Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
J Pharmacol Exp Ther ; 377(2): 218-231, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33648939

RESUMO

Cardiovascular adverse effects in drug development are a major source of compound attrition. Characterization of blood pressure (BP), heart rate (HR), stroke volume (SV), and QT-interval prolongation are therefore necessary in early discovery. It is, however, common practice to analyze these effects independently of each other. High-resolution time courses are collected via telemetric techniques, but only low-resolution data are analyzed and reported. This ignores codependencies among responses (HR, BP, SV, and QT-interval) and separation of system (turnover properties) and drug-specific properties (potencies, efficacies). An analysis of drug exposure-time and high-resolution response-time data of HR and mean arterial blood pressure was performed after acute oral dosing of ivabradine, sildenafil, dofetilide, and pimobendan in Han-Wistar rats. All data were modeled jointly, including different compounds and exposure and response time courses, using a nonlinear mixed-effects approach. Estimated fractional turnover rates [h-1, relative standard error (%RSE) within parentheses] were 9.45 (15), 30.7 (7.8), 3.8 (13), and 0.115 (1.7) for QT, HR, total peripheral resistance, and SV, respectively. Potencies (nM, %RSE within parentheses) were IC 50 = 475 (11), IC 50 = 4.01 (5.4), EC 50 = 50.6 (93), and IC 50 = 47.8 (16), and efficacies (%RSE within parentheses) were I max = 0.944 (1.7), Imax = 1.00 (1.3), E max = 0.195 (9.9), and Imax = 0.745 (4.6) for ivabradine, sildenafil, dofetilide, and pimobendan. Hill parameters were estimated with good precision and below unity, indicating a shallow concentration-response relationship. An equilibrium concentration-biomarker response relationship was predicted and displayed graphically. This analysis demonstrates the utility of a model-based approach integrating data from different studies and compounds for refined preclinical safety margin assessment. SIGNIFICANCE STATEMENT: A model-based approach was proposed utilizing biomarker data on heart rate, blood pressure, and QT-interval. A pharmacodynamic model was developed to improve assessment of high-resolution telemetric cardiovascular safety data driven by different drugs (ivabradine, sildenafil, dofetilide, and pimobondan), wherein system- (turnover rates) and drug-specific parameters (e.g., potencies and efficacies) were sought. The model-predicted equilibrium concentration-biomarker response relationships and was used for safety assessment (predictions of 20% effective concentration, for example) of heart rate, blood pressure, and QT-interval.


Assuntos
Biomarcadores Farmacológicos/sangue , Pressão Sanguínea , Fármacos Cardiovasculares/toxicidade , Frequência Cardíaca , Animais , Cardiotoxicidade/sangue , Cardiotoxicidade/etiologia , Cardiotoxicidade/fisiopatologia , Fármacos Cardiovasculares/administração & dosagem , Fármacos Cardiovasculares/farmacocinética , Ivabradina/administração & dosagem , Ivabradina/farmacocinética , Ivabradina/toxicidade , Masculino , Fenetilaminas/administração & dosagem , Fenetilaminas/farmacocinética , Fenetilaminas/toxicidade , Piridazinas/administração & dosagem , Piridazinas/farmacocinética , Piridazinas/toxicidade , Ratos , Ratos Wistar , Citrato de Sildenafila/administração & dosagem , Citrato de Sildenafila/farmacocinética , Citrato de Sildenafila/toxicidade , Sulfonamidas/administração & dosagem , Sulfonamidas/farmacocinética , Sulfonamidas/toxicidade
2.
Mol Imaging Biol ; 15(4): 376-83, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23306971

RESUMO

PURPOSE: [11C]Cimbi-36 was recently developed as an agonist radioligand for brain imaging of serotonin 2A receptors (5-HT2A) with positron emission tomography (PET). This may be used to quantify the high-affinity state of 5-HT2A receptors and may have the potential to quantify changes in cerebral 5-HT levels in vivo. We here investigated safety aspects related to clinical use of [11C]Cimbi-36, including radiation dosimetry and in vivo pharmacology. PROCEDURES: [11C]Cimbi-36 was injected in rats or pigs, and radiation dosimetry was examined by ex vivo dissection or with PET scanning, respectively. Based on animal data, the Organ Level INternal Dose Assessment software was used to estimate extrapolated human dosimetry for [11C]Cimbi-36. The 5-HT2A receptor agonist actions of [11C]Cimbi-36 in vivo pharmacological effects in mice elicited by increasing doses of Cimbi-36 were assessed with the head-twitch response (HTR). RESULTS: The effective dose as extrapolated from both rat and pig data was low, 7.67 and 4.88 µSv/MBq, respectively. In addition, the estimated absorbed radiation dose to human target organs did not exceed safety levels. Administration of 0.5 mg/kg Cimbi-36 leads to significant HTR compared to saline, whereas 0.05 mg/kg Cimbi-36 (doses much larger than those given in conjunction with a PET scan) did not elicit a significant HTR. CONCLUSIONS: Administration of tracer doses of [11C]Cimbi-36 does not seem to be associated with unusual radiation burden or adverse clinical effects.


Assuntos
Benzilaminas/efeitos adversos , Fenetilaminas/efeitos adversos , Tomografia por Emissão de Pósitrons , Receptor 5-HT2A de Serotonina/metabolismo , Agonistas do Receptor 5-HT2 de Serotonina/efeitos adversos , Animais , Benzilaminas/síntese química , Benzilaminas/química , Benzilaminas/farmacocinética , Relação Dose-Resposta à Radiação , Humanos , Ligantes , Camundongos , Fenetilaminas/síntese química , Fenetilaminas/química , Fenetilaminas/farmacocinética , Radiometria , Ratos , Agonistas do Receptor 5-HT2 de Serotonina/síntese química , Agonistas do Receptor 5-HT2 de Serotonina/química , Agonistas do Receptor 5-HT2 de Serotonina/farmacocinética , Sus scrofa , Distribuição Tecidual/efeitos dos fármacos , Imagem Corporal Total
3.
Mol Neurobiol ; 11(1-3): 193-216, 1995.
Artigo em Inglês | MEDLINE | ID: mdl-8561962

RESUMO

Pharmacological and toxicological studies undertaken on drugs that affect the brain are frequently performed in disparate species under various experimental conditions, at doses often greatly in excess of those expected to be administered to humans, and the findings are extrapolated implicitly or explicitly with scant regard to differences in the biodisposition of the drugs. Such considerations are necessary since: 1. Species; 2. Strain; 3. Gender; 4. Route; 5. Dose; 6. Frequency and time of administration; 7. Temperature; 8. Coadministration of drugs; and 9. Surgical manipulation are but some of the factors that have been shown to influence the kinetics and metabolism of drugs. This article, using MDMA and other phenylethylamines as examples, provides evidence for the need to measure the exposure of the drugs and their active metabolites in blood and brain (toxicokinetics) in order that conclusions based only on dynamic, biochemical, or histological evidence are more pertinent. Further, the combined use of toxicokinetic-dynamic modeling can lead to a better appreciation of the mechanisms involved and a more useful approach to the calculation of safety margins.


Assuntos
Encéfalo/efeitos dos fármacos , Avaliação de Medicamentos/métodos , N-Metil-3,4-Metilenodioxianfetamina/farmacocinética , N-Metil-3,4-Metilenodioxianfetamina/toxicidade , Fenetilaminas/farmacocinética , Fenetilaminas/toxicidade , Animais , Proteínas Sanguíneas/metabolismo , Feminino , Humanos , Absorção Intestinal , Masculino , Neurotoxinas/farmacocinética , Neurotoxinas/toxicidade , Caracteres Sexuais , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA