) ; 12(4)2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33917127

RESUMO

Soil fertility is a function of the level of organic and inorganic substances present in the soil, and it influences the activities of soil-borne microbes, plant growth performance and a host of other beneficial ecological functions. In this metagenomics study, we evaluated the response of maize microbial functional gene diversity involved in chemotaxis, antibiotics, siderophores, and antifungals producing genes within the rhizosphere of maize plants under compost, inorganic fertilizer, and unfertilized conditions. The results show that fertilization treatments at higher compost manure and lower inorganic fertilizer doses as well as maize plants itself in the unfertilized soil through rhizosphere effects share similar influences on the abundance of chemotaxis, siderophores, antifungal, and antibiotics synthesizing genes present in the samples, while higher doses of inorganic fertilizer and lower compost manure treatments significantly repress these genes. The implication is for a disease suppressive soil to be achieved, soil fertilization with high doses of compost manure fertilizer treatments as well as lower inorganic fertilizer should be used to enrich soil fertility and boost the abundance of chemotaxis and disease suppressive genes. Maize crops also should be planted sole or intercropped with other crops to enhance the rhizosphere effect of these plants in promoting the expression and abundance of these beneficial genes in the soil.


Assuntos
Quimiotaxia , Fertilizantes/análise , Metagenômica , Doenças das Plantas/genética , Microbiologia do Solo , Solo/química , Zea mays/genética , Esterco/microbiologia , Doenças das Plantas/microbiologia , Rizosfera , Zea mays/efeitos dos fármacos , Zea mays/crescimento & desenvolvimento , Zea mays/microbiologia
3.
Food Microbiol ; 95: 103691, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33397620

RESUMO

Escherichia coli O157:H7 risk associated with the consumption of fresh cut-cos lettuce during Australian industrial practices was assessed. A probabilistic risk assessment model was developed and implemented in the @Risk software by using the Monte Carlo simulation technique with 1,000,000 iterations. Australian preharvest practices yielded predicted annual mean E. coli O157:H7 levels from 0.2 to -3.4 log CFU/g and prevalence values ranged from 2 to 6.4%. While exclusion of solar radiation from the baseline model yielded a significant increase in concentration of E. coli O157:H7 (-5.2 -log fold), drip irrigation usage, exclusion of manure amended soil and rainfall reduced E. coli O157:H7 levels by 7.4, 6.5, and 4.3-log fold, respectively. The microbial quality of irrigation water and irrigation type both had a significant effect on E. coli O157:H7 concentrations at harvest (p < 0.05). The probability of illness due to consumption of E. coli O157:H7 contaminated fresh cut-cos lettuce when water washing interventions were introduced into the processing module, was reduced by 1.4-2.7-log fold (p < 0.05). This study provides a robust basis for assessment of risk associated with E. coli O157:H7 contamination on fresh cut-cos lettuce for industrial practices and will assist the leafy green industry and food safety authorities in Australia to identify potential risk management strategies.


Assuntos
Escherichia coli O157/crescimento & desenvolvimento , Contaminação de Alimentos/análise , Lactuca/microbiologia , Irrigação Agrícola , Austrália , Contagem de Colônia Microbiana , Escherichia coli O157/genética , Escherichia coli O157/isolamento & purificação , Água Doce/microbiologia , Lactuca/crescimento & desenvolvimento , Esterco/microbiologia , Folhas de Planta/microbiologia
4.
Anaerobe ; 68: 102296, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33207267

RESUMO

The present study used metagenomic sequencing, metagenome assembly and physical-chemical analysis to describe taxonomically and functionally 3 anaerobic bioreactors treating manure (LI), brewery (BR) and cornmeal (CO) wastes, and an anaerobic estuarine sediment (ES). Proteobacteria, Firmicutes, Euryarchaeota and Bacteroidetes were the most abundant Phyla in all metagenomes. A bacteria/archaea ratio of 3.4 was found in the industrial full-scale anaerobic bioreactors BR and CO, while ratios greater than 10 were found for LI and ES. Canonical correspondence analysis showed that environmental variables such as chemical oxygen demand, lipid content, and ammonium nitrogen influenced the ordination of taxonomic groups. Mesotoga prima was linked to high-temperature conditions, particularly in the BR bioreactor, along with the presence of heat shock proteins genes. Likewise, the hydrogenotrophic methanogen, Methanoregula formicica, was associated with high ammonium concentration in LI bioreactor. The interactions of microbes with specific methanogenic pathways were identified using Clusters of Orthologous Groups (COG) functions, while metagenome-assembled genomes (MAGs) further confirmed relationships between taxa and functions. Our results provide valuable information to understand microbial processes in anaerobic environments.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Reatores Biológicos/microbiologia , Sedimentos Geológicos/microbiologia , Microbiota , Anaerobiose , Bactérias/genética , Esterco/microbiologia , Metagenoma , Metagenômica , Oxigênio/metabolismo , Esgotos/microbiologia
5.
BMC Microbiol ; 20(1): 164, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32546238

RESUMO

BACKGROUND: Aliarcobacter faecis and Aliarcobacter lanthieri are recently identified as emerging human and animal pathogens. In this paper, we demonstrate the development and optimization of two direct DNA-based quantitative real-time PCR assays using species-specific oligonucleotide primer pairs derived from rpoB and gyrA genes for A. faecis and A. lanthieri, respectively. Initially, the specificity of primers and amplicon size of each target reference strain was verified and confirmed by melt curve analysis. Standard curves were developed with a minimum quantification limit of 100 cells mL- 1 or g- 1 obtained using known quantities of spiked A. faecis and A. lanthieri reference strains in autoclaved agricultural surface water and dairy cow manure samples. RESULTS: Each species-specific qPCR assay was validated and applied to determine the rate of prevalence and quantify the total number of cells of each target species in natural surface waters of an agriculturally-dominant and non-agricultural reference watershed. In addition, the prevalence and densities were determined for human and various animal (e.g., dogs, cats, dairy cow, and poultry) fecal samples. Overall, the prevalence of A. faecis for surface water and feces was 21 and 28%, respectively. The maximum A. faecis concentration for water and feces was 2.3 × 107 cells 100 mL- 1 and 1.2 × 107 cells g- 1, respectively. A. lanthieri was detected at a lower frequency (2%) with a maximum concentration in surface water of 4.2 × 105 cells 100 mL- 1; fecal samples had a prevalence and maximum density of 10% and 2.0 × 106 cells g- 1, respectively. CONCLUSIONS: The results indicate that the occurrence of these species in agricultural surface water is potentially due to fecal contamination of water from livestock, human, or wildlife as both species were detected in fecal samples. The new real-time qPCR assays can facilitate rapid and accurate detection in < 3 h to quantify total numbers of A. faecis and A. lanthieri cells present in various complex environmental samples.


Assuntos
Campylobacteraceae/isolamento & purificação , DNA Girase/genética , RNA Polimerases Dirigidas por DNA/genética , Esterco/microbiologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Microbiologia da Água , Agricultura , Animais , Proteínas de Bactérias , Campylobacteraceae/classificação , Campylobacteraceae/genética , Bovinos , Primers do DNA/genética , Humanos , Gado/microbiologia , Prevalência , Especificidade da Espécie
6.
J Infect Chemother ; 26(7): 643-650, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32334949

RESUMO

Clostridioides difficile infections (CDIs) are predominantly a healthcare-associated illness in developed countries, with the majority of cases being elderly and hospitalize patients who used antibiotic therapy. Recently, the incidence of community-associated CDIs (CA-CDIs) in younger patients without a previous history of hospitalization or antibiotic treatment has been increasing globally. C. difficile is sometimes found in the intestine of many animals, such as pigs, calves, and dogs. Food products such as retail meat products and vegetables sometimes contain C. difficile. C. difficile has also been isolated from several environments such as compost manure, rivers, and soils. Yet, direct transmission of C. difficile from animals, food products, and environments to humans has not been proven, although these strains have similar molecular characteristics. Therefore, it has been suggested that there is a relationship between CA-CDIs and C. difficile from animals, food products, and the environment. To clarify the importance of the presence of C. difficile in several sources, characterization of C. difficile in these sources is required. However, the epidemiology of C. difficile in animals, food products, and the environment is not well studied in Japan. This review summarizes recent trends of CDIs and compares the molecular characteristics of C. difficile in Japanese animals, food products, and the environment. The prevalence trends of C. difficile in Japan are similar to those in the rest of the world. Therefore, I recommend using a One Health approach to CDI surveillance, monitoring, and control.


Assuntos
Clostridioides difficile/isolamento & purificação , Infecções por Clostridium/epidemiologia , Controle de Doenças Transmissíveis/organização & administração , Monitoramento Epidemiológico , Saúde Única , Animais , Bovinos/microbiologia , Clostridioides difficile/patogenicidade , Infecções por Clostridium/microbiologia , Infecções por Clostridium/prevenção & controle , Infecções por Clostridium/veterinária , Infecções Comunitárias Adquiridas/epidemiologia , Infecções Comunitárias Adquiridas/microbiologia , Infecções Comunitárias Adquiridas/prevenção & controle , Infecções Comunitárias Adquiridas/veterinária , Cães/microbiologia , Fezes/microbiologia , Microbiologia de Alimentos , Carga Global da Doença , Humanos , Japão/epidemiologia , Esterco/microbiologia , Produtos da Carne/microbiologia , Prevalência , Rios/microbiologia , Microbiologia do Solo , Suínos/microbiologia , Verduras/microbiologia
7.
Environ Sci Pollut Res Int ; 26(29): 30177-30187, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31422531

RESUMO

There is a growing trend to implement biosecurity measures in small commercial broiler flocks and trying to replace ineffective antimicrobial with alternative materials to interevent a strategy for the control of Campylobacter bacteria in these farms. This study was designed to determine the prevalence rate of Campylobacter spp. in broiler flocks and their environment. Thereafter, assess the efficiency of chitosan, zinc oxide nanoparticles (ZnO NPs), and chitosan/ZnO NPs composite against Campylobacter strains to adopt a novel control strategy based on the ability to use those nanocomposites. A total of 220 samples were collected from broiler flocks, their environment, and farm attendants that direct contact with birds. All samples were subjected to microbiological investigation for isolation, then molecular identification of bacteria using PCR. ZnO NPs and chitosan/ZnO NPs composite were synthesized then characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier-transform infrared spectrum (FT-IR), and X-ray diffraction (X-RD). The efficiency of testing compounds was examined against 30 strains of Campylobacter coli (C. coli) to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The highest percentages of C. coli were isolated from the manure storage area, and broiler litter followed by flies, and feeders (66.7, 53.3, 40.0, and 33.3%, respectively). Both chitosan/ZnO NPs and ZnO NPs at a concentration of 0.5 µg/mL and 1.5 µg/mL, respectively showed complete efficiency (100%) against C. coli compared with chitosan compound. In conclusion, manure storage area and broiler litter represented the main reservoir of Campylobacter bacterial contaminant followed by flies in broiler poultry farms. Chitosan/ZnO NPs composite can be used in any biosecurity program of poultry farms as an alternative to ineffective antimicrobial agents.


Assuntos
Antibacterianos/farmacologia , Campylobacter/isolamento & purificação , Galinhas/microbiologia , Quitosana/farmacologia , Esterco/microbiologia , Nanocompostos/química , Óxido de Zinco/farmacologia , Animais , Antibacterianos/química , Campylobacter/efeitos dos fármacos , Quitosana/química , Fazendas , Testes de Sensibilidade Microbiana , Prevalência , Óxido de Zinco/química
8.
J Hazard Mater ; 379: 120807, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31279308

RESUMO

Antibiotic residues that reach the environment via land application of livestock manure could impact structure and function of microbial communities and promote the spread of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). To assess whether there is a risk, we have reviewed extensive data on five veterinary antibiotics (VAs) that are commonly used in livestock farming (amoxicillin, enrofloxacin, sulfadiazine, tetracycline, trimethoprim). Predicted environmental concentrations (PECs) after the medication of pigs were derived using (i) a total residue approach and (ii) the VetCalc model to account for additional fate parameters and regional scenarios specific to Germany. Predicted no effect concentrations (PNECs) for microbial toxicity and ARB selection were derived from available concentration-response data. Except for enrofloxacin, the total residue PECs exceeded 100 µg kg-1 in soil and risk quotients indicated a high risk for soil porewater and surface water (PEC/PNEC > 1). After PEC refinement, the risk in surface water was generally low. However, in soil porewater still a high risk was indicated for sulfadiazine, tetracycline, and trimethoprim that could persist up to 100 days after the manure application. These findings suggest an urgent need for regulatory action to mitigate the risk resulting from the presence of antibiotic residues in soil.


Assuntos
Antibacterianos/toxicidade , Resíduos de Drogas/toxicidade , Farmacorresistência Bacteriana , Esterco , Poluentes do Solo/toxicidade , Drogas Veterinárias/toxicidade , Animais , Bacillus/efeitos dos fármacos , Bacillus/genética , Cianobactérias/efeitos dos fármacos , Cianobactérias/genética , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , União Europeia , Gado , Esterco/microbiologia , Testes de Sensibilidade Microbiana , Pseudomonas/efeitos dos fármacos , Pseudomonas/genética , Medição de Risco , Microbiologia do Solo
9.
Environ Sci Pollut Res Int ; 26(13): 13275-13285, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30895553

RESUMO

The aim of this study was to investigate how the microbial community structure adapts during the start-up phase and how the 13C fractionation of biogas reflects the microbial population dynamics in two parallel swine manure-fed anaerobic digesters. Two swine manure-fed reactors for the start-up of continuously stirred tank reactors at mesophilic condition were evaluated. Changes in community structure were monitored using 16S rRNA high-throughput sequencing to measure the abundance of fermenting bacteria and methanogens. Digesters with relatively stable Methanosarcinaceae started up successfully and contained high gas production and low levels of propionate. In contrast, the digester that experienced a difficult start-up period had reduced Methanosarcinaceae along with accumulated propionate and low gas production. Specific gas production, specific methane production, and 13C fractionation of biogas were influenced significantly by Methanosarcinaceae, Methanobacteriaceae, and Clostridiaceae, indicating that the 13C fractionation of biogas had significant potential to reflect microbial population changes and digester performance during the start-up period.


Assuntos
Reatores Biológicos/microbiologia , Carbono/química , Esterco/microbiologia , RNA Ribossômico 16S/genética , Anaerobiose , Animais , Bactérias , Biocombustíveis , Fracionamento Químico , Fermentação , Suínos
10.
Poult Sci ; 98(6): 2608-2614, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30668789

RESUMO

Lettuce (Lactuca sativa L.) constitutes one the most important vegetable crops worldwide. Poultry litter is being applied as an economically suitable alternative to nitrogen fertilizers in lettuce cultivation. However, little is known about the effects of this practice over this fresh product safety that is usually consumed as a salad. The aim of this work was to determine the microbiological quality and the nitrate content in lettuce produced, under field conditions, using either raw or composted poultry litter, coming from the same original batch. Two experiments were conducted in the experimental field of Facultad de Ciencias Agrarias (UNL, Santa Fe, Argentina) to assess the effects of recently extracted poultry litter that consisted of broiler chicken manure plus rice husk, or composted for 12 mo. The application amounts were: 20 T ha-1 (T1); 40 T ha-1 (T2); and no application of manure (T). Increasing the applied quantities had also increased the health risk associated with lettuce consumption, due to higher nitrate levels and microbial contamination. However, these risks were reduced by composting the material. Even when lettuce contamination with faecal bacteria was mainly due to the use of poultry litter, the number and incidence of pathogens were reduced when properly composted manure was applied instead of raw one. Increasing the dose of poultry litter applied also increases the health risk in lettuce. Though, when the material is properly composted, its fertilizing capacity is maintained, giving proper yields with lower nitrate levels and microbial contamination by enterobacteria.


Assuntos
Compostagem , Contaminação de Alimentos/análise , Lactuca/microbiologia , Esterco/microbiologia , Animais , Argentina , Galinhas , Produção Agrícola/métodos , Enterobacteriaceae/isolamento & purificação , Fertilizantes/efeitos adversos , Lactuca/química , Esterco/análise , Nitratos/análise , Fatores de Risco
11.
J Hazard Mater ; 366: 184-191, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30528588

RESUMO

The aim was to evaluate pathogenic bacteria (PB) survival during the composting of chicken manure (CM) amended with five different dosages of clay compared to CM without clay-applied treatment. The results showed that 85-87% of PB relative abundances (RAs) were significantly reduced in lower dosages of applied clay (T2 and T3). However, the maximum survival of PB was noticed in the T6 and T5 treatments, but most of the PB belong to Firmicutes, Actinobacteria and Proteobacteria phylum and their derivative bacterial species. The changes in PB during the composting were not only strongly influenced by clay amendment but also significantly associated with the succession of bacterial species in compost. Bacillus, Clostridium, Mycobacterium and Klebsiella were the dominant spore-forming bacteria identified in higher dosages of clay (i.e., T4, T5 and T6) treatments, but very low abundance of these bacterial genus and its species were recovered from lower dosages of clay (T2 and T3)-applied treatments. Overall, without clay, amended-CM-derived compost contained a relatively higher PB abundance than other treatments, as the anaerobic bacterial species Clostridium_difficile_AA1, Vibrio_cholerae, and Acinetobacter_calcoaceticus had relatively greater RAs, followed by Klebsiella_oxytoca_10-5248, Paenibacillus_Bacillus_cereus and Bartonella_quintana_RM-11. Thus, CM composting with 4% clay amendment is considered a useful method for the efficient recycling of CM, as this process produced sanitized compost with less survival of PB.


Assuntos
Bactérias/patogenicidade , Argila/química , Compostagem , Esterco/microbiologia , Metagenômica , Animais , Galinhas
12.
BMC Genomics ; 19(1): 750, 2018 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-30326830

RESUMO

BACKGROUND: Plant-bacteria associations have been extensively studied for their potential in increasing crop productivity in a sustainable manner. Serratia marcescens is a species of Enterobacteriaceae found in a wide range of environments, including soil. RESULTS: Here we describe the genome sequencing and assessment of plant growth-promoting abilities of S. marcescens UENF-22GI, a strain isolated from mature cattle manure vermicompost. In vitro, S. marcescens UENF-22GI is able to solubilize P and Zn, to produce indole compounds (likely IAA), to colonize hyphae and counter the growth of two phytopathogenic fungi. Inoculation of maize with this strain remarkably increased seedling growth and biomass under greenhouse conditions. The S. marcescens UENF-22GI genome has 5 Mb, assembled in 17 scaffolds comprising 4662 genes (4528 are protein-coding). No plasmids were identified. S. marcescens UENF-22GI is phylogenetically placed within a clade comprised almost exclusively of non-clinical strains. We identified genes and operons that are likely responsible for the interesting plant-growth promoting features that were experimentally described. The S. marcescens UENF-22GI genome harbors a horizontally-transferred genomic island involved in antibiotic production, antibiotic resistance, and anti-phage defense via a novel ADP-ribosyltransferase-like protein and possible modification of DNA by a deazapurine base, which likely contributes to its competitiveness against other bacteria. CONCLUSIONS: Collectively, our results suggest that S. marcescens UENF-22GI is a strong candidate to be used in the enrichment of substrates for plant growth promotion or as part of bioinoculants for agriculture.


Assuntos
Compostagem , Genoma Bacteriano/genética , Serratia marcescens/genética , Serratia marcescens/fisiologia , Zea mays/crescimento & desenvolvimento , Zea mays/microbiologia , Biofilmes , Transporte Biológico/genética , Biomassa , Fusarium/crescimento & desenvolvimento , Transferência Genética Horizontal , Esterco/microbiologia , Controle Biológico de Vetores , Fenóis/metabolismo , Fósforo/química , Fósforo/metabolismo , Serratia marcescens/isolamento & purificação , Serratia marcescens/metabolismo , Solubilidade , Espermidina/biossíntese , Zinco/química , Zinco/metabolismo
13.
Environ Health Perspect ; 125(8): 087009, 2017 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-28885976

RESUMO

BACKGROUND: Spray irrigation for land-applying livestock manure is increasing in the United States as farms become larger and economies of scale make manure irrigation affordable. Human health risks from exposure to zoonotic pathogens aerosolized during manure irrigation are not well understood. OBJECTIVES: We aimed to a) estimate human health risks due to aerosolized zoonotic pathogens downwind of spray-irrigated dairy manure; and b) determine which factors (e.g., distance, weather conditions) have the greatest influence on risk estimates. METHODS: We sampled downwind air concentrations of manure-borne fecal indicators and zoonotic pathogens during 21 full-scale dairy manure irrigation events at three farms. We fit these data to hierarchical empirical models and used model outputs in a quantitative microbial risk assessment (QMRA) to estimate risk [probability of acute gastrointestinal illness (AGI)] for individuals exposed to spray-irrigated dairy manure containing Campylobacter jejuni, enterohemorrhagic Escherichia coli (EHEC), or Salmonella spp. RESULTS: Median risk estimates from Monte Carlo simulations ranged from 10-5 to 10-2 and decreased with distance from the source. Risk estimates for Salmonella or EHEC-related AGI were most sensitive to the assumed level of pathogen prevalence in dairy manure, while risk estimates for C. jejuni were not sensitive to any single variable. Airborne microbe concentrations were negatively associated with distance and positively associated with wind speed, both of which were retained in models as a significant predictor more often than relative humidity, solar irradiation, or temperature. CONCLUSIONS: Our model-based estimates suggest that reducing pathogen prevalence and concentration in source manure would reduce the risk of AGI from exposure to manure irrigation, and that increasing the distance from irrigated manure (i.e., setbacks) and limiting irrigation to times of low wind speed may also reduce risk. https://doi.org/10.1289/EHP283.


Assuntos
Irrigação Agrícola/métodos , Indústria de Laticínios , Esterco/microbiologia , Modelos Teóricos , Medição de Risco
14.
Bioresour Technol ; 222: 165-174, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27718399

RESUMO

Vermicomposting is a dependable waste recycling technology which greatly augments N and P levels mainly through microbial action. This paper aims to identify efficient N-fixing (NFB) and P-solubilizing (PSB) bacteria from earthworm intestines. Various combinations of vegetable market waste, rice straw, and cowdung were fed to two earthworm species (Eisenia fetida and Perionyx excavatus). Total organic C decreased, pH shifted towards neutrality, and NPK availability, and microbial (NFB, PSB, and total bacteria) population increased remarkably during vermicomposting with E. fetida. Therefore, 45 NFB and 34 PSB strains isolated from Eisenia gut were initially screened, their inter-dominance assessed, and 8 prolific strains were identified through 16SrRNA sequencing. Interestingly, two novel N-fixing strains of Kluyvera ascorbata emerged as an efficient biofertilizer candidate. Moreover, both N-fixing and P-solubilizing strains of Serratia and Bacillus were isolated from earthworm gut. All the isolated strains significantly improved soil health and facilitated crop growth as compared to commercial biofertilizers.


Assuntos
Oligoquetos/microbiologia , Oryza , Solo , Verduras , Gerenciamento de Resíduos/métodos , Animais , Microbioma Gastrointestinal/genética , Intestinos/microbiologia , Kluyvera/genética , Kluyvera/isolamento & purificação , Kluyvera/metabolismo , Esterco/microbiologia , Fixação de Nitrogênio , Fósforo/química , Fósforo/metabolismo , Brotos de Planta , RNA Ribossômico 16S , Reciclagem , Serratia/genética , Serratia/isolamento & purificação , Serratia/metabolismo
15.
PLoS One ; 10(9): e0139437, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26422375

RESUMO

The bacterial community assembly patterns and processes are poorly understood in pig manure slurry. We collected pig manure slurry samples during the winter and summer seasons from eight commercial pig farms in South Korea. The V3 region of 16S rRNA genes was PCR amplified and sequenced using paired-end Illumina technology for in-depth characterization of bacterial community. Firmicutes, Bacteroidetes, Proteobacteria, Spirochaetes, and Tenericutes were the predominant bacterial phyla present in slurry samples. Bacterial taxonomic community composition was not influenced by the season; however, phylogenetic community composition was affected by seasonal variations. The community composition and diversity patterns were strongly influenced by pH. The bacterial diversity indices showed a unimodal relationship with pH. Phylogenetic signals were detected over only short phylogenetic distances, revealing that closely related bacterial operational taxonomic units (OTUs) tend to co-occur in the same environment; hence, they are ecologically similar. Across all samples, a niche-based process, through strong environmental filtering imposed by pH, primarily governed bacterial community assembly; however, in samples close to the neutral pH range, the role of environmental filtering was decreased due to neutral community assembly. In summary, pH emerged as the major physico-chemical variable in pig manure slurry that regulates the relative importance of niche-based and neutral processes in shaping the community assembly of bacteria.


Assuntos
Esterco/microbiologia , Microbiologia do Solo , Animais , DNA Bacteriano/genética , Filogenia , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA , Suínos
16.
Bioresour Technol ; 198: 237-45, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26398667

RESUMO

Dairy manure management is increasingly becoming an environmental challenge. In this regard, manure anaerobic digestion (AD) can be applied to address environmental concerns; however, dairy manure AD remains economically uncompetitive. Ongoing research is focused on enhanced resource recovery from manure, including maximizing AD methane yield through a novel multi-stage AD configuration. Research presented herein centered on the hypothesis that separately digesting fine and coarse solids from fermented dairy manure would improve methane production; the hypothesis was disproven. While maximum methane concentration was realized on fine solids, combined solids AD yielded enhanced VS destruction. The diverse combined-solids substrate enriched for a more heterogeneous bacterial/archaeal consortium that balanced fermentation and methanogenesis to yield maximum product (methane). However, results suggest that targeted AD of the fat-rich fine solids could be a more optimal approach for processing manure; alternate (non-AD) methods could then be applied to extract value from the fibrous fraction.


Assuntos
Anaerobiose/fisiologia , Esterco/microbiologia , Metano/biossíntese , Gerenciamento de Resíduos/métodos , Reatores Biológicos , Fracionamento Químico , Indústria de Laticínios , Fermentação
17.
Food Microbiol ; 49: 173-81, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25846928

RESUMO

There is a timely need to evaluate the effect agricultural factors and meteorological conditions on fresh produce contamination. This study evaluated those risk factors and described, for the first time, the distribution of indicator microorganisms (Escherichia coli, Enterococcus, coliforms, and Enterobacteriaceae) and the prevalence of foodborne pathogens (Enterohaemorrhagic E. coli, Listeria monocytogenes and Salmonella spp.) in baby spinach grown in the Southeast of Spain. A longitudinal study was conducted on three farms (2011-2013). Results obtained for E. coli highlighted soil and irrigation water as important factors affecting the microbial safety of baby spinach. Significant differences in the proportion of E. coli positive samples were found between treated (46.1%) and untreated (100%) irrigation water. However, the microbial quality of irrigation water didn't affect E. coli prevalence in produce. All E. coli positive spinach samples were detected at the highest observed temperature range suggesting that ambient temperature affects the probability and extent of spinach contamination. Salmonella spp. was detected by RT-PCR in manure, soil, irrigation water and baby spinach but only two of them (manure and irrigation water) were confirmed by isolation in culture media. Salmonella RT-PCR positive samples showed higher levels of E. coli than Salmonella negative samples. This preliminary finding supports recent identification of E. coli as a suitable parameter for the hygiene criterion at the primary production of leafy greens.


Assuntos
Bactérias/crescimento & desenvolvimento , Água Doce/microbiologia , Microbiologia do Solo , Spinacia oleracea/crescimento & desenvolvimento , Irrigação Agrícola , Agricultura , Bactérias/genética , Bactérias/isolamento & purificação , Clima , Ecossistema , Inocuidade dos Alimentos , Água Doce/química , Esterco/microbiologia , Espanha , Spinacia oleracea/microbiologia
18.
J Environ Sci Health B ; 50(2): 135-45, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25587783

RESUMO

The objective of this study was to examine Salmonella survival in pig manure and its separated fractions during storage. Salmonella declined, but significant reductions were not observed in the manure and liquid until day 56, whereas counts in the solids were lower by day 7. The Salmonella inoculum initially impacted counts but not after days 28-56. By day 112 Salmonella was undetectable in the manure and liquid but was recovered from the solids. There was no clear dominance of particular serotypes and antibiotic resistance transfer was not found. Storage duration and pH impacted Salmonella counts in all samples, with duration having the greatest effect. Of the nutrients, nitrate had the greatest impact in the manure and, together with phosphate, it also affected counts in the liquid fraction. This study demonstrates that if pig manure or its separated fractions are stored under controlled conditions at 10.5°C for 84-112 days Salmonella is reduced or eliminated, irrespective of the initial load.


Assuntos
Esterco/microbiologia , Salmonella/isolamento & purificação , Suínos/microbiologia , Eliminação de Resíduos Líquidos/métodos , Agricultura/métodos , Animais , Contagem de Colônia Microbiana , Farmacorresistência Bacteriana , Eliminação de Resíduos , Salmonella/patogenicidade , Microbiologia do Solo
19.
Bioresour Technol ; 171: 410-20, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25226057

RESUMO

Biogas production from animal slurry can provide substantial contributions to reach renewable energy targets, yet due to the low methane potential of slurry, biogas plants depend on the addition of co-substrates to make operations profitable. The environmental performance of three underexploited co-substrates, straw, organic household waste and the solid fraction of separated slurry, were assessed against slurry management without biogas production, using LCA methodology. The analysis showed straw, which would have been left on arable fields, to be an environmentally superior co-substrate. Due to its low nutrient content and high methane potential, straw yields the lowest impacts for eutrophication and the highest climate change and fossil depletion savings. Co-substrates diverted from incineration to biogas production had fewer environmental benefits, due to the loss of energy production, which is then produced from conventional fossil fuels. The scenarios can often provide benefits for one impact category while causing impacts in another.


Assuntos
Biocombustíveis/microbiologia , Conservação de Recursos Energéticos/métodos , Meio Ambiente , Resíduos de Alimentos , Esterco/microbiologia , Metano/biossíntese , Caules de Planta/metabolismo , Animais , Mudança Climática , Eutrofização , Modelos Teóricos , Caules de Planta/química , Suínos
20.
Ig Sanita Pubbl ; 69(5): 575-84, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24316882

RESUMO

The presence of pathogens in animal manure depends on several factors such as, for example, the species, age, type of power supply, state of health, methods and times of storage, treatments administered. Currently there are no specific requirements for the minimum sanitary standards of livestock manure to be used in agriculture, or even of the digestate resulting from anaerobic digestion, such as cattle slurry and plant matrices (e.g. maize). While there are some indications for products fermented aerobically (compost deriving also from manure) and the sludge resulting from wastewater treatment and intended for use as fertilizers. In this paper we sum up the information given in the scientific literature on the viability of some microorganisms and on the effects of the anaerobic digestion of livestock manure and plant matter, such as maize, on the microbial concentrations.


Assuntos
Gado/microbiologia , Esterco/microbiologia , Animais , Guias de Prática Clínica como Assunto , Risco , Gestão de Riscos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA