Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.310
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 38(9): e23643, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38703030

RESUMO

Secreted phospholipase A2s are involved in the development of obesity, type 2 diabetes mellitus (T2DM) and cardiovascular disease, which have become serious and growing health concerns worldwide. Integration of genome-wide association study and gene co-expression networks analysis showed that the secreted phospholipase A2 group XIIA (PLA2G12A) may participate in hepatic lipids metabolism. Nevertheless, the role of PLA2G12A in lipid metabolism and its potential mechanism remain elusive. Here, we used AAV9 vector carrying human PLA2G12A gene to exogenously express hPLA2G12A in the liver of mice. We demonstrated that the overexpression of hPLA2G12A resulted in a significant decrease in serum lipid levels in wild-type mice fed with chow diet or high-fat diet (HFD). Moreover, hPLA2G12A treatment protected against diet-induced obesity and insulin resistance in mice fed a HFD. Notably, we found that hPLA2G12A treatment confers protection against obesity and hyperlipidemia independent of its enzymatic activity, but rather by increasing physical activity and energy expenditure. Furthermore, we demonstrated that hPLA2G12A treatment induced upregulation of ApoC2 and Cd36 and downregulation of Angptl8, which contributed to the increase in clearance of circulating triglycerides and hepatic uptake of fatty acids without affecting hepatic de novo lipogenesis, very low-density lipoprotein secretion, or intestinal lipid absorption. Our study highlights the potential of PLA2G12A gene therapy as a promising approach for treating obesity, insulin resistance and T2DM.


Assuntos
Dieta Hiperlipídica , Metabolismo Energético , Resistência à Insulina , Camundongos Endogâmicos C57BL , Obesidade , Triglicerídeos , Animais , Obesidade/metabolismo , Obesidade/etiologia , Camundongos , Triglicerídeos/metabolismo , Triglicerídeos/sangue , Masculino , Dieta Hiperlipídica/efeitos adversos , Humanos , Fígado/metabolismo , Metabolismo dos Lipídeos
2.
Comput Biol Med ; 174: 108448, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38626508

RESUMO

BACKGROUND AND OBJECTIVE: Magnetic resonance imaging (MRI) has emerged as a noninvasive clinical tool for assessment of hepatic steatosis. Multi-spectral fat-water MRI models, incorporating single or dual transverse relaxation decay rate(s) (R2*) have been proposed for accurate fat fraction (FF) estimation. However, it is still unclear whether single- or dual-R2* model accurately mimics in vivo signal decay for precise FF estimation and the impact of signal-to-noise ratio (SNR) on each model performance. Hence, this study aims to construct virtual steatosis models and synthesize MRI signals with different SNRs to systematically evaluate the accuracy of single- and dual-R2* models for FF and R2* estimations at 1.5T and 3.0T. METHODS: Realistic hepatic steatosis models encompassing clinical FF range (0-60 %) were created using morphological features of fat droplets (FDs) extracted from human liver biopsy samples. MRI signals were synthesized using Monte Carlo simulations for noise-free (SNRideal) and varying SNR conditions (5-100). Fat-water phantoms were scanned with different SNRs to validate simulation results. Fat water toolbox was used to calculate R2* and FF for both single- and dual-R2* models. The model accuracies in R2* and FF estimates were analyzed using linear regression, bias plot and heatmap analysis. RESULTS: The virtual steatosis model closely mimicked in vivo fat morphology and Monte Carlo simulation produced realistic MRI signals. For SNRideal and moderate-high SNRs, water R2* (R2*W) by dual-R2* and common R2* (R2*com) by single-R2* model showed an excellent agreement with slope close to unity (0.95-1.01) and R2 > 0.98 at both 1.5T and 3.0T. In simulations, the R2*com-FF and R2*W-FF relationships exhibited slopes similar to in vivo calibrations, confirming the accuracy of our virtual models. For SNRideal, fat R2* (R2*F) was similar to R2*W and dual-R2* model showed slightly higher accuracy in FF estimation. However, in the presence of noise, dual-R2* produced higher FF bias with decreasing SNR, while leading to only marginal improvement for high SNRs and in regions dominated by fat and water. In contrast, single-R2* model was robust and produced accurate FF estimations in simulations and phantom scans with clinical SNRs. CONCLUSION: Our study demonstrates the feasibility of creating virtual steatosis models and generating MRI signals that mimic in vivo morphology and signal behavior. The single-R2* model consistently produced lower FF bias for clinical SNRs across entire FF range compared to dual-R2* model, hence signifying that single-R2* model is optimal for assessing hepatic steatosis.


Assuntos
Fígado Gorduroso , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Fígado Gorduroso/diagnóstico por imagem , Razão Sinal-Ruído , Fígado/diagnóstico por imagem , Fígado/metabolismo , Simulação por Computador , Método de Monte Carlo , Masculino , Modelos Biológicos , Tecido Adiposo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Feminino
3.
Food Chem Toxicol ; 188: 114636, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38582343

RESUMO

Nonclinical studies involve in vitro, in silico, and in vivo experiments to assess the toxicokinetics, toxicology, and safety pharmacology of drugs according to regulatory requirements by a national or international authority. In this review, we summarize the potential effects of various underlying diseases governing the absorption, distribution, metabolism, and excretion (ADME) of drugs to consider the use of animal models of diseases in nonclinical trials. Obesity models showed alterations in hepatic metabolizing enzymes, transporters, and renal pathophysiology, which increase the risk of drug-induced toxicity. Diabetes models displayed changes in hepatic metabolizing enzymes, transporters, and glomerular filtration rates (GFR), leading to variability in drug responses and susceptibility to toxicity. Animal models of advanced age exhibited impairment of drug metabolism and kidney function, thereby reducing the drug-metabolizing capacity and clearance. Along with changes in hepatic metabolic enzymes, animal models of metabolic syndrome-related hypertension showed renal dysfunction, resulting in a reduced GFR and urinary excretion of drugs. Taken together, underlying diseases can induce dysfunction of organs involved in the ADME of drugs, ultimately affecting toxicity. Therefore, the use of animal models of representative underlying diseases in nonclinical toxicity studies can be considered to improve the predictability of drug side effects before clinical trials.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Animais , Humanos , Preparações Farmacêuticas/metabolismo , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/etiologia , Fígado/metabolismo , Fígado/efeitos dos fármacos , Rim/metabolismo , Rim/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Taxa de Filtração Glomerular
4.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38396896

RESUMO

Late cardiotoxicity is a formidable challenge in anthracycline-based anticancer treatments. Previous research hypothesized that co-administration of carvedilol (CVD) and dexrazoxane (DEX) might provide superior protection against doxorubicin (DOX)-induced cardiotoxicity compared to DEX alone. However, the anticipated benefits were not substantiated by the findings. This study focuses on investigating the impact of CVD on myocardial redox system parameters in rats treated with DOX + DEX, examining its influence on overall toxicity and iron metabolism. Additionally, considering the previously observed DOX-induced ascites, a seldom-discussed condition, the study explores the potential involvement of the liver in ascites development. Compounds were administered weekly for ten weeks, with a specific emphasis on comparing parameter changes between DOX + DEX + CVD and DOX + DEX groups. Evaluation included alterations in body weight, feed and water consumption, and analysis of NADPH2, NADP+, NADPH2/NADP+, lipid peroxidation, oxidized DNA, and mRNA for superoxide dismutase 2 and catalase expressions in cardiac muscle. The iron management panel included markers for iron, transferrin, and ferritin. Liver abnormalities were assessed through histological examinations, aspartate transaminase, alanine transaminase, and serum albumin level measurements. During weeks 11 and 21, reduced NADPH2 levels were observed in almost all examined groups. Co-administration of DEX and CVD negatively affected transferrin levels in DOX-treated rats but did not influence body weight changes. Ascites predominantly resulted from cardiac muscle dysfunction rather than liver-related effects. The study's findings, exploring the impact of DEX and CVD on DOX-induced cardiotoxicity, indicate a lack of scientific justification for advocating the combined use of these drugs at histological, biochemical, and molecular levels.


Assuntos
Ascite , Cardiotoxicidade , Ratos , Animais , Carvedilol/farmacologia , NADP/metabolismo , Cardiotoxicidade/metabolismo , Ascite/patologia , Doxorrubicina/uso terapêutico , Miocárdio/metabolismo , Antibióticos Antineoplásicos/uso terapêutico , Ferro/metabolismo , Peroxidação de Lipídeos , Fígado/metabolismo , Transferrina/metabolismo , Peso Corporal
5.
Toxicol Sci ; 199(2): 227-245, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38335931

RESUMO

Chemicals in the systemic circulation can undergo hepatic xenobiotic metabolism, generate metabolites, and exhibit altered toxicity compared with their parent compounds. This article describes a 2-chamber liver-organ coculture model in a higher-throughput 96-well format for the determination of toxicity on target tissues in the presence of physiologically relevant human liver metabolism. This 2-chamber system is a hydrogel formed within each well consisting of a central well (target tissue) and an outer ring-shaped trough (human liver tissue). The target tissue chamber can be configured to accommodate a three-dimensional (3D) spheroid-shaped microtissue, or a 2-dimensional (2D) cell monolayer. Culture medium and compounds freely diffuse between the 2 chambers. Human-differentiated HepaRG liver cells are used to form the 3D human liver microtissues, which displayed robust protein expression of liver biomarkers (albumin, asialoglycoprotein receptor, Phase I cytochrome P450 [CYP3A4] enzyme, multidrug resistance-associated protein 2 transporter, and glycogen), and exhibited Phase I/II enzyme activities over the course of 17 days. Histological and ultrastructural analyses confirmed that the HepaRG microtissues presented a differentiated hepatocyte phenotype, including abundant mitochondria, endoplasmic reticulum, and bile canaliculi. Liver microtissue zonation characteristics could be easily modulated by maturation in different media supplements. Furthermore, our proof-of-concept study demonstrated the efficacy of this coculture model in evaluating testosterone-mediated androgen receptor responses in the presence of human liver metabolism. This liver-organ coculture system provides a practical, higher-throughput testing platform for metabolism-dependent bioactivity assessment of drugs/chemicals to better recapitulate the biological effects and potential toxicity of human exposures.


Assuntos
Técnicas de Cocultura , Hepatócitos , Ensaios de Triagem em Larga Escala , Fígado , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Testes de Toxicidade/métodos , Linhagem Celular , Biomarcadores/metabolismo , Xenobióticos/toxicidade
6.
Obesity (Silver Spring) ; 32(1): 120-130, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37873741

RESUMO

OBJECTIVE: The adipose tissue-liver axis is a major regulator of the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Retinoic acid signaling plays an important role in development and metabolism. However, little is known about the role of adipose retinoic acid signaling in the development of obesity-associated NAFLD. In this work, the aim was to investigate whether and how retinoic acid receptor alpha (RARα) regulated the development of obesity and NAFLD. METHODS: RARα expression in adipose tissue of db/db or ob/ob mice was determined. Rarαfl/fl mice and adipocyte-specific Rarα-/- (RarαAdi-/- ) mice were fed a chow diet for 1 year or high-fat diet (HFD) for 20 weeks. Primary adipocytes and primary hepatocytes were co-cultured. Metabolic regulation and inflammatory response were characterized. RESULTS: RARα expression was reduced in adipose tissue of db/db or ob/ob mice. RarαAdi-/- mice had increased obesity and steatohepatitis (NASH) when fed a chow diet or HFD. Loss of adipocyte RARα induced lipogenesis and inflammation in adipose tissue and the liver and reduced thermogenesis. In the co-culture studies, loss of RARα in adipocytes induced inflammatory and lipogenic programs in hepatocytes. CONCLUSIONS: The data demonstrate that RARα in adipocytes prevents obesity and NASH via inhibiting lipogenesis and inflammation and inducing energy expenditure.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Adipócitos/metabolismo , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético , Inflamação/metabolismo , Lipogênese/genética , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/complicações , Receptor alfa de Ácido Retinoico/genética , Receptor alfa de Ácido Retinoico/metabolismo , Tretinoína/metabolismo
7.
Geroscience ; 46(2): 2207-2222, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37880490

RESUMO

Age-associated declines in aerobic capacity promote the development of various metabolic diseases. In rats selectively bred for high/low intrinsic aerobic capacity, greater aerobic capacity reduces susceptibility to metabolic disease while increasing longevity. However, little remains known how intrinsic aerobic capacity protects against metabolic disease, particularly with aging. Here, we tested the effects of aging and intrinsic aerobic capacity on systemic energy expenditure, metabolic flexibility and mitochondrial protein synthesis rates using 24-month-old low-capacity (LCR) or high-capacity runner (HCR) rats. Rats were fed low-fat diet (LFD) or high-fat diet (HFD) for eight weeks, with energy expenditure (EE) and metabolic flexibility assessed utilizing indirect calorimetry during a 48 h fast/re-feeding metabolic challenge. Deuterium oxide (D2O) labeling was used to assess mitochondrial protein fraction synthesis rates (FSR) over a 7-day period. HCR rats possessed greater EE during the metabolic challenge. Interestingly, HFD induced changes in respiratory exchange ratio (RER) in male and female rats, while HCR female rat RER was largely unaffected by diet. In addition, analysis of protein FSR in skeletal muscle, brain, and liver mitochondria showed tissue-specific adaptations between HCR and LCR rats. While brain and liver protein FSR were altered by aerobic capacity and diet, these effects were less apparent in skeletal muscle. Overall, we provide evidence that greater aerobic capacity promotes elevated EE in an aged state, while also regulating metabolic flexibility in a sex-dependent manner. Modulation of mitochondrial protein FSR by aerobic capacity is tissue-specific with aging, likely due to differential energetic requirements by each tissue.


Assuntos
Metabolismo Energético , Doenças Metabólicas , Ratos , Masculino , Feminino , Animais , Metabolismo Energético/fisiologia , Fígado/metabolismo , Dieta Hiperlipídica , Doenças Metabólicas/metabolismo , Proteínas Mitocondriais/metabolismo
8.
J Hazard Mater ; 465: 133299, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38141307

RESUMO

Traditional risk assessment methods face challenges in the determination of drivers of toxicity for complex mixtures such as those present at legacy-contaminated sites. Bioassay-driven analysis across several levels of biological organization represents an approach to address these obstacles. This study aimed to apply a novel transcriptomics tool, the EcoToxChip, to characterize the effects of complex mixtures of contaminants in adult fathead minnows (FHMs) and to compare molecular response patterns to higher-level biological responses. Adult FHMs were exposed for 4 and 21 days to groundwater mixtures collected from a legacy-contaminated site. Adult FHM showed significant induction of micronuclei in erythrocytes, decrease in reproductive capacities, and some abnormal appearance of liver histology. Parallel EcoToxChip analyses showed a high proportion of upregulated genes and a few downregulated genes characteristic of compensatory responses. The three most enriched pathways included thyroid endocrine processes, transcription and translation cellular processes, and xenobiotics and reactive oxygen species metabolism. Several of the most differentially regulated genes involved in these biological pathways could be linked to the apical outcomes observed in FHMs. We concluded that molecular responses as determined by EcoToxChip analysis show promise for informing of apical outcomes and could support risk assessments of complex contaminated sites.


Assuntos
Cyprinidae , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/análise , Reprodução , Fígado/metabolismo , Cyprinidae/metabolismo , Misturas Complexas
9.
Cell Rep ; 42(12): 113536, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38060447

RESUMO

Fibroblast growth factor 21 (FGF21), an endocrine signal robustly increased by protein restriction independently of an animal's energy status, exerts profound effects on feeding behavior and metabolism. Here, we demonstrate that considering the nutritional contexts within which FGF21 is elevated can help reconcile current controversies over its roles in mediating macronutrient preference, food intake, and energy expenditure. We show that FGF21 is primarily a driver of increased protein intake in mice and that the effect of FGF21 on sweet preference depends on the carbohydrate balance of the animal. Under no-choice feeding, FGF21 infusion either increased or decreased energy expenditure depending on whether the animal was fed a high- or low-energy diet, respectively. We show that while the role of FGF21 in mediating feeding behavior is complex, its role in promoting protein appetite is robust and that the effects on sweet preference and energy expenditure are macronutrient-state-dependent effects of FGF21.


Assuntos
Apetite , Fatores de Crescimento de Fibroblastos , Camundongos , Animais , Fatores de Crescimento de Fibroblastos/metabolismo , Comportamento Alimentar , Metabolismo Energético , Fígado/metabolismo
10.
Sci Rep ; 13(1): 19652, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37950037

RESUMO

To investigate the value of T2* technique on 3.0 T magnetic resonance imaging (MRI) in evaluating the changes of cardiac and hepatic iron load before and after hematopoietic stem cell transplantation (HSCT) in patients with thalassemia (TM), the 141 TM patients were divided into 6 group for subgroup analysis: 6, 12, 18, 24 and > 24 months group, according to the postoperative interval. The T2* values of heart and liver (H-T2*, L-T2*) were quantified in TM patients before and after HSCT using 3.0 T MRI T2* technology, and the corresponding serum ferritin (SF) was collected at the same time, and the changes of the three before and after HSCT were compared. The overall H-T2* (P = 0.001) and L-T2* (P = 0.041) of patients after HSCT were higher than those before HSCT (mean relative changes = 19.63%, 7.19%). The H-T2* (P < 0.001) and L-T2* (P < 0.001) > 24 months after HSCT were significantly higher than those before HSCT (mean relative changes = 69.19%, 93.73%). The SF of 6 months (P < 0.001), 12 months (P = 0.008), 18 months (P = 0.002) and > 24 months (P = 0.001) were significantly higher than those before HSCT (mean relative changes = 57.93%, 73.84%, 128.51%, 85.47%). There was no significant improvement in cardiac and liver iron content in TM patients within 24 months after HSCT, while the reduction of cardiac and liver iron content in patients is obvious when > 24 months after HSCT.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Sobrecarga de Ferro , Talassemia , Talassemia beta , Humanos , Ferro/metabolismo , Ferritinas , Sobrecarga de Ferro/patologia , Talassemia beta/diagnóstico por imagem , Talassemia beta/terapia , Talassemia/diagnóstico por imagem , Talassemia/terapia , Talassemia/patologia , Imageamento por Ressonância Magnética/métodos , Fígado/metabolismo , Miocárdio/metabolismo
11.
J Nutr ; 153(12): 3418-3429, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37774841

RESUMO

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) prevalence is rapidly growing, and fatty liver has been found in a quarter of the US population. Increased liver lipids, particularly those derived from the pathway of de novo lipogenesis (DNL), have been identified as a hallmark feature in individuals with high liver fat. This has led to much activity in basic science and drug development in this area. No studies to date have investigated the contribution of DNL across a spectrum of disease, although it is clear that inhibition of DNL has been shown to reduce liver fat. OBJECTIVES: The purpose of this study was to determine whether liver lipid synthesis increases across the continuum of liver injury. METHODS: Individuals (n = 49) consumed deuterated water for 10 d before their scheduled bariatric surgeries to label DNL; blood and liver tissue samples were obtained on the day of the surgery. Liver lipid concentrations were quantitated, and levels of protein and gene expression assessed. RESULTS: Increased liver DNL, measured isotopically, was significantly associated with liver fatty acid synthase protein content (R = 0.470, P = 0.003), total steatosis assessed by histology (R = 0.526, P = 0.0008), and the fraction of DNL fatty acids in plasma very low-density lipoprotein-triacylglycerol (R = 0.747, P < 0.001). Regression analysis revealed a parabolic relationship between fractional liver DNL (percent) and NAFLD activity score (R = 0.538, P = 0.0004). CONCLUSION: These data demonstrate that higher DNL is associated with early to mid stages of liver disease, and this pathway may be an effective target for the treatment of NAFLD and nonalcoholic steatohepatitis. This study was registered at clinicaltrials.gov as NCT03683589.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Triglicerídeos/metabolismo , Marcação por Isótopo , Fígado/metabolismo , Ácidos Graxos/metabolismo , Lipogênese
12.
Toxicol In Vitro ; 93: 105688, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37660999

RESUMO

Despite the fact that biotransformation in the liver plays an important role in the augmented toxicity and detoxification of chemicals, relatively little efforts have been made to incorporate biotransformation into in vitro neurotoxicity testing. Conventional in vitro systems for neurotoxicity tests lack the capability of investigating the qualitative and quantitative differences between parent chemicals and their metabolites in the human body. Therefore, there is a need for an in vitro toxicity screening system that can incorporate hepatic biotransformation of chemicals and predict the susceptibility of their metabolites to induce neurotoxicity. To address this need, we adopted 3D cultures of metabolically competent HepaRG cell line with ReNcell VM and established a high-throughput, metabolism-mediated neurotoxicity testing system. Briefly, spheroids of HepaRG cells were generated in an ultralow attachment (ULA) 384-well plate while 3D-cultured ReNcell VM was established on a 384-pillar plate with sidewalls and slits (384PillarPlate). Metabolically sensitive test compounds were added in the ULA 384-well plate with HepaRG spheroids and coupled with 3D-cultured ReNcell VM on the 384PillarPlate, which allowed us to generate metabolites in situ by HepaRG cells and test them against neural stem cells. We envision that this approach could be potentially adopted in pharmaceutical and chemical industries when high-throughput screening (HTS) is necessary to assess neurotoxicity of compounds and their metabolites.


Assuntos
Técnicas de Cultura de Células , Células-Tronco Neurais , Humanos , Hepatócitos/metabolismo , Células Cultivadas , Fígado/metabolismo , Esferoides Celulares
13.
Clin Nutr ; 42(10): 1839-1848, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37625314

RESUMO

BACKGROUND AND AIMS: The worldwide prevalence of Non-alcoholic Fatty Liver Disease (NAFLD) raises concerns about associated risk factors, such as obesity and type 2 Diabetes Mellitus, for leading causes of disability and death. Besides Magnetic Resonance Imaging (MRI) and Spectroscopy (MRS), functional imaging with Positron Emission Tomography (PET) could contribute to a deeper understanding of the pathophysiology of NAFLD. Here we describe a novel approach using the PET tracer [18F]FTHA, which is an analog of long-chain free fatty acids (FFA) and is taken up by tissues to enter mitochondria or to be incorporated into complex lipids for further export as very-low-density lipoprotein (VLDL). METHODS: Male Sprague Dawley rats, after 6 weeks on a high-fat diet (HFD), were used as a model of diet induced NAFLD, while a standard diet (SD) served as a control group. Liver fat was estimated by MR spectroscopy at a 9.4 T system for phenotyping. To measure hepatic FFA uptake, rats underwent 60 min dynamic [18F]FTHA-PET scans after unrestricted access to food (HFD: n = 6; SD: n = 6) or overnight (≤16h) fasting (HFD: n = 6; SD: n = 5). FFA removal was assessed from incorporated 18F-residual in de novo synthesized VLDL out of plasma. RESULTS: MRS of the liver confirmed the presence of NAFLD (>5.6% fat). Under non-fasting conditions, hepatic [18F]FTHA uptake was significantly increased in NAFLD: SUVmean (p = 0.03) within [0; 60] min interval, SUVmean (p = 0.01) and SUVmax (p = 0.03) within [30; 60] min interval. SUVs for hepatic uptake under fasting conditions were not significantly different between the groups. Analysis of FFA removal demonstrated elevated values of 18F-residue in the VLDL plasma fraction of the healthy group compared to the NAFLD (p = 0.0569). CONCLUSION: Our novel approach for assessing FFA metabolism using [18F]FTHA demonstrated differences in the hepatic FFA uptake and FFA incorporation into VLDL between healthy and NAFLD rats. [18F]FTHA-PET could be used to study metabolic disturbances involved in the progression of NAFLD.


Assuntos
Diabetes Mellitus Tipo 2 , Hepatopatia Gordurosa não Alcoólica , Ratos , Masculino , Animais , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ácidos Graxos não Esterificados , Lipoproteínas VLDL/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Tomografia Computadorizada por Raios X , Ratos Sprague-Dawley , Tomografia por Emissão de Pósitrons , Fígado/diagnóstico por imagem , Fígado/metabolismo , Dieta Hiperlipídica/efeitos adversos
14.
Stem Cells ; 41(11): 1076-1088, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37616601

RESUMO

Human pluripotent stem cell (hPSC)-derived hepatocyte-like cells (HLCs) hold great promise for liver disease modeling, drug discovery, and drug toxicity screens. Yet, several hurdles still need to be overcome, including among others decrease in the cost of goods to generate HLCs and automation of the differentiation process. We here describe that the use of an automated liquid handling system results in highly reproducible HLC differentiation from hPSCs. This enabled us to screen 92 chemicals to replace expensive growth factors at each step of the differentiation protocol to reduce the cost of goods of the differentiation protocol by approximately 79%. In addition, we also evaluated several recombinant extracellular matrices to replace Matrigel. We demonstrated that differentiation of hPSCs on Laminin-521 using an optimized small molecule combination resulted in HLCs that were transcriptionally identical to HLCs generated using the growth factor combinations. In addition, the HLCs created using the optimized small molecule combination secreted similar amounts of albumin and urea, and relatively low concentrations of alfa-fetoprotein, displayed similar CYP3A4 functionality, and a similar drug toxicity susceptibility as HLCs generated with growth factor cocktails. The broad applicability of the new differentiation protocol was demonstrated for 4 different hPSC lines. This allowed the creation of a scalable, xeno-free, and cost-efficient hPSC-derived HLC culture, suitable for high throughput disease modeling and drug screenings, or even for the creation of HLCs for regenerative therapies.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Fígado/metabolismo , Hepatócitos/metabolismo , Diferenciação Celular , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo
15.
JCI Insight ; 8(18)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37561578

RESUMO

Acyl-CoA thioesterase 1 (ACOT1) catalyzes the hydrolysis of long-chain acyl-CoAs to free fatty acids and CoA and is typically upregulated in obesity. Whether targeting ACOT1 in the setting of high-fat diet-induced (HFD-induced) obesity would be metabolically beneficial is not known. Here we report that male and female ACOT1KO mice are partially protected from HFD-induced obesity, an effect associated with increased energy expenditure without alterations in physical activity or food intake. In males, ACOT1 deficiency increased mitochondrial uncoupling protein-2 (UCP2) protein abundance while reducing 4-hydroxynonenal, a marker of oxidative stress, in white adipose tissue and liver of HFD-fed mice. Moreover, concurrent knockdown (KD) of UCP2 with ACOT1 in hepatocytes prevented increases in oxygen consumption observed with ACOT1 KD during high lipid loading, suggesting that UCP2-induced uncoupling may increase energy expenditure to attenuate weight gain. Together, these data indicate that targeting ACOT1 may be effective for obesity prevention during caloric excess by increasing energy expenditure.


Assuntos
Dieta Hiperlipídica , Obesidade , Animais , Feminino , Masculino , Camundongos , Metabolismo Energético , Fígado/metabolismo , Obesidade/metabolismo , Aumento de Peso
16.
Sci Rep ; 13(1): 12834, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553441

RESUMO

Patients with chronic liver disease progressed to compensated advanced chronic liver disease (cACLD), the risk of liver-related decompensation increased significantly. This study aimed to develop prediction model based on individual bile acid (BA) profiles to identify cACLD. This study prospectively recruited 159 patients with hepatitis B virus (HBV) infection and 60 healthy volunteers undergoing liver stiffness measurement (LSM). With the value of LSM, patients were categorized as three groups: F1 [LSM ≤ 7.0 kilopascals (kPa)], F2 (7.1 < LSM ≤ 8.0 kPa), and cACLD group (LSM ≥ 8.1 kPa). Random forest (RF) and support vector machine (SVM) were applied to develop two classification models to distinguish patients with different degrees of fibrosis. The content of individual BA in the serum increased significantly with the degree of fibrosis, especially glycine-conjugated BA and taurine-conjugated BA. The Marco-Precise, Marco-Recall, and Marco-F1 score of the optimized RF model were all 0.82. For the optimized SVM model, corresponding score were 0.86, 0.84, and 0.85, respectively. RF and SVM models were applied to identify individual BA features that successfully distinguish patients with cACLD caused by HBV. This study provides a new tool for identifying cACLD that can enable clinicians to better manage patients with chronic liver disease.


Assuntos
Ácidos e Sais Biliares , Hepatite B Crônica , Cirrose Hepática , Fígado , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ácidos e Sais Biliares/sangue , Glicina/metabolismo , Vírus da Hepatite B/metabolismo , Hepatite B Crônica/sangue , Hepatite B Crônica/diagnóstico , Hepatite B Crônica/metabolismo , Hepatite B Crônica/virologia , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/sangue , Cirrose Hepática/diagnóstico , Cirrose Hepática/metabolismo , Cirrose Hepática/virologia , Algoritmo Florestas Aleatórias , Máquina de Vetores de Suporte , Taurina/metabolismo , Adolescente , Adulto Jovem , Idoso , Reprodutibilidade dos Testes , Análise de Componente Principal
17.
Toxicol Lett ; 384: 1-13, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37451653

RESUMO

Exposure to xenobiotics can adversely affect biochemical reactions, including hepatic bile acid synthesis. Bile acids are essential for dissolving lipophilic compounds in the hydrophilic environment of the gastrointestinal tract. The critical micellar concentration of bile acids depends on the Δ4-reduction stereochemistry, with the 3-oxo-5ß-steroid-Δ4-dehydrogenase (AKR1D1) introducing the cis ring A/B conformation. Loss-of-function mutations in AKR1D1 cause hepatic cholestasis, which, if left untreated can progress into steatosis and liver cirrhosis. Furthermore, AKR1D1 is involved in clearing steroids with an A-ring Δ4-double bond. Here, we tested whether anabolic-androgenic steroids (AAS), often taken off-label at high doses, might inhibit AKR1D1, thereby potentially causing hepatotoxicity. A computational molecular model was established and used for virtual screening of the DrugBank database consisting of 2740 molecules, yielding mainly steroidal hits. Fourteen AAS were selected for in vitro evaluation, as such compounds can reach high hepatic concentrations in an abuse situation. Nandrolone, clostebol, methasterone, drostanolone, and methenolone inhibited to various extent the AKR1D1-mediated reduction of testosterone. Molecular modeling suggests that 9 out of 14 investigated AAS are competitive inhibitors. Moreover quantum mechanical calculations show that nadrolone and clostebol are substrates of AKR1D1 with different activation energy barriers for the hydrogen transfer from cofactor to the C5 position affecting their turnover. In this multidisciplinary approach, we established a molecular model of AKR1D1, identified several AAS as inhibitors, and described their binding mode. This approach may be applied to study other classes of inhibitors including non-steroidal compounds.


Assuntos
Anabolizantes , Esteróides Androgênicos Anabolizantes , Humanos , Ácidos e Sais Biliares , Esteroides , Mutação , Fígado/metabolismo , Anabolizantes/toxicidade
18.
Toxicol In Vitro ; 92: 105641, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37437822

RESUMO

Animal models are considered prime study models for inhalation-like toxicity assessment. However, in light of animal experimentation reduction (3Rs), we developed and investigated an alternative in vitro method to study systemic-like responses to inhalation-like exposures. A coculture platform was established to emulate inter-organ crosstalks between a pulmonary barrier, which constitutes the route of entry of inhaled compounds, and the liver, which plays a major role in xenobiotic metabolism. Both compartments (Calu-3 insert and HepG2/C3A biochip) were jointly cultured in a dynamically-stimulated environment for 72 h. The present model was characterized using acetaminophen (APAP), a well-documented hepatotoxicant, to visibly assess the passage and circulation of a xenobiotic through the device. Based on viability and functionality parameters the coculture model showed that the bronchial barrier and the liver biochip can successfully be maintained viable and function in a dynamic coculture setting for 3 days. In a stress-induced environment, present results reported that the coculture model emulated active and functional in vitro crosstalk that seemingly was responsive to xenobiotic exposure doses. The hepatic and bronchial cellular responses to xenobiotic exposure were modified in the coculture setting as they displayed earlier and stronger detoxification processes, highlighting active and functional organ crosstalk between both compartments.


Assuntos
Fígado , Xenobióticos , Animais , Técnicas de Cocultura , Xenobióticos/toxicidade , Xenobióticos/metabolismo , Fígado/metabolismo , Acetaminofen/toxicidade , Pulmão
19.
Vet Res Commun ; 47(4): 2111-2125, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37439942

RESUMO

Tambaqui (Colossoma macropomum) is a species of great cultural and economic importance in aquaculture in the Amazon region. Methionine is considered the first limiting sulfur amino acid in practical fish diets, which encourages investigating its use in diets for tambaqui. This study aimed to verify the digestible methionine plus cystine (Met + Cys) requirement in diets for tambaqui (89.52 ± 0.53 g) for 60 days. The treatments investigated were: 6.50, 7.80, 9.10, 10.40, 11.70, and 13.00 g Met + Cys kg diet-1. The estimated requirement based on final weight, weight gain, feed conversion ratio, and specific growth rate was 9.04, 8.92, 8.91, and 8.58 g Met + Cys kg diet-1, respectively, while on body protein deposition, body fat deposition, body ash deposition, and nitrogen retention efficiency was 9.29, 9.20, 9.19, and 8.72 g Met + Cys kg diet-1, respectively. Linear regression demonstrated that increased digestible Met + Cys in the diet decreased plasma total protein, globulin, and liver total protein levels. Quadratic regression showed that the highest value for liver glycogen was found with a 10.40 g Met + Cys kg diet-1. Another quadratic regression demonstrated a lower hepatic aspartate aminotransferase (AST) enzymatic activity in fish fed between 7.80 and 11.70 g Met + Cys kg diet-1. The different treatments did not influence the erythrogram. In conclusion, when considering an integrative view of the results for growth performance, whole-body deposition, and liver parameters without harming the physiological and metabolic status, we recommended choosing a diet with digestible Met + Cys between 8.58 and 9.29 g kg- 1 for tambaqui.


Assuntos
Aminoácidos Sulfúricos , Metionina , Animais , Metionina/metabolismo , Cistina/metabolismo , Aminoácidos Sulfúricos/metabolismo , Racemetionina/metabolismo , Dieta/veterinária , Composição Corporal , Fígado/metabolismo , Ração Animal/análise
20.
Cell Metab ; 35(8): 1356-1372.e5, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37473754

RESUMO

Liver mitochondria undergo architectural remodeling that maintains energy homeostasis in response to feeding and fasting. However, the specific components and molecular mechanisms driving these changes and their impact on energy metabolism remain unclear. Through comparative mouse proteomics, we found that fasting induces strain-specific mitochondrial cristae formation in the liver by upregulating MIC19, a subunit of the MICOS complex. Enforced MIC19 expression in the liver promotes cristae formation, mitochondrial respiration, and fatty acid oxidation while suppressing gluconeogenesis. Mice overexpressing hepatic MIC19 show resistance to diet-induced obesity and improved glucose homeostasis. Interestingly, MIC19 overexpressing mice exhibit elevated energy expenditure and increased pedestrian locomotion. Metabolite profiling revealed that uracil accumulates in the livers of these mice due to increased uridine phosphorylase UPP2 activity. Furthermore, uracil-supplemented diet increases locomotion in wild-type mice. Thus, MIC19-induced mitochondrial cristae formation in the liver increases uracil as a signal to promote locomotion, with protective effects against diet-induced obesity.


Assuntos
Metabolismo Energético , Fígado , Caminhada , Mitocôndrias Hepáticas/metabolismo , Fígado/metabolismo , Proteínas Mitocondriais/metabolismo , Proteoma/metabolismo , Animais , Camundongos , Dieta Hiperlipídica , Aumento de Peso , Uracila/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA