Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 982
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 14372, 2024 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909099

RESUMO

Deliberate open burning of crop residues emits greenhouse gases and toxic pollutants into the atmosphere. This study investigates the environmental impacts (global warming potential, GWP) and economic impacts (net cash flow) of nine agricultural residue management schemes, including open burning, fertilizer production, and biochar production for corn residue, rice straw, and sugarcane leaves. The environmental assessment shows that, except the open burning schemes, fossil fuel consumption is the main contributor of the GWP impact. The fertilizer and biochar schemes reduce the GWP impact including black carbon by 1.88-1.96 and 2.46-3.22 times compared to open burning. The biochar schemes have the lowest GWP (- 1833.19 to - 1473.21 kg CO2-eq/ton). The economic assessment outcomes reveal that the biochar schemes have the highest net cash flow (222.72-889.31 US$2022/ton or 1258.15-13409.16 US$2022/ha). The expenditures of open burning are practically zero, while the biochar schemes are the most costly to operate. The most preferable agricultural residue management type is the biochar production, given the lowest GWP impact and the highest net cash flow. To discourage open burning, the government should tailor the government assistance programs to the needs of the farmers and make the financial assistance more accessible.


Assuntos
Agricultura , Produtos Agrícolas , Produtos Agrícolas/economia , Produtos Agrícolas/crescimento & desenvolvimento , Agricultura/economia , Agricultura/métodos , Carvão Vegetal/economia , Aquecimento Global/prevenção & controle , Aquecimento Global/economia , Fertilizantes/análise , Zea mays , Oryza/crescimento & desenvolvimento , Queima de Resíduos a Céu Aberto
2.
PLoS One ; 19(6): e0305134, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38875311

RESUMO

Onion is a vital vegetable crop in Ethiopia, with significant economic and health benefits. However, its production trend is not consistent, with periods of increase and decrease; and its productivity in the country falls far below its potential. As a result, farmers are not yet fully benefited from onion production. Thus, this study was initiated to identify the factors influencing onion production in the Raya Kobo District of Amhara Regional State of Ethiopia. Data was collected from 189 onion-producing farmers through household surveys, and both descriptive and econometric techniques were used for analysis. The study found significant variation in onion production among farmers, with lower levels compared to national and international averages. Factors such as gender, education level, experience, labor force, land size, access to extension services, irrigation water, land plough frequency, and fertilizer availability positively impact onion production. However, excessive fertilizer use was found to have a negative effect. The study also identified challenges faced by farmers, including input shortages, high costs, diseases, labor issues, soil infertility, and storage knowledge gaps. The study recommends policymakers and stakeholders to utilize these findings to develop effective policies and interventions that can enhance onion production, benefiting farmers and improving the overall onion production.


Assuntos
Fazendeiros , Cebolas , Etiópia , Cebolas/crescimento & desenvolvimento , Humanos , Masculino , Feminino , Agricultura/economia , Fertilizantes , Adulto , Produtos Agrícolas/crescimento & desenvolvimento , Inquéritos e Questionários , Produção Agrícola/economia , Produção Agrícola/estatística & dados numéricos
3.
PLoS One ; 19(6): e0304206, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38905173

RESUMO

Unremitting decline in crop productivity and nutrient recovery are resulted due to dearth of need based fertilizer recommendation over blanket application apart from nitrogen pollution in several means. An advance nutrient management tactic, GreenSeeker (GS) has developed and used in many field crops following the principle of four "R" (right source, right amount at right time, and place) nutrients stewardship technologies. But no studies have been conducted for evaluation of GS in mustard for improving productivity, profitability and nutrient use efficiency (NUE) while minimizing environmental risks. With this objective, a study was planned to conduct an experiment in rabi season of 2021-22 and 2022-23 to assess optical sensor based nitrogen management in mustard over blanket recommendation. The experiment was comprised of ten N treatments including control in randomized block design in triplicates. Research findings indicated that application of GreenSeeker based N significantly improved all growth traits and yield parameters in Brassica juncea L. Per cent enhancement in seed yield, net monetary returns and benefit-cost ratio was higher as 19.3 and 64.5%, 125.1 & 36.2% and 58.8 & 24.4%, respectively under GS based multi split N application over RDF and control. Further, real time N management with GS acquired higher crop production efficiency (CPE) (19.9 kg/day) with lesser cost/kg production (Rs 15.7/kg). Split application of N using GS increased oil yield by 79.9 and 26% over control and recommended dose of fertilizer (RDF) with maximum oil content (42.3%), and increases soil organic carbon (SOC) content by 16.1% from its initial value. Moreover, GS crop sensor could be the probable solution to minimize the crop nitrogen requirement by 15-20% with a yield enhancement of about 18.7% over RDF.


Assuntos
Fertilizantes , Mostardeira , Nitrogênio , Mostardeira/crescimento & desenvolvimento , Mostardeira/efeitos dos fármacos , Nitrogênio/metabolismo , Fertilizantes/análise , Produtos Agrícolas/crescimento & desenvolvimento , Solo/química , Agricultura/métodos , Agricultura/economia
4.
J Microbiol Methods ; 222: 106952, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38740286

RESUMO

The present study was carried out to valorise cereal (rice and wheat) bran for the development of low-cost liquid consortium bioformulation. Different concentrations of bran-based liquid media formulations were evaluated for the growth of consortium biofertilizer cultures (Azotobacter chroococcum, Bacillus subtilis and Pseudomonas sp.). Among the bran-based formulations, wheat bran-based formulation WB5, exhibited the highest viable cell of 10.68 ± 0.09 Log10 CFU/ml and 12.63 ± 0.04 Log10 CFU/ml for Azotobacter chroococcum and Bacillus subtilis whereas for Pseudomonas sp., rice bran based bioformulation RB5 recorded maximum viability (12.71 ± 0.05 Log10 CFU/ml) after 72 h of incubation. RB51 and WB52liquid formulations were further optimized for enhanced shelf life using 5, 10 and 15 mM of trehalose, 0.05 and 0.1% carboxymethyl cellulose, and 0.5 and 1.0% glycerol. Following the peak growth at 72 h of incubation, a gradual decrease in the viable population of consortium biofertilizer cultures was observed in all the liquid formulations. The WB5 and RB5 formulations with 15 mM trehalose and 0.1% CMC, not only recorded significantly highest cell count of consortium biofertilizer cultures, but also maximally supported multi-functional traits i.e., phosphate and zinc solubilization, ammonia and IAA production up to 150 days. Further evaluation of seedling emergence and growth of wheat (PBW 826) under axenic conditions recorded WB5 amended with 15 mM trehalose-based consortium bioformulation to exhibit maximum emergence and growth of wheat seedlings. This low-cost liquid formulation can be used for large-scale biofertilizer production as a cost-effective liquid biofertilizer production technology.


Assuntos
Azotobacter , Bacillus subtilis , Meios de Cultura , Fibras na Dieta , Fertilizantes , Pseudomonas , Bacillus subtilis/crescimento & desenvolvimento , Pseudomonas/crescimento & desenvolvimento , Azotobacter/crescimento & desenvolvimento , Meios de Cultura/química , Oryza/crescimento & desenvolvimento , Oryza/microbiologia , Grão Comestível/microbiologia , Grão Comestível/crescimento & desenvolvimento , Viabilidade Microbiana
5.
Nat Food ; 5(6): 469-479, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38755344

RESUMO

The current centralized configuration of the ammonia industry makes the production of nitrogen fertilizers susceptible to the volatility of fossil fuel prices and involves complex supply chains with long-distance transport costs. An alternative consists of on-site decentralized ammonia production using small modular technologies, such as electric Haber-Bosch or electrocatalytic reduction. Here we evaluate the cost-competitiveness of producing low-carbon ammonia at the farm scale, from a solar agrivoltaic system, or using electricity from the grid, within a novel global fertilizer industry. Projected costs for decentralized ammonia production are compared with historical market prices from centralized production. We find that the cost-competitiveness of decentralized production relies on transport costs and supply chain disruptions. Taking both factors into account, decentralized production could achieve cost-competitiveness for up to 96% of the global ammonia demand by 2030. These results show the potential of decentralized ammonia technologies in revolutionizing the fertilizer industry, particularly in regions facing food insecurity.


Assuntos
Amônia , Fertilizantes , Segurança Alimentar , Fertilizantes/análise , Fertilizantes/economia , Amônia/metabolismo , Agricultura/economia , Agricultura/métodos , Nitrogênio/metabolismo
6.
Environ Monit Assess ; 196(6): 538, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730206

RESUMO

The large-scale production of food crops with heavy application of chemical fertilizers in the effort to meet the astronomical increase in food demands may be counterproductive to the goal of food security. This study investigated the effect of different soil treatments on the levels of heavy metals (Cr, Cu, Fe, Ni, Pb, and Zn) in two types of vegetables Lactuca sativa (lettuce) and Daucus carrota (carrot). The potential carcinogenic and non-carcinogenic health risks from their consumption were also evaluated. Planting experiment was set up in a randomized block design, with different soil treatments of soil + cow dung (CD), soil + sewage sludge (SS), soil + chemical fertilizer (nitrogen-phosphorus-potassium (NPK)), and untreated soil (UNTRD). The vegetables were harvested at maturity, washed with distilled water, and subjected to an acid digestion process before the levels of heavy metals were measured by inductively coupled plasma spectrometry (ICP-MS). The mean concentrations of the metals in the vegetables across all treatments were below the maximum permissible limits. The pattern of heavy metal accumulation by the vegetables suggested that the lettuce from SS treatment accumulated higher concentrations of heavy metals like Cr (0.20 mg/kg), Cu (3.91 mg/kg), Ni (0.33 mg/kg), and Zn (20.44 mg/kg) than carrot, with highest concentrations of Fe (90.89 mg/kg) and Pb (0.16 mg/kg) recorded in lettuce from NPK treatment. The bioaccumulation factor (BAF) showed that lettuce, a leafy vegetable, has bioaccumulated more heavy metals than carrot, a root vegetable. The BAF was generally below the threshold value of 1 in both vegetables, except in lettuce from NPK and CD treatments and carrot from NPK treatments, with BAF values of 1.6, 1.69, and 1.39, respectively. The cancer risk assessment factors were well below the unacceptable maximum range of 10-4 suggesting that consuming these vegetables might not expose an individual to potential risk of cancer development. The hazard quotient estimations were below the threshold values of 1 for all heavy metals; however, the hazard index (HI) values of 1.27 and 1.58 for lettuce from NPK and SS treatments indicate a potential non-carcinogenic health risk to consumers from intake of all the heavy metals.


Assuntos
Daucus carota , Fertilizantes , Lactuca , Metais Pesados , Poluentes do Solo , Solo , Metais Pesados/análise , Lactuca/química , Lactuca/crescimento & desenvolvimento , Poluentes do Solo/análise , Daucus carota/química , Medição de Risco , Solo/química , Esterco , Humanos , Monitoramento Ambiental
7.
Environ Monit Assess ; 196(6): 503, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700640

RESUMO

Soil fertility (SF) is a crucial factor that directly impacts the performance and quality of crop production. To investigate the SF status in agricultural lands of winter wheat in Khuzestan province, 811 samples were collected from the soil surface (0-25 cm). Eleven soil properties, i.e., electrical conductivity (EC), soil organic carbon (SOC), total nitrogen (TN), calcium carbonate equivalent (CCE), available phosphorus (Pav), exchangeable potassium (Kex), iron (Fe), copper (Cu), zinc (Zn), manganese (Mn), and soil pH, were measured in the samples. The Nutrient Index Value (NIV) was calculated based on wheat nutritional requirements. The results indicated that 100%, 93%, and 74% of the study areas for CCE, pH, and EC fell into the low, moderate, and moderate to high NIV classes, respectively. Also, 25% of the area is classified as low fertility (NIV < 1.67), 75% falls under medium fertility (1.67 < NIV value < 2.33), and none in high fertility (NIV value > 2.33). Assessment of the mean wheat yield (AWY) and its comparison with NIV showed that the highest yield was in the Ramhormoz region (5200 kg.ha-1), while the lowest yield was in the Hendijan region (3000 kg.ha-1) with the lowest EC rate in the study area. Elevated levels of salinity and CCE in soils had the most negative impact on irrigated WY, while Pav, TN, and Mn availability showed significant effects on crop production. Therefore, implementing SF management practices is essential for both quantitative and qualitative improvement in irrigated wheat production in Khuzestan province.


Assuntos
Monitoramento Ambiental , Nitrogênio , Fósforo , Solo , Triticum , Solo/química , Nitrogênio/análise , Fósforo/análise , Fertilizantes/análise , Agricultura/métodos , Nutrientes/análise , Carbono/análise
8.
Environ Sci Pollut Res Int ; 31(23): 33924-33941, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38691289

RESUMO

With the expansion of organic agriculture, research is needed to indicate economically and ecologically viable fertilizer options, especially in semiarid regions, with low soil organic matter and nitrogen content. In the Brazilian semiarid region, vermicomposts are widely used by farmers and are scientifically investigated; however, there is no information for millicompost, a new type of organic compound that has shown very promising results in other regions. Thus, this study aimed to analyze the decomposition rate, nutrient release, and microstructure evaluation of vermicomposts from different sources and of millicompost produced from plant residues, with the application of mineral nitrogen-urea and organo-mineral fertilizer in the Brazilian semiarid region. The experimental design was a randomized block in a 4 × 3 factorial scheme, with four replicates; four organic composts (millicompost, commercial vermicompost, vermicompost from bovine manure, vermicompost from goat manure); and three types of fertilization (without fertilizer, with mineral-urea and organo-mineral fertilizer). The organic composts were decomposed using litterbags at the soil surface. The variable's decomposition rate and the nutrient release were evaluated at six-time intervals (0, 30, 60, 90, 120, and 150 days), and microstructure was evaluated at the beginning and the end of the experiment, with scanning electron microscopy (SEM). The highest decomposition was verified for commercial vermicompost rich in macro and micronutrients and with lower P contents. The lignin:N ratio and the initial P content were more important in the permanence of the organic compost in the field than the C:N ratio. Regardless of the organic composts, the use of urea as a mineral fertilizer stimulated decomposition more than the organo-mineral fertilizer. The initial composition of the nutrients was decisive in the dynamics of nutrient release, mass loss, and decomposition of C. There was no pattern in the release order of macronutrients. However, for the micronutrients, the release order was Cu > Fe > Mn, in all treatments. Microstructure analysis is a visual analysis where differences are detected through microphotographs and the biggest difference occurred with millicompost, which showed elongated fibers and fiber bundles, forming a relatively open structure characteristic of the presence of fulvic acid. However, the addition of organo-mineral fertilizer formed agglomerates in compacted micro-portions, helping the mineralization of C and N.


Assuntos
Agricultura , Fertilizantes , Nitrogênio , Solo , Solo/química , Compostagem , Animais , Brasil , Esterco , Nutrientes
9.
J Environ Manage ; 359: 121043, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38723497

RESUMO

Fertilizer-intensive agriculture leads to emissions of reactive nitrogen (Nr), posing threats to climate via nitrous oxide (N2O) and to air quality and human health via nitric oxide (NO) and ammonia (NH3) that form ozone and particulate matter (PM) downwind. Adding nitrification inhibitors (NIs) to fertilizers can mitigate N2O and NO emissions but may stimulate NH3 emissions. Quantifying the net effects of these trade-offs requires spatially resolving changes in emissions and associated impacts. We introduce an assessment framework to quantify such trade-off effects. It deploys an agroecosystem model with enhanced capabilities to predict emissions of Nr with or without the use of NIs, and a social cost of greenhouse gas to monetize the impacts of N2O on climate. The framework also incorporates reduced-complexity air quality and health models to monetize associated impacts of NO and NH3 emissions on human health downwind via ozone and PM. Evaluation of our model against available field measurements showed that it captured the direction of emission changes but underestimated reductions in N2O and overestimated increases in NH3 emissions. The model estimated that, averaged over applicable U.S. agricultural soils, NIs could reduce N2O and NO emissions by an average of 11% and 16%, respectively, while stimulating NH3 emissions by 87%. Impacts are largest in regions with moderate soil temperatures and occur mostly within two to three months of N fertilizer and NI application. An alternative estimate of NI-induced emission changes was obtained by multiplying the baseline emissions from the agroecosystem model by the reported relative changes in Nr emissions suggested from a global meta-analysis: -44% for N2O, -24% for NO and +20% for NH3. Monetized assessments indicate that on an annual scale, NI-induced harms from increased NH3 emissions outweigh (8.5-33.8 times) the benefits of reducing NO and N2O emissions in all agricultural regions, according to model-based estimates. Even under meta-analysis-based estimates, NI-induced damages exceed benefits by a factor of 1.1-4. Our study highlights the importance of considering multiple pollutants when assessing NIs, and underscores the need to mitigate NH3 emissions. Further field studies are needed to evaluate the robustness of multi-pollutant assessments.


Assuntos
Agricultura , Fertilizantes , Nitrificação , Óxido Nitroso , Fertilizantes/análise , Óxido Nitroso/análise , Poluentes Atmosféricos/análise , Ozônio/análise , Amônia/análise , Espécies Reativas de Nitrogênio/análise , Nitrogênio/análise , Poluição do Ar/análise
10.
BMC Plant Biol ; 24(1): 423, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38760709

RESUMO

BACKGROUND: Soil salinity is one of the major menaces to food security, particularly in dealing with the food demand of the ever-increasing global population. Production of cereal crops such as wheat is severely affected by soil salinity and improper fertilization. The present study aimed to examine the effect of selected microbes and poultry manure (PM) on seedling emergence, physiology, nutrient uptake, and growth of wheat in saline soil. A pot experiment was carried out in research area of Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan. Saline soil (12 dS m- 1 w/w) was developed by spiking using sodium chloride, and used in experiment along with two microbial strains (i.e., Alcaligenes faecalis MH-2 and Achromobacter denitrificans MH-6) and PM. Finally, wheat seeds (variety Akbar-2019) were sown in amended and unamended soil, and pots were placed following a completely randomized design. The wheat crop was harvested after 140 days of sowing. RESULTS: The results showed a 10-39% increase (compared to non-saline control) in agronomic, physiological, and nutritive attributes of wheat plants when augmented with PM and microbes. Microbes together with PM significantly enhanced seedling emergence (up to 38%), agronomic (up to 36%), and physiological (up to 33%) in saline soil as compared to their respective unamended control. Moreover, the co-use of microbes and PM also improved soil's physicochemical attributes and enhanced N (i.e., 21.7%-17.1%), P (i.e., 24.1-29.3%), and K (i.e., 28.7%-25.3%) availability to the plant (roots and shoots, respectively). Similarly, the co-use of amendments also lowered the Na+ contents in soil (i.e., up to 62%) as compared to unamended saline control. This is the first study reporting the effects of the co-addition of newly identified salt-tolerant bacterial strains and PM on seedling emergence, physiology, nutrient uptake, and growth of wheat in highly saline soil. CONCLUSION: Our findings suggest that co-using a multi-trait bacterial culture and PM could be an appropriate option for sustainable crop production in salt-affected soil.


Assuntos
Esterco , Aves Domésticas , Salinidade , Solo , Triticum , Triticum/crescimento & desenvolvimento , Solo/química , Animais , Microbiologia do Solo , Plântula/crescimento & desenvolvimento , Fertilizantes/análise , Alcaligenes faecalis/crescimento & desenvolvimento
11.
Sci Total Environ ; 932: 173066, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38729366

RESUMO

Agriculture activity contributes to greenhouse gas (GHG) emissions through its utilization of land, water, and energy for food production. Hence, the interactions between land, water, and GHG emissions in agricultural production need to be comprehensively studied. The study aimed to assess the Land-Water-GHG-Food Nexus Index (LWGFNI) of rice cultivation across various land suitability classes in Central Thailand and determining the physical, socio-economic, and policy factors that can influence farmers' decisions to choose for cultivating rice instead of shifting to other crops. The results indicated that the highest LWGFNI score was 0.69 for the rice grown in the moderate suitability land class which revealed a lower use of land and water resources as well as GHG emissions compared to other levels of land suitability. The LWGFNI scores of major rice cultivation were greater compared to the second rice in all four-land suitability. The use of fertilizers had a crucial role in enhancing productivity levels and was a significant factor in the generation of GHG emissions. Hence, improving effective production should consider the appropriate use of fertilizer. The physical, socio-economic, and policy-related aspects that significantly influenced farmers' decisions on cultivation of rice included topography, water resources, inherited professions, price guarantee, and knowledge/training factors. The methodology used and results obtained can help policy makers to plan the use of water and land resources efficiently and appropriately with local resources based on land suitability class. The assessment results revealed the GHG hotspots and the strategies to mitigate GHG emissions associated with rice cultivation.


Assuntos
Agricultura , Gases de Efeito Estufa , Oryza , Oryza/crescimento & desenvolvimento , Tailândia , Agricultura/métodos , Gases de Efeito Estufa/análise , Fatores Socioeconômicos , Produtos Agrícolas/crescimento & desenvolvimento , Fertilizantes/análise
12.
Microb Pathog ; 192: 106690, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38759935

RESUMO

The soil comprising organic matter, nutrients, serve as substrate for plant growth and various organisms. In areas where there are large plantations, there is a huge leaf litter fall. The leaf litter upon decomposition releases nutrients and helps in nutrient recycling, for which the soil engineers such as earthworms, ants and termites are important key players. In this context, the present study was conducted to assess the characteristics of the vermicast obtained by vermicomposting neem leaf litter in terms of microbial flora, plant growth promoting properties and antagonistic activities of the vermicast against phytopathogens. Vermicomposting of neem leaf litter was done using two epigeic earthworm species Eisenia fetida and Eudrilus eugeniae. The vermicast exhibited antagonistic potential against plant pathogens. Out of the four vermiwash infusions studied, the 75 % formulation reduced the disease incidence against mealybug by 82 % in the tree Neolamarkia cadamba. The result of the study suggests that vermicast made from neem leaf litter may be a potent combination of a biofertilizer and a pesticide.


Assuntos
Azadirachta , Fertilizantes , Oligoquetos , Praguicidas , Folhas de Planta , Azadirachta/química , Animais , Oligoquetos/microbiologia , Folhas de Planta/microbiologia , Praguicidas/farmacologia , Compostagem , Microbiologia do Solo , Solo/química , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
13.
Sci Total Environ ; 929: 172533, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38649050

RESUMO

The advent of Nanohybrid (NH) fertilizers represents a groundbreaking advancement in the pursuit of precision and sustainable agriculture. This review abstract encapsulates the transformative potential of these innovative formulations in addressing key challenges faced by modern farming practices. By incorporating nanotechnology into traditional fertilizer matrices, nanohybrid formulations enable precise control over nutrient release, facilitating optimal nutrient uptake by crops. This enhanced precision not only fosters improved crop yields but also mitigates issues of over-fertilization, aligning with the principles of sustainable agriculture. Furthermore, nanohybrid fertilizers exhibit the promise of minimizing environmental impact. Their controlled release mechanisms significantly reduce nutrient runoff, thereby curbing water pollution and safeguarding ecosystems. This dual benefit of precision nutrient delivery and environmental sustainability positions nanohybrid fertilizers as a crucial tool in the arsenal of precision agriculture practices. The intricate processes of uptake, translocation, and biodistribution of nutrients within plants are examined in the context of nanohybrid fertilizers. The nanoscale features of these formulations play a pivotal role in governing the efficiency of nutrient absorption, internal transport, and distribution within plant tissues. Factors affecting the performance of nanohybrid fertilizers are scrutinized, encompassing aspects such as soil type, crop variety, and environmental conditions. Understanding these variables is crucial for tailoring nanohybrid formulations to specific agricultural contexts, and optimizing their impact on crop productivity and resource efficiency. Environmental considerations are integral to the review, assessing the broader implications of nanohybrid fertilizer application. This review offers a holistic overview of nanohybrid fertilizers in precision and sustainable agriculture. Exploring delivery mechanisms, synthesis methods, uptake dynamics, biodistribution patterns, influencing factors, and environmental implications, it provides a comprehensive understanding of the multifaceted role and implications of nanohybrid fertilizers in advancing modern agricultural practices.


Assuntos
Agricultura , Fertilizantes , Agricultura/métodos , Produtos Agrícolas , Nanotecnologia , Desenvolvimento Sustentável
14.
Sci Total Environ ; 928: 172375, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38604372

RESUMO

Using waste from sewage systems, particularly human excreta, could save resources and increase soil fertility, contributing to nutrient management. However, because of the pathogenic content in human feces, this resource can pose health risks to farmers and consumers. Therefore, this work analyzed the behavior of the microorganisms: Escherichia coli ATCC13706 and human adenovirus (HAdV-2) in the soil and the internal part of the plant tissue during the vegetative stage after applying spiked composted human feces as biofertilizer. In a greenhouse, we simulated the application of the biofertilizer in lettuce cultivation by spiking three concentrations of E. coli (6.58, 7.31, and 8.01 log10 CFU.g-1) and HAdV-2 (3.81, 3.97, and 5.92 log10 PFU.g-1). As a result, we achieved faster decay in soil at higher concentrations of E. coli. We estimated linear decay rates of -0.07279, -0.09092, and -0.115 days, corresponding to T90s of 13.7, 11.0, and 8.6 days from higher to smaller concentrations of E. coli, respectively. The estimated periods for the inactivation of 4 logarithmic units of E. coli bacteria in soil are longer than the cultivation period of lettuce for all concentrations studied. Concerning the bacterial contamination in plants, we found E. coli in the internal part of the leaves at the highest concentration tested during the first three weeks of the experiment. Furthermore, HAdV-2 was found in roots at a stable concentration of 2-2.3 log10 PFU.g-1 in five of the six samples analyzed. Therefore, bacterial infection could pose a risk, even if fresh greens are washed before consumption, especially for short-term cultures. Regarding viral infection, a positive result in the roots after disinfection may pose a risk to root and tubercule vegetables. These discoveries highlight the importance of conducting comprehensive evaluations of hygiene practices in incorporating organic amendments in crops, explicitly aiming to minimize the risk of post-contamination.


Assuntos
Adenovírus Humanos , Escherichia coli , Fezes , Fertilizantes , Lactuca , Microbiologia do Solo , Lactuca/microbiologia , Lactuca/virologia , Fezes/microbiologia , Fezes/virologia , Humanos , Adenovírus Humanos/fisiologia , Produção Agrícola/métodos , Compostagem , Reciclagem , Solo/química
15.
Environ Sci Technol ; 58(16): 6998-7009, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38602777

RESUMO

Phosphorus (P) is the key in maintaining food security and ecosystem functions. Population growth and economic development have increased the demand for phosphate rocks. China has gradually developed from zero phosphate mining to the world's leading P miner, fertilizer, and agricultural producer since 1949. China released policies, such as designating phosphate rock as a strategic resource, promoting eco-agricultural policies, and encouraging the use of solid wastes produced in mining and the phosphorus chemical industry as construction materials. However, methodological and data gaps remain in the mapping of the long-term effects of policies on P resource efficiency. Here, P resource efficiency can be represented by the potential of the P cycle to concentrate or dilute P as assessed by substance flow analysis (SFA) complemented by statistical entropy analysis (SEA). P-flow quantification over the past 70 years in China revealed that both resource utilization and waste generation peaked around 2015, with 20 and 11 Mt of mined and wasted P, respectively. Additionally, rapidly increasing aquaculture wastewater has exacerbated pollution. The resource efficiency of the Chinese P cycle showed a U-shaped change with an overall improvement of 22.7%, except for a temporary trough in 1975. The driving force behind the efficiency decline was the roaring phosphate fertilizer industry, as confirmed by the sharp increase in P flows for both resource utilization and waste generation from the mid-1960s to 1975. The positive driving forces behind the 30.7% efficiency increase from 1975 to 2018 were the implementation of the resource conservation policy, downstream pollution control, and, especially, the circular agro-food system strategy. However, not all current management practices improve the P resource efficiency. Mixing P industry waste with construction materials and the development of aquaculture to complement offshore fisheries erode P resource efficiency by 2.12% and 9.19%, respectively. With the promotion of a zero-waste society in China, effective P-cycle management is expected.


Assuntos
Desenvolvimento Econômico , Fósforo , China , Fertilizantes , Agricultura
16.
PLoS One ; 19(4): e0297784, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38603686

RESUMO

Based on the integrated model of Super-SBM model, spatial Durbin model (SDM) and Grey neural network model, this paper analyzes the panel data of various provinces in China from multiple angles and dimensions. It was found that there were significant differences in eco-efficiency between organic rice production and conventional rice production. The response of organic rice to climate change, the spatial distribution of ecological and economic benefits and the impact on carbon emission were analyzed. The results showed that organic rice planting not only had higher economic benefits, but also showed a rising trend of ecological benefits and a positive feedback effect. This finding highlights the importance of organic rice farming in reducing carbon emissions. Organic rice farming effectively reduces greenhouse gas emissions, especially carbon dioxide and methane, by improving soil management and reducing the use of fertilizers and pesticides. This has important implications for mitigating climate change and promoting soil health and biodiversity. With the acceleration of urbanization, the increase of organic rice planting area shows the trend of organic rice gradually replacing traditional rice cultivation, further highlighting the potential of organic agriculture in emission reduction, environmental protection and sustainable agricultural production. To this end, it is recommended that the Government implement a diversified support strategy to encourage technological innovation, provide guidance and training, and raise public awareness and demand for organic products. At the same time, private sector participation is stimulated to support the development of organic rice cultivation through a public-private partnership model. Through these measures, further promote organic rice cultivation, achieve the dual goals of economic benefits and environmental benefits, and effectively promote the realization of double carbon emission reduction targets.


Assuntos
Gases de Efeito Estufa , Oryza , Agricultura/métodos , Solo , Agricultura Orgânica , China , Metano/análise , Fertilizantes
17.
Nat Food ; 5(5): 378-389, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38565650

RESUMO

The potential of enhanced agricultural management practices to drive sustainability is rarely quantified at grassroots level. Here we analyse nitrogen use and loss in Chinese cropland, drawing from data collected in 2,238,550 sites in two national agricultural pollution source censuses from 2007 to 2017. We find an upswing of 10% in crop yields and an 8% reduction in nitrogen pollution during this period, owing to the promotion and adoption of various management practices (including the combination of organic and chemical fertilizers, straw recycling and deep placement of fertilizer). These practices have collectively contributed to an 18% increase in nitrogen use efficiency in the country. By fully embracing them, we project that annual cropland pollution could be further reduced by up to 1.4 Mt of nitrogen without compromising crop yields. Environmental and human health benefits are projected to consistently outweigh implementation costs in the future, with total benefits reaching US$15 billion.


Assuntos
Agricultura , Fertilizantes , Nitrogênio , China , Humanos , Agricultura/métodos , Fertilizantes/análise , Conservação dos Recursos Naturais/métodos , Produtos Agrícolas , Poluição Ambiental/prevenção & controle , Desenvolvimento Sustentável
18.
Sci Total Environ ; 930: 172835, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38688375

RESUMO

The knowledge of nutrient flow in dairy farms has to be explored to find optimized strategies for efficient nutrient conversion to milk. This study aims to improve the understanding of variances in nitrogen and phosphorus balance and efficiency indicators between dairy farm systems. The study analyzed 67 dairy cattle farms located in the watershed Lajeado Tacongava, Rio Grande do Sul State, Brazil. Selected dairy farms represented three production systems: confined (3 farms); semi-confined (7 farms); pasture-based (57 farms). Input-output nutrient balances were calculated at the dairy system level for nitrogen and phosphorus over a year. Inputs are feed and fertilizer and outputs are milk and meat. The main nitrogen and phosphorus input on the all farms resulted from the feed. The average N and P surplus on pasture-based farms were 352 and 49 kg ha-1 year-1, respectively. In semi-confined systems were 508 and 63 kg ha-1 year-1 and in confined systems were 786 and 70 kg ha-1 year-1. When considering the monetary value of the total N surplus, the averages were US$ 2.615, 4.950, and 12.171 for pasture-based, semi-confined and confined systems respectively. Monetary values of P surplus were US$ 346, 588, and 1119 for pasture-based, semi-confined and confined. The productive aspects that most determined the values of N and P surplus were the total number of lactating cows and the farm area. Results indicate that surplus can partially replace chemical nitrogen fertilizer, except in the confined system, and fully replace phosphorus fertilizer. Confined farms presented values to use surplus as fertilizer greater than the crop demand. For the other production systems, it happens only for phosphorus. Large variability between dairy farms of the same production system and between different production systems was observed. It reflects the inherent productive, economic, and environmental conditions of each farm and system.


Assuntos
Indústria de Laticínios , Fertilizantes , Nitrogênio , Fósforo , Fósforo/análise , Nitrogênio/análise , Animais , Bovinos , Brasil , Fertilizantes/análise , Nutrientes/análise , Leite , Ração Animal/análise
19.
Sci Rep ; 14(1): 7084, 2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528058

RESUMO

To meet the growing demand for vegetable production and promote sustainable agriculture, it is imperative to implement effective input management and adopt eco-friendly farming practices. This study aims to compare the environmental impacts of conventional and organic tomato cultivation in the northern plains of India. This study utilizes SimaPro 9.1.1 software for a comprehensive cradle-to-farm gate Life Cycle Assessment (LCA), assessing production stages, identifying key environmental factors, and incorporating ReCiPe Midpoint and Endpoint methods with one-hectare as a functional unit. Findings reveal that conventional cultivation is more affected by fertilizer application and transplanting, while organic cultivation emphasizes transplanting and irrigation. Organic cultivation contributes 904.708 kg CO2, while conventional cultivation contributes 1307.917 kg CO2 to Global Warming potential. Switching to organic cultivation leads to a significant 35.04% decrease in all impact categories. Using the endpoint method, organic cultivation achieves a notable 27.16% reduction, scoring 58.30 compared to conventional cultivation's 80.04. The LCA analysis of tomato cultivation highlights Fertilizer application as the predominant environmental concern, emphasizing the need for sustainable techniques to minimize waste and mitigate environmental impacts. This study recommends imposing restrictions on fertilizer and pesticide use and formulating effective policies to promote the adoption of sustainable practices.


Assuntos
Solanum lycopersicum , Animais , Fertilizantes , Dióxido de Carbono , Estudos de Viabilidade , Meio Ambiente , Agricultura/métodos , Índia , Estágios do Ciclo de Vida
20.
J Environ Manage ; 356: 120633, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38513579

RESUMO

Although straw returning combined with blended controlled-release urea fertilizer (BUFS) has been shown to improve wheat-maize rotation system productivity, their effects on greenhouse gas (GHG) emissions, carbon footprints (CF), and net ecosystem economic benefits (NEEB) are still unknown. Life cycle assessment was used to investigate a long-term (2013-2022) wheat-maize rotation experiment that included straw combined with two N fertilizer types [BUFS and (conventional urea fertilizer) CUFS] and straw-free treatments (BUF and CUF). The results showed that BUFS and CUFS treatments increased the annual yield by 13.8% and 11.5%, respectively, compared to BUF and CUF treatments. The BUFS treatment increased the yearly yield by 13.8% compared to the CUFS treatment. Since BUFS and CUFS treatments increased soil organic carbon (SOC) sink sequestration by 25.0% and 27.0% compared to BUF and CUF treatments, they reduced annual GHG emissions by 7.1% and 4.7% and CF per unit of yield (CFY) by 13.7% and 9.6%, respectively. BUFS treatment also increased SOC sink sequestration by 20.3%, reduced GHG emissions by 10.7% and CFY by 23.0% compared to CUFS treatment. It is worth noting that the BUFS and CUFS treatments increased the annual ecological costs by 41.6%, 26.9%, and health costs by 70.1% and 46.7% compared to the BUF and CUF treatments, but also increased the net yield benefits by 9.8%, 6.8%, and the soil nutrient cycling values by 29.2%, 27.3%, and finally improved the NEEB by 10.1%, 7.3%, respectively. Similar results were obtained for the BUFS treatment compared to the CUFS treatment, ultimately improving the NEEB by 23.1%. Based on assessing yield, GHG emissions, CF, and NEEB indicators, the BUFS treatment is recommended as an ideal agricultural fertilization model to promote sustainable and clean production in the wheat-maize rotation system and to protect the agroecological environment.


Assuntos
Gases de Efeito Estufa , Gases de Efeito Estufa/análise , Solo , Fertilizantes , Carbono/análise , Ecossistema , Preparações de Ação Retardada , Agricultura/métodos , Zea mays , Triticum , China , Óxido Nitroso/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA