Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Chemosphere ; 362: 142664, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38901704

RESUMO

In this study, a novel carbon fiber brush (CFB) electrode was designed using carbon fiber filaments and conductive metals. It was used as the cathode to construct an efficient coupled electro-Fenton and electrocoagulation (EF-EC) process for tetracycline (TC) treatment. An optimal 97.9% removal rate of 10 mg L-1 TC was achieved within 20 min. The coupled process is less pH-dependent and more effective in treating TC compared to the traditional individual electro-Fenton (EF) or electrocoagulation (EC) process, achieving efficient TC removal under neutral pH conditions. The removal rate of 10 mg L-1 TC consistently remained above 92% at 20 min after ten cycle experiments using the same electrodes in a Fe-CFB system (92.7-97.9%), indicating excellent reusability and stability of the CFB cathode. Mechanism analysis showed both EF and EC processes were involved in the system. Radicals (such as •OH and SO4-•) generated by EF contributed to the degradation of TC, yielding nine intermediates. Coagulants (such as Fe(OH)3) generated by EC contributed to the removal of TC. Toxicity prediction results indicated that over half of the nine intermediates exhibited lower biotoxicity compared to TC. This study provides a feasible alternative cathode for the efficient treatment of TC using EF-EC process.


Assuntos
Ferro , Tetraciclina , Poluentes Químicos da Água , Tetraciclina/química , Tetraciclina/toxicidade , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade , Ferro/química , Eletrocoagulação/métodos , Peróxido de Hidrogênio/química , Eletrodos , Técnicas Eletroquímicas/métodos , Fibra de Carbono/química , Antibacterianos/química , Antibacterianos/toxicidade , Concentração de Íons de Hidrogênio
2.
Clin Oral Investig ; 28(6): 336, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38795258

RESUMO

OBJECTIVE: Stress distribution assessment by finite elements analysis in poly(etheretherketone) (PEEK) implant and abutment as retainers of single crowns in the anterior region. MATERIALS AND METHODS: Five 3D models were created, varying implant/abutment manufacturing materials: titanium (Ti), zirconia (Zr), pure PEEK (PEEKp), carbon fiber-reinforced PEEK (PEEKc), glass fiber-reinforced PEEK (PEEKg). A 50 N load was applied 30o off-axis at the incisal edge of the upper central incisor. The Von Mises stress (σvM) was evaluated on abutment, implant/screw, and minimum principal stress (σmin) and maximum shear stress (τmax) for cortical and cancellous bone. RESULTS: The abutment σvM lowest stress was observed in PEEKp group, being 70% lower than Ti and 74% than Zr. On the implant, PEEKp reduced 68% compared to Ti and a 71% to Zr. In the abutment screws, an increase of at least 33% was found in PEEKc compared to Ti, and of at least 81% to Zr. For cortical bone, the highest τmax values were in the PEEKp group, and a slight increase in stress was observed compared to all PEEK groups with Ti and Zr. For σmin, the highest stress was found in the PEEKc. Stress increased at least 7% in cancellous bone for all PEEK groups. CONCLUSION: Abutments and implants made by PEEKc concentrate less σvM stress, transmitting greater stress to the cortical and medullary bone. CLINICAL RELEVANCE: The best stress distribution in PEEKc components may contribute to decreased stress shielding; in vitro and in vivo research is recommended to investigate this.


Assuntos
Benzofenonas , Coroas , Dente Suporte , Análise do Estresse Dentário , Análise de Elementos Finitos , Cetonas , Teste de Materiais , Polietilenoglicóis , Polímeros , Titânio , Zircônio , Cetonas/química , Polietilenoglicóis/química , Humanos , Zircônio/química , Titânio/química , Fibra de Carbono/química , Projeto do Implante Dentário-Pivô , Incisivo , Materiais Dentários/química , Implantes Dentários para Um Único Dente , Osso Cortical , Vidro/química , Planejamento de Prótese Dentária
3.
Int J Numer Method Biomed Eng ; 40(6): e3827, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38623951

RESUMO

A prosthetic knee is designed to replace the functionality of an anatomical knee in transfemoral amputees. The purpose of a prosthetic knee is to restore mobility and compensate amputees for their impairment. In the present research numerical modelling and simulation of a carbon fabric reinforced polymer made polycentric prosthetic knee with four-bar mechanism was performed. Virtual prototyping with computer-aided design and computer-aided engineering software ensured geometric and structural stability of the knee design. The linkage mechanism, instantaneous centre's location and trajectory were investigated using multibody dynamics and analytical formulations. Computational simulations with a non-linear finite element model were employed with joints, contact formulations and an orthotropic material model to predict the displacement, stress formulated and life of the knee prosthesis under static and cyclic loading conditions. Finite element analysis assessed the strength and durability of knee in accordance to standards. Maximum Principal stress of 155 MPa and life expectancy of 3.1 × 106 cycles were determined for the composite knee through numerical simulations ensuring a safe design. Experimental testing was also conducted as per standards and the percentage error was estimated to be 2.52%, thereby establishing the validity of the finite element model deployed. This type of simulation-based approach can be implemented to efficiently and affordably design and prototype a prosthetic knee with desired functioning criteria.


Assuntos
Análise de Elementos Finitos , Prótese do Joelho , Polímeros , Desenho de Prótese , Humanos , Polímeros/química , Simulação por Computador , Fibra de Carbono/química , Desenho Assistido por Computador , Carbono/química , Estresse Mecânico , Teste de Materiais
4.
PLoS One ; 15(11): e0242022, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33186372

RESUMO

Damage assessment is a key element in structural health monitoring of various industrial applications to understand well and predict the response of the material. The big uncertainty in carbon fiber composite materials response is because of variability in the initiation and propagation of damage. Developing advanced tools to design with composite materials, methods for characterizing several damage modes during operation are required. While there is a significant amount of work on the analysis of acoustic emission (AE) from different composite materials and many loading cases, this research focuses on applying an unsupervised clustering method for separating AE data into several groups with distinct evolution. In this paper, we develop an adaptive sampling and unsupervised bivariate data clustering techniques to characterize the several damage initiations of a composite structure in different lay-ups. An adaptive sampling technique pre-processes the AE features and eliminates redundant AE data samples. The reduction of unnecessary AE data depends on the requirements of the proposed bivariate data clustering technique. The bivariate data clustering technique groups the AE data (dependent variable) with respect to the mechanical data (independent variable) to assess the damage of the composite structure. Tensile experiments on carbon fiber reinforced composite laminates (CFRP) in different orientations are carried out to collect mechanical and AE data and demonstrate the damage modes. Based on the mechanical stress-strain data, the results show the dominant damage regions in different lay-ups of specimens and the definition of the different states of damage. In addition, the states of the damage are observed using Scanning Electron Microscope (SEM) analysis. Based on the AE data, the results show that the strong linear correlation between AE and mechanical energy, and the classification of various modes of damage in all lay-ups of specimens forming clusters of AE energy with respect to the mechanical energy. Furthermore, the validation of the cluster-based characterization and improvement of the sensitivity of the damage modes classification are observed by the combined knowledge of AE and mechanical energy and time-frequency spectrum analysis.


Assuntos
Fibra de Carbono/química , Resinas Compostas/química , Acústica , Análise por Conglomerados , Teste de Materiais/métodos , Estresse Mecânico
5.
Sci Rep ; 10(1): 17154, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33051532

RESUMO

In an attempt to improve their distance-running performance, many athletes race with carbon fiber plates embedded in their shoe soles. Accordingly, we sought to establish whether, and if so how, adding carbon fiber plates to shoes soles reduces athlete aerobic energy expenditure during running (improves running economy). We tested 15 athletes as they ran at 3.5 m/s in four footwear conditions that varied in shoe sole bending stiffness, modified by carbon fiber plates. For each condition, we quantified athlete aerobic energy expenditure and performed biomechanical analyses, which included the use of ultrasonography to examine soleus muscle dynamics in vivo. Overall, increased footwear bending stiffness lengthened ground contact time (p = 0.048), but did not affect ankle (p ≥ 0.060), knee (p ≥ 0.128), or hip (p ≥ 0.076) joint angles or moments. Additionally, increased footwear bending stiffness did not affect muscle activity (all seven measured leg muscles (p ≥ 0.146)), soleus active muscle volume (p = 0.538; d = 0.241), or aerobic power (p = 0.458; d = 0.04) during running. Hence, footwear bending stiffness does not appear to alter the volume of aerobic energy consuming muscle in the soleus, or any other leg muscle, during running. Therefore, adding carbon fiber plates to shoe soles slightly alters whole-body and calf muscle biomechanics but may not improve running economy.


Assuntos
Fibra de Carbono/química , Metabolismo Energético/fisiologia , Músculos/fisiologia , Adulto , Tornozelo/fisiologia , Articulação do Tornozelo/fisiologia , Atletas , Fenômenos Biomecânicos/fisiologia , Feminino , Humanos , Articulação do Joelho/fisiologia , Perna (Membro)/fisiologia , Masculino , Corrida/fisiologia , Sapatos , Adulto Jovem
6.
J Hazard Mater ; 378: 120777, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31228707

RESUMO

Concern over the effects of nanomaterials on human health has risen due to the dramatic advances in the development of various technologies based on nanomaterials. Gifu Prefecture and Gifu University are developing technologies for recycling used carbon fiber because the waste disposal process is highly cost and energy intensive. However, generation of carbon fiber dust during the recycling process is a serious issue, especially in the occupational environment. Recycling requires carbonization by partial firing treatment at 500℃ followed by firing treatment at 440℃: these processes produce dust as a by-product. It is important to study the influence of carbon fibers on human health at a molecular level. In this study, three types of carbon fibers - before recycling, after carbonization, and after firing were evaluated for their toxic effects on mice. During the breeding period, no loss in body weight was confirmed. Further, by staining the lung tissue sections, it was found that pulmonary fibrosis did not occur. We found that these carbon fibers might not possess severe toxicity. However, we also found that the toxicity varies according to firing treatment. Furthermore, we found that firing treatment reduces the potential hazard to human health.


Assuntos
Fibra de Carbono/química , Carbono/química , Poeira/análise , Monitoramento Ambiental/métodos , Reciclagem/métodos , Animais , Peso Corporal/efeitos dos fármacos , DNA/efeitos dos fármacos , Poluição Ambiental , Perfilação da Expressão Gênica , Hemoglobinas/química , Inflamação , Pulmão/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Exposição Ocupacional/efeitos adversos , Análise de Sequência com Séries de Oligonucleotídeos , Estresse Oxidativo , Tamanho da Partícula , RNA/análise , Eliminação de Resíduos
7.
Sensors (Basel) ; 19(2)2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30669307

RESUMO

In this paper, some recent piezoelectric wafer active sensors (PWAS) progress achieved in our laboratory for active materials and smart structures (LAMSS) at the University of South Carolina: http: //www.me.sc.edu/research/lamss/ group is presented. First, the characterization of the PWAS materials shows that no significant change in the microstructure after exposure to high temperature and nuclear radiation, and the PWAS transducer can be used in harsh environments for structural health monitoring (SHM) applications. Next, PWAS active sensing of various damage types in aluminum and composite structures are explored. PWAS transducers can successfully detect the simulated crack and corrosion damage in aluminum plates through the wavefield analysis, and the simulated delamination damage in composite plates through the damage imaging method. Finally, the novel use of PWAS transducers as acoustic emission (AE) sensors for in situ AE detection during fatigue crack growth is presented. The time of arrival of AE signals at multiple PWAS transducers confirms that the AE signals are originating from the crack, and that the amplitude decay due to geometric spreading is observed.


Assuntos
Técnicas Biossensoriais/instrumentação , Eletricidade , Saúde , Monitorização Fisiológica/instrumentação , Anisotropia , Fibra de Carbono/química , Análise de Fourier , Processamento de Sinais Assistido por Computador , Espectrometria por Raios X , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA