Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Hazard Mater ; 474: 134754, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38820750

RESUMO

The ubiquitous and adverse effects of estrogens have aroused global concerns. Natural and synthetic estrogens in 255 water samples from the southern Bohai Sea were analyzed over three years. Total estrogen concentrations were 11.0-268 ng/L in river water and 1.98-99.7 ng/L in seawater, with bisphenol A (BPA) and 17α-ethynylestradiol (EE2) being the predominant estrogens, respectively. Estrogen showed the highest concentrations in summer 2018, followed by spring 2021 and spring 2019, which was consistent with the higher estrogen flux from rivers during summer. Higher estrogen concentrations in 2021 than in 2019 were driven by the higher level of BPA, an additive used in personal protective equipment. Estrogen exhibited higher concentrations in the southern coast of the Yellow River Delta and the northeastern coast of Laizhou bay due to the riverine input and aquaculture. Estrogens could disturb the normal endocrine activities of organisms and edict high ecological risks (90th simulated RQT > 1.0) to aquatic organisms, especially to fish. EE2 was the main contributor of estrogenic potency and ecological risk, which requires special concern. This is the first comprehensive study of estrogen spatiotemporal variations and risks in the Bohai Sea, providing insights into the environmental behavior of estrogens in coastal regions.


Assuntos
Monitoramento Ambiental , Estrogênios , Água do Mar , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Medição de Risco , Estrogênios/análise , Água do Mar/química , Água do Mar/análise , China , Animais , Disruptores Endócrinos/análise , Disruptores Endócrinos/toxicidade , Rios/química , Fenóis/análise , Fenóis/toxicidade , Compostos Benzidrílicos/análise , Etinilestradiol/análise , Oceanos e Mares , Estações do Ano
2.
Environ Sci Pollut Res Int ; 31(5): 6857-6873, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38153577

RESUMO

The presence of natural estrogens estrone (E1), 17ß-estradiol (E2), estriol (E3) and synthetic estrogen 17α-ethynylestradiol (EE2) in the aquatic environment has raised concerns because of their high potency as endocrine disrupting chemicals. The European Commission (EC) established a Watch List of contaminants of emerging concerns including E1, E2 and EE2. The proposed environmental quality standards (EQSs) are 3.6, 0.4, 0.035 ng/L, for E1, E2, EE2, respectively. A thorough evaluation of analytical procedures developed by several studies aiming to perform sampling campaigns in different European countries highlighted that the required limits of quantification in surface water were not reached, especially for EE2 and to a lesser extent for E2. Moreover, data regarding the occurrence of these contaminants in Belgian surface water are very limited. A sampling campaign was therefore performed on a wide range of rivers in Belgium (accounting for a total of 63 samples). The detection frequencies of E1, E2, E3 and EE2 were 100, 98, 86 and 48%, respectively. E1 showed the highest mean concentration (= 4.433 ng/L). In contrast, the mean concentration of EE2 was 0.042 ng/L. The risk quotients (RQs) were calculated based on the respective EQS of each analyte. The frequency of exceedance of the EQS was 31.7% for E1, EE2, while it increased to 44.4% for E2. The extent of exceedance of the EQS, represented by the 95th percentile of the RQ dataset, was higher than 1 for E1, E2, EE2. The use of a confusion matrix was investigated to try to predict the risk posed by E2, EE2, based on the concentration of E1.


Assuntos
Estrogênios , Poluentes Químicos da Água , Estrogênios/análise , Bélgica , Água , Estradiol/análise , Medição de Risco , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos
3.
Environ Pollut ; 338: 122628, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37783413

RESUMO

Pharmaceuticals and endocrine disrupting compounds are organic micropollutants that can cause adverse effects at low concentrations. Their occurrence in surface waters has been reported in several countries, including Brazil, at concentrations on the order of ngL-1, while the concentrations at which toxic effects are observed are often in the range of mg.L-1 to µg.L -1, however few studies have been undertaken to characterize risks they represent in Brazilian surface waters. Thus, the objective of this study was to evaluate the ecological risk to Brazilian surface waters caused by the presence of pharmaceuticals and natural and environmental estrogens. Twenty-nine pharmaceuticals, hormones and environmental estrogens were included in the risk assessment while twelve were discarded due to insufficient data availability. The endocrine disrupting compounds were the most frequently detected (39.8% of the reported concentrations), followed by non-steroidal anti-inflammatory drugs (16.3%), antibiotics (6.6%), antiseptics (5.1%), analgesics (5.1%), antihypertensives (4.6%), and to a lesser extent, lipid controllers, anticonvulsants, antidepressants, antihistamines, antivirals and corticosteroids. Bisphenol-A was the most frequently detected compound, followed by diclofenac, 17-ß-estradiol, 17-α-ethynilestradiol, naproxen, triclosan and 4-n-nonylphenol. Acute ecological risk was predicted in two thirds and chronic risk in one third of the water bodies surveyed. The presence of diclofenac or triclosan was determinant for acute risk while estrogenic hormones proved to be decisive for chronic risk. In addition to natural and synthetic endocrine disruptors, the pharmacological groups estimated to have the highest average associated risks were non-steroidal anti-inflammatory drugs, followed by anticonvulsants. No discharge limits exist for most of the compounds found to contribute to ecological risks, indicating the need for regulatory action by the proper Brazilian authorities.


Assuntos
Disruptores Endócrinos , Triclosan , Poluentes Químicos da Água , Disruptores Endócrinos/análise , Brasil , Diclofenaco , Anticonvulsivantes , Poluentes Químicos da Água/análise , Estrogênios/análise , Estradiol/análise , Anti-Inflamatórios não Esteroides , Medição de Risco , Preparações Farmacêuticas , Monitoramento Ambiental
4.
Environ Sci Pollut Res Int ; 30(48): 105829-105839, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37718366

RESUMO

The presence of endocrine-disrupting chemicals (EDCs) in aquatic environments such as water, sediment, and sludge received more and more attention. However, the bioaccumulate properties of EDCs, particularly progestins and androgens, in various tissues of different wild freshwater fish species, as well as their effects on human health, have not been fully studied. The muscle, liver, and gills of three wild fish species obtained from the East Dongting Lake in southern China were examined for the presence of 19 EDCs (4 progestins, 5 androgens, 6 estrogens, and 4 phenols). Seventeen analytes were detected in all fish samples, and the concentrations of progestins, androgens, estrogens, and phenols ranged from ND-78.80 ng/g (wet weight, ww), ND-50.40 ng/g ww, ND-3573.82 ng/g ww, and ND-88.17 ng/g ww, respectively. The bioaccumulation of some EDCs in wild fish from East Dongting Lake was species-specific. Additionally, AND, EES, P4, and E2 were discovered in the liver at higher levels than in the muscle, suggesting that livers had a larger ability for enriching these EDCs than the muscle. Furthermore, the relationships between the fish sizes and the EDC concentrations indicated that total weight and length had a negligible impact on the bioaccumulation of EDCs in various fish species. Most importantly, the effects of EDCs on human health as a result of fish consumption were assessed. Although the estimated daily intakes (EDIs) of most EDCs were much lower compared with the corresponding acceptable daily intakes (ADIs) via consuming fish collected in this study, the EDI of EE2 in Silurus asotus was higher than the ADI of E2, indicating that Silurus asotus from East Dongting Lake should be eaten in moderation by local residents.


Assuntos
Peixes-Gato , Disruptores Endócrinos , Poluentes Químicos da Água , Animais , Humanos , Estrogênios/análise , Progestinas/análise , Androgênios , Fenóis/análise , Distribuição Tecidual , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Medição de Risco , Lagos/química , Disruptores Endócrinos/análise
5.
Sci Total Environ ; 884: 163865, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37142014

RESUMO

Reclaimed water from municipal wastewater has great potential in mitigating the water resource crisis, while the inevitable residue of organic micropollutants (OMPs) challenges the safety of reclaimed water reuse. Limited information was available regarding the overall adverse effects of mixed OMPs in reclaimed water, especially the endocrine-disrupting effects on living organisms. Herein, chemical monitoring in two municipal wastewater treatment plants showed that 31 of 32 candidate OMPs including polycyclic aromatic hydrocarbons (PAHs), phenols, pharmaceuticals and personal care products (PPCPs) were detected in reclaimed water, with a concentration ranging from ng/L to µg/L. Then, based on the risk quotient value, phenol, bisphenol A, tetracycline, and carbamazepine were ranked as high ecological risks. Most PAHs and PPCPs were quantified as medium and low risks, respectively. More importantly, using aquatic vertebrate zebrafish as an in vivo model, the endocrine-disrupting potentials of OMP mixtures were comprehensively characterized. We found that a realistic exposure to reclaimed water induced estrogen-like endocrine disruption and hyperthyroidism in zebrafish, abnormal expression of genes along the hypothalamus-pituitary-thyroid (-gonad) axes, reproductive impairment, and transgenerational toxicity. Based on the chemical analyses, risk quotient calculations, and biotoxicity characterization, this study contributed to understanding the ecological risks of reclaimed water and developing the control standards for OMPs. In addition, application of the zebrafish model in this study also highlighted the significance of in vivo biotoxicity test in water quality evaluation.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Estrogênios/análise , Águas Residuárias , Medição de Risco
6.
Environ Sci Pollut Res Int ; 30(11): 30714-30726, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36441306

RESUMO

The ecological risk associated with five endocrine-disrupting compounds (EDCs) was studied in four wastewater treatment plants (WWTPs) in Monterrey, Mexico. The EDCs, 17ß-estradiol (E2), 17α-ethinylestradiol (EE2), bisphenol A (BPA), 4-nonylphenol (4NP), and 4-tert-octylphenol (4TOP) were determined by SPE/GC-MS method, where EE2 and 4TOP were the most abundant in effluents at levels from 1.6 - 26.8 ng/L (EE2) and < LOD - 5.0 ng/L (4TOP), which corroborate that the wastewater discharges represent critical sources of EDCs to the aquatic environments. In this study, the potential risk associated with selected EDCs was assessed through the risk quotients (RQs) and by estimating the estrogenic activity (expressed as EEQ). This study also constitutes the first approach for the ecological risk assessment in effluents of WWTPs in Northeast Mexico. The results demonstrated that the effluents of the WWTPs represent a high risk for the organisms living in the receiving water bodies because the residual estrogens effect E2 and EE2 with RQ values up to 49.1 and 1165.2. EEQ values between 6.3 and 24.6 ngEE2/L were considered the most hazardous compounds among the target EDCs, capable of causing some alterations in the endocrine system of aquatic and terrestrial organisms due to chronic exposition.


Assuntos
Disruptores Endócrinos , Poluentes Químicos da Água , Purificação da Água , México , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Estrogênios/análise , Disruptores Endócrinos/análise , Medição de Risco , Compostos Benzidrílicos , Monitoramento Ambiental/métodos
7.
Environ Sci Pollut Res Int ; 29(6): 9023-9037, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34498192

RESUMO

Zayandeh Rood river is the most important river in central Iran supplying water for a variety of uses including drinking water for approximately three million inhabitants. The study aimed to investigate the quality of water concerning the presence of pharmaceutical active compounds (PhACs) and hormonelike compounds, which have been only poorly studied in this region. Sampling was performed at seven sites along the river (from headwater sites to downstream drinking water source, corresponding drinking water, and treated wastewater) affected by wastewater effluents, specific drought conditions, and high river-water demand. The targeted and nontargeted chemical analyses and in vitro bioassays were used to evaluate the presence of PhACs and hormonelike compounds in river water. In the samples, 57 PhACs and estrogens were detected with LC-MS/MS with the most common and abundant compounds valsartan, carbamazepine, and caffeine present in the highest concentrations in the treated wastewater in the concentrations of 8.4, 19, and 140 µg/L, respectively. A battery of in vitro bioassays detected high estrogenicity, androgenicity, and AhR-mediated activity (viz., in treated wastewater) in the concentrations 24.2 ng/L, 62.2 ng/L, and 0.98 ng/L of 17ß-estradiol, dihydrotestosterone and 2,3,7,8-TCDD equivalents, respectively. In surface water samples, estrogenicity was detected in the range of <0.42 (LOD) to 1.92 ng/L of 17ß-estradiol equivalents, and the drinking water source contained 0.74 ng/L of 17ß-estradiol equivalents. About 19% of the estrogenicity could be explained by target chemical analyses, and the remaining estrogenicity can be at least partially attributed to the potentiation effect of detected surfactant residues. Drinking water contained several PhACs and estrogens, but the overall assessment suggested minor human health risk according to the relevant effect-based trigger values. To our knowledge, this study provides some of the first comprehensive information on the levels of PhACs and hormones in Iranian waters.


Assuntos
Água Potável , Preparações Farmacêuticas , Poluentes Químicos da Água , Cromatografia Líquida , Estrogênios/análise , Humanos , Irã (Geográfico) , Espectrometria de Massas em Tandem , Águas Residuárias , Poluentes Químicos da Água/análise
8.
Sci Total Environ ; 807(Pt 1): 150752, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34619214

RESUMO

The present work studied the levels, distribution, potential sources, ecological and human health risks of typical hormones and phenolic endocrine disrupting chemicals (EDCs) in the mariculture areas of the Pearl River Delta (PRD), China. The environmental levels of 11 hormones (6 estrogens, 4 progestogens, and 1 androgen) and 2 phenolic EDCs were quantified in various matrices including water, sediment, cultured fish and shellfish. Ultrahigh performance liquid chromatography-triple quadrupole tandem mass spectrometry analyses showed that all the 13 target compounds were detected in biotic samples, whereas 10 were detected in water and sediment, respectively. The total concentrations ranged from 35.06-364.53 ng/L in water and 6.31-29.30 ng/g in sediment, respectively. The average contaminant levels in shellfish (Ostrea gigas, Mytilus edulis and Mimachlamys nobilis) were significantly higher than those in fish (Culter alburnus, Ephippus orbis and Ephippus orbis). Source apportionment revealed that the pollution of hormones and phenolic EDCs in PRD mariculture areas was resulted from the combination of coastal anthropogenic discharges and mariculture activities. The hazard quotient values of the contaminants were all less than 1, implying no immediate human health risk. Overall, the present study is of great significance for scientific mariculture management, land-based pollution control, ecosystem protection, and safeguarding human health.


Assuntos
Disruptores Endócrinos , Poluentes Químicos da Água , Animais , China , Ecossistema , Disruptores Endócrinos/análise , Monitoramento Ambiental , Estrogênios/análise , Humanos , Medição de Risco , Rios , Poluentes Químicos da Água/análise
9.
Environ Pollut ; 287: 117588, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34153606

RESUMO

Endocrine-disrupting chemicals (EDCs) in water are receiving particular attention as they pose adverse effects on aquatic systems, even at trace concentrations. A comprehensive study was conducted on 14 EDCs (five estrogens and nine household and personal care products (HPCPs)) in the water of the urbanized Jiaozhou Bay in the Yellow Sea during summer and winter. Results showed that the total concentration of 14 EDCs ranged from 100 to 658 ng L-1 and 56.7-212 ng L-1 in the estuarine and bay water, respectively. The average total concentration of five estrogens in summer was significantly (p < 0.05) lower than that in winter due to the higher precipitation dilution and degradations during summer, whereas the average total concentration of nine HPCPs was significantly (p < 0.05) higher during the summer than that during the winter because of the higher usage and emissions during the summer. Estrogens and HPCPs were dominated by 17α-ethinylestradiol and p-hydroxybenzoic acid (PHBA), respectively. High PHBA concentrations may be related to the hydrolysis of parabens. The total concentrations of EDCs were higher in the eastern coastal seawater of the bay due to the strong influence of domestic and industrial wastewater discharge. Estrogens may interfere with the endocrine system of aquatic organisms in the bay because the total estradiol equivalent concentration exceeded 1 ng L-1. 17α-ethinylestradiol was the main contributor to the estrogenic activity. The EDC mixtures posed high risks (RQ > 1) to mollusks, crustaceans, and fish, and low to moderate risks (RQ < 1) to algae. Fish was the most sensitive aquatic taxon to the EDC mixtures. Given the concentration and frequency of EDCs, the optimized risk quotient method revealed that 17α-ethinylestradiol, estrone, triclocarban, triclosan, and 17ß-estradiol should be prioritized in ecological management because of their high risks (prioritization index of >1).


Assuntos
Disruptores Endócrinos , Poluentes Ambientais , Poluentes Químicos da Água , Animais , Baías , China , Disruptores Endócrinos/análise , Monitoramento Ambiental , Estrogênios/análise , Medição de Risco , Poluentes Químicos da Água/análise
10.
Sci Total Environ ; 786: 147452, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-33975111

RESUMO

During past two decades, steroid hormones have raised significant public concerns due to their potential adverse effects on the hormonal functions of aquatic organisms and humans. Considering China being a big producer and consumer of steroid hormones, we summarize the current contamination status of steroid hormones in different environmental compartments in China, and preliminarily assess the associated risks to ecological systems. The results show that steroid hormones are ubiquitously present in Chinese surface waters where estrogens are the most studied steroids compared with androgens, progestogens and glucocorticoids. Estrone (E1), 17ß-estradiol (17ß-E2) and estriol (E3) are generally the dominant steroid estrogens in Chinese surface waters, whereas for the other steroids, androsterone (ADR), epi-androsterone (EADR), progesterone (PGT), cortisol (CRL) and cortisone (CRN) have relatively large contributions. Meanwhile, the investigations for the other environmental media such as particles, sediments, soils and groundwater have been limited, as well as for steroid conjugates and metabolites. The median risk quotients of most steroid hormones in surface waters and sediments are lower than 1, indicating low to moderate risks to local organisms. This review provides a full picture of steroid distribution and ecological risks in China, which may be useful for future monitoring and risk assessment. More studies may focus on the analysis of steroid conjugates, metabolites, solid phase fractions, analytical method development and acute/chronic toxicities in different matrices to pursue a more precise and holistic risk assessment.


Assuntos
Poluentes Químicos da Água , China , Monitoramento Ambiental , Estrogênios/análise , Estrona/análise , Humanos , Medição de Risco , Poluentes Químicos da Água/análise
11.
Molecules ; 26(1)2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33374724

RESUMO

In this study, three magnetic ionic liquids (MILs) were investigated for extraction of four estrogens, i.e., estrone (E1), estradiol (E2), estriol (E3), and ethinylestradiol (EE2), from environmental water. The cation trihexyl(tetradecyl)phosphonium ([P66614]+), selected to confer hydrophobicity to the resulting MIL, was combined with tetrachloroferrate(III), ferricyanide, and dysprosium thiocyanate to yield ([P66614][FeCl4]), ([P66614]3[Fe(CN)6]), and ([P66614]5[Dy(SCN)8]), respectively. After evaluation of various strategies to develop a liquid-liquid microextraction technique based on synthesized MILs, we placed the MILs onto a magnetic stir bar and used them as extracting solvents. After extraction, the MIL-enriched phase was dissolved in methanol and injected into an HPLC-UV for qualitative and quantitative analysis. An experimental design was used to simultaneously evaluate the effect of select variables and optimization of extraction conditions to maximize the recovery of the analytes. Under optimum conditions, limits of detection were in the range of 0.2 (for E3 and E2) and 0.5 µg L-1 (for E1), and calibration curves exhibited linearity in the range of 1-1000 µg L-1 with correlation coefficients higher than 0.998. The percent relative standard deviation (RSD) was below 5.0%. Finally, this method was used to determine concentration of estrogens in real lake and sewage water samples.


Assuntos
Estradiol/análise , Estradiol/isolamento & purificação , Líquidos Iônicos/química , Microextração em Fase Líquida/métodos , Magnetismo , Esgotos/análise , Poluentes Químicos da Água/análise , Estrogênios/análise , Estrogênios/isolamento & purificação , Esgotos/química , Poluentes Químicos da Água/química
12.
Environ Pollut ; 267: 115405, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32866865

RESUMO

The ubiquitous occurrence of steroid estrogens (SEs) in the aquatic environment has raised global concern for their potential environmental impacts. This paper extensively compiled and reviewed the available occurrence data of SEs, namely estrone (E1), 17α-estradiol (17α-E2), 17ß-estradiol (17ß-E2), estriol (E3), and 17α-ethinyl estradiol (EE2), based on 145 published articles in different regions all over the world including 51 countries and regions during January 2015-March 2020. The data regarding SEs concentrations and estimated 17ß-estradiol equivalency (EEQ) values are then compared and analyzed in different environmental matrices, including natural water body, drinking and tap water, and wastewater treatment plants (WWTPs) effluent. The detection frequencies of E1, 17ß-E2, and E3 between the ranges of 53%-83% in natural water and WWTPs effluent, and the concentration of SEs varied considerably in different countries and regions. The applicability for EEQ estimation via multiplying relative effect potency (REPi) by chemical analytical data, as well as correlation between EEQbio and EEQcal was also discussed. The risk quotient (RQ) values were on the descending order of EE2 > 17ß-E2 > E1 > 17α-E2 > E3 in the great majority of investigations. Furthermore, E1, 17ß-E2, and EE2 exhibited high or medium risks in water environmental samples via optimized risk quotient (RQf) approach at the continental-scale. This overview provides the latest insights on the global occurrence and ecological impacts of SEs and may act as a supportive tool for future SEs investigation and monitoring.


Assuntos
Poluentes Químicos da Água , Água , Monitoramento Ambiental , Estradiol/análise , Estrogênios/análise , Estrona/análise , Etinilestradiol/análise , Medição de Risco , Poluentes Químicos da Água/análise
13.
Environ Pollut ; 262: 114344, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32443213

RESUMO

The present study is the first comprehensive monitoring of 13 selected endocrine disrupting compounds (EDCs) in untreated urban and industrial wastewater in Serbia to assess their impact on the Danube River basin and associated freshwaters used as sources for drinking water production in the area. Results showed that natural and synthetic estrogens were present in surface and wastewater at concentrations ranging from 0.1 to 64.8 ng L-1. Nevertheless, they were not detected in drinking water. For alkylphenols concentrations ranged from 1.1 to 78.3 ng L-1 in wastewater and from 0.1 to 37.2 ng L-1 in surface water, while in drinking water concentrations varied from 0.4 to 7.9 ng L-1. Bisphenol A (BPA) was the most abundant compound in all water types, with frequencies of detection ranging from 57% in drinking water, to 70% in surface and 84% in wastewater. Potential environmental risks were characterized by calculating the risk quotients (RQs) and the estrogenic activity of EDCs in waste, surface and drinking water samples, as an indicator of their potential detrimental effects. RQ values of estrone (E1) and estradiol (E2) were the highest, exceeding the threshold value of 1 in 60% of wastewater samples, while in surface water E1 displayed potential risks in only two samples. Total estrogenic activity (EEQt) surpassed the threshold of 1 ng E2 L-1 in about 67% of wastewater samples, and in 3 surface water samples. In drinking water, EEQt was below 1 ng L-1 in all samples.


Assuntos
Disruptores Endócrinos/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Estrogênios/análise , Rios , Sérvia , Águas Residuárias
14.
Talanta ; 209: 120542, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31891994

RESUMO

Several magnetic ionic liquids (MILs), [P6,6,6,14+][FeCl4-], [P6,6,6,14+]2[MnCl42-], [P6,6,6,14+]2[CoCl42-] and [P6,6,6,14+]2[NiCl42-] were synthesized and applied for the extraction of six estrogens (estrone, estradiol, 17-α-hydroxyprogesterone, chloromadinone 17-acetate, megestrol 17-acetate and medroxyprogesterone 17-acetate) in dispersive liquid-liquid microextraction (DLLME). The [CoCl42-]-based MIL was selected as extraction solvent for the separation and concentration of estrogens from milk and cosmetics due to its visual recognition, no sign of hydrolysis, solution acquisition easier and the highest extraction capacity. In addition, the [CoCl42-]-based MIL with low UV absorbance allows direct analysis of the extraction solvent by HPLC-UV. The influence of the mass of MIL, extraction time, salt concentration, and the pH of the sample solution was investigated to obtain optimized extraction efficiency. Besides, extraction conditions including salt concentration, mass of MIL and extraction time were further optimized by the Box-Behnken design through the response surface method. Under optimized conditions, the limits of detection (LODs) of all estrogens were ranged from 5 ng mL-1 to 15 ng mL-1. The recoveries ranging from 98.5% to 109.3% in milk and from 96.3% to 111.4% in cosmetics were also studied, respectively. Furthermore, the proposed method were statistically compared with the reported conventional IL-DLLME method and the National standard methods of food safety and cosmetics. The experimental results showed that the functionalized MIL could successfully applied for extraction, separation and pretreatment of estrogens in milk and cosmetics.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Cosméticos/análise , Estrogênios/análise , Líquidos Iônicos/química , Leite/química , Animais , Cromatografia Líquida de Alta Pressão/economia , Limite de Detecção , Imãs/química , Fatores de Tempo
15.
J Hazard Mater ; 389: 121891, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-31882338

RESUMO

The potentially high release of estrogens to surface waters due to high population density and local livestock production in the Beijing-Tianjin-Hebei region may pose adverse effects on reproductive systems of aquatic organisms. This study found that total measured concentrations of estrone (E1), 17ß-estradiol (E2), estriol (E3), 17α-ethinylestradiol (EE2) and diethylstilbestrol (DES) were 468 ± 27 ng/L in treated wastewater and 219 ± 23 ng/L in river waters in this region. E2, E3 and EE2 were the predominant estrogens in river waters. The restriction of DES for human use should have been enforced, however concentrations of DES were relatively high compared to other studies. Haihe and Yongdingxin Rivers delivered approximately 1.8 tonnes of estrogens to the Bohai Bay annually. Concentrations of individual estrogens were significantly higher in river waters in the dry season, however, mass loadings were significantly higher in the wet season. The average E2-equivalent concentrations reached 1.2 ± 0.2 and 0.64 ± 0.08 µg-E2/L following long-term and short-term exposure estimates, respectively, in river waters with an EE2 contribution of over 90 %. This could give rise to high risks to fish. Estrogens in river waters largely derived from human excretion. Field studies on estrogenic effects on fish reproductive systems are required locally considering high estrogen contamination levels.


Assuntos
Estrogênios/análise , Águas Residuárias/análise , Poluentes Químicos da Água/análise , Animais , China , Monitoramento Ambiental , Estrogênios/toxicidade , Peixes , Medição de Risco , Rios , Águas Residuárias/toxicidade , Poluentes Químicos da Água/toxicidade
16.
Sci Total Environ ; 704: 135277, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-31831230

RESUMO

The occurrence of endocrine disrupting chemicals (EDCs) in swimming pool waters has been scarcely investigated. In this study, the concentrations of 20 EDCs (4 phenols, 6 estrogens, 4 progestogens, 5 androgens, and 1 pharmaceutical) in 40 outdoor and indoor swimming pools in Changsha, China were investigated. Out of them, two phenols (bisphenol A and 4-tert-octylphenol), three estrogens (17ß-estradiol, 17ɑ-ethinlestradiol (EE2), and hexestrol), one pharmaceutical (caffeine), and two progestogens (progesterone and levonorgestrel) were detected in the collected samples. The androgens were not detected. Bisphenol A and caffeine were the dominant EDCs at concentrations of ND-23.22 ng/L and ND-39.08 ng/L, respectively. The levels of caffeine were significantly higher in indoor swimming pools (11.15 ng/L in average) than those in outdoor pools (1.90 ng/L in average) (p < 0.05), owing to the less sun's UV radiation and less use of sunscreens containing caffeine. The progestogens (progesterone and levonorgestrel) and estrogens (17ß-estradiol and hexestrol) were only detected in outdoor swimming pools. The detection frequencies and concentrations of bisphenol A and caffeine in downtown pools were significantly higher than those in outskirt pools. Besides, the correlations between the concentrations of EDCs and water quality parameters evaluated by the Spearman correlation analysis implied that residual chlorine had strong oxidant capable to bisphenol A and suggested that caffeine could be a potential indicator of organic contamination in swimming pool water. Finally, a quantitative risk assessment revealed that non-athletic child and athletic adult female were vulnerable subpopulations. The EDItotal of EE2 for athletic child, non-athletic female, non-athletic male, and non-athletic child were higher than ADIEE2 adopted by Australia and the EDItotal of EE2 for athletic female and athletic male were higher than ADIEE2 adopted by the United States.


Assuntos
Disruptores Endócrinos/análise , Monitoramento Ambiental , Piscinas , Poluentes Químicos da Água/análise , Compostos Benzidrílicos , China , Estradiol/análise , Estrogênios/análise , Estrona/análise , Fenóis , Progestinas/análise , Medição de Risco
17.
Ecotoxicol Environ Saf ; 173: 45-53, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-30763810

RESUMO

Herein we investigated the multi-phase distribution and estrogenic effects of endocrine disrupting chemicals (EDCs) in suspended particulate matter (SPM), colloids, and soluble phases from the Shaying River to assess the composition of estrogenic compounds and associated estrogenic risk. The yeast two hybrid (YES) method, cross-flow ultrafiltration (CFUF), and LC-MS/MS were employed. Risk quotient (RQ) values ranged from 0.72 to 3.88, revealing that the Shaying River posed high estrogenic risk to aquatic organisms. The contribution ratios of the target EDCs to the EEQYES ranged from 62.7% to 92.5%, indicating that these chemicals were major contributors of estrogenic effects in the Shaying River. Further, 54.0-77.8% of the detected EDCs were distributed in the soluble phase, 15.1-31.7% were bound to colloidal substances, and 3.90-19.4% EDCs were associated with SPM. Significant correlation between total EDC abundance and COD contents was detected, and the concentrations of endogenous estrogens (E1, E2, and E3) were positively correlated with total nitrogen (TN) and total phosphorus (TP). In addition, the in-situ SPM-soluble (Kpoc) and colloid-soluble partition (Kcoc) coefficients were calculated. The log Kpoc values of target compounds varied from 4.10 to 5.19, while log Kcoc values ranged from 4.25 to 5.56. Their Kcoc values were larger than the Kpoc values, indicating that organic colloids were the most important carriers of EDCs in the aquatic environment.


Assuntos
Disruptores Endócrinos/análise , Estrogênios/análise , Rios/química , Poluentes Químicos da Água/análise , Organismos Aquáticos , China , Coloides/química , Disruptores Endócrinos/química , Monitoramento Ambiental , Estrogênios/química , Material Particulado/química , Medição de Risco , Poluentes Químicos da Água/química
18.
Chemosphere ; 221: 99-106, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30634153

RESUMO

Paperboard used as packaging, a non-inert material, can transfer chemicals into food. Over the years, endocrine disrupting compounds (EDCs), such as NonylPhenols (NPs), BisPhenol A (BPA) and phthalates have been shown to migrate from packaging materials into food. Due to chronic exposure and mixture effects of these EDCs, they could cause health effects even at very low doses. Many EDCs are still unknown and many more are still unregulated. The ERE-CALUX bioassay was used as a bioanalytical tool to investigate estrogenic activities of paperboard food packaging and its characteristics, including recycling rate and printing ink. A "worst case" scenario with full extraction is compared to a dry food migration experiment. By measuring an overall estrogenic activity, known and unknown estrogenic chemicals and mixture effects are taken into account and the data are compared to molecule specific analysis. Estrogenic activities ranged from 682 ±â€¯66 pg E2 eq./dm2 to 3250 ±â€¯400 pg E2 eq./dm2 for "worst case" extraction and from 347 ±â€¯30 pg E2 eq./dm2 to 1350 ±â€¯70 pg E2 eq./dm2 for migration experiments. A two-factor ANOVA revealed a relationship between estrogenic activity and the recycling rate of the paperboard, but no significant difference with printing ink was observed for these paperboard samples. Bis(2-ethylhexyl)phthalate (DEHP), dibutyl phthalate (DBP), butyl benzyl phthalate (BBP) and 1,2-cyclohexane dicarboxylic acid diisononyl ester (DINCH) were determined in all extraction and migrations experiment samples. A Spearman rank correlation analysis showed a relationship between the estrogenic activity and the total phthalates as well as with each compound individually.


Assuntos
Bioensaio/métodos , Disruptores Endócrinos/análise , Estrogênios/análise , Embalagem de Alimentos , Dibutilftalato/análise , Exposição Ambiental/efeitos adversos , Humanos , Ácidos Ftálicos/análise , Reciclagem
19.
Ecotoxicology ; 28(2): 143-153, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30612255

RESUMO

Estrogens have been widely detected in water and might pose a potential threat to the aquatic ecosystem. However, little information is available about the occurrence, multi-phase fate and potential risks of estrogens in Hanjiang River (HR). In this work, the concentration, multi-phase distribution and risk assessment of eight estrogens were studied by investigating surface water and sediment samples from HR during two seasons. These samples were analyzed using the solid-phase extraction (SPE) and liquid chromatography-mass spectrometry (LC-MS). The concentrations of eight estrogens were 4.5-111 ng/l in surface water and 1.7-113 ng/g dry weight in sediments. 4-nonylphenol (NP) was the predominant estrogen in both water and sediments. The estrogens showed significantly spatial variability, with the highest average concentration in the lower section of HR (p < 0.01, F > 12.21). Meanwhile, NP, 17α-estradiol (αE2), Bisphenol A (BPA) and 4-tert-octyphenol (OP) in surface water exhibited higher concentrations in summer than in winter (p < 0.05, F > 4.62). The sediment-water partition coefficients of estrogens suggested that these compounds partitioned more to particulate phase. Risk assessment indicated that estriol (E3) was the main contributor to the total estradiol equivalent concentration. Moreover, estrogen mixtures could pose high ecological risks to aquatic organisms in surface water. Overall, estrogens are ubiquitous in HR, and their potential ecological risks should not be neglected.


Assuntos
Monitoramento Ambiental , Estrogênios/toxicidade , Sedimentos Geológicos/química , Rios/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , China , Cromatografia Líquida , Estrogênios/análise , Estrogênios/química , Espectrometria de Massas , Medição de Risco , Extração em Fase Sólida , Poluentes Químicos da Água/química
20.
Ecotoxicol Environ Saf ; 167: 476-484, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30368141

RESUMO

Endocrine-disrupting compounds (EDCs) were seasonally investigated in the surface water of the Xiangjiang River (south China) in order to understand their spatio-temporal distribution, source apportionment, and ecological risks. The occurrence of 21 EDCs were determined with liquid chromatography-tandem mass spectrometry in the water samples collected along the river over four seasons, and the results were statistically analyzed. The concentrations of progestagens, androgens, estrogens ranged from not detected (ND) to 98.3 ng L-1; while the concentrations of alkylphenols ranged from 0.8 to 3.1 × 103 ng L-1; and that of caffeine ranged from 0.1 to 49.8 ng L-1. The detection frequencies of bisphenol A, 4-tert-octylphenol, 4-n-nonylphenol, estrone, and 17ß-estradiol were 95-100% during the four sampling campaigns. The seasonal and spatial variation trend of EDCs in the Xiangjiang River was noticeable. The concentration of EDCs in Yueyang section (downstream) was the highest in winter, while the concentration in Yongzhou (upstream) section was the lowest in spring. The concentration of EDCs in the Xiangjiang River was significantly correlated with the levels of the total organic carbon, water temperature, and dissolved oxygen. Source analysis indicated that untreated sewage was the major source of EDCs. Furthermore, the potential risks of EDCs in the surface water to aquatic organisms were assessed with the risk quotient method (European Commission, 2003), and the results indicated the highest ecological risk of 17ß-estradiol in the Xiangjiang River.


Assuntos
Disruptores Endócrinos/análise , Rios/química , Poluentes Químicos da Água/análise , Androgênios/análise , Compostos Benzidrílicos/análise , Carbono/análise , China , Monitoramento Ambiental , Estrogênios/análise , Estrona/análise , Oxigênio/análise , Fenóis/análise , Progesterona/análise , Medição de Risco , Estações do Ano , Esgotos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA