Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Sci Rep ; 11(1): 11663, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34083615

RESUMO

The interaction of platelet GPIbα with von Willebrand factor (VWF) is essential to initiate platelet adhesion and thrombosis, particularly under high shear stress conditions. However, no drug targeting GPIbα has been developed for clinical practice. Here we characterized anfibatide, a GPIbα antagonist purified from snake (Deinagkistrodon acutus) venom, and evaluated its interaction with GPIbα by surface plasmon resonance and in silico modeling. We demonstrated that anfibatide interferds with both VWF and thrombin binding, inhibited ristocetin/botrocetin- and low-dose thrombin-induced human platelet aggregation, and decreased thrombus volume and stability in blood flowing over collagen. In a single-center, randomized, and open-label phase I clinical trial, anfibatide was administered intravenously to 94 healthy volunteers either as a single dose bolus, or a bolus followed by a constant rate infusion of anfibatide for 24 h. Anfibatide inhibited VWF-mediated platelet aggregation without significantly altering bleeding time or coagulation. The inhibitory effects disappeared within 8 h after drug withdrawal. No thrombocytopenia or anti-anfibatide antibodies were detected, and no serious adverse events or allergic reactions were observed during the studies. Therefore, anfibatide was well-tolerated among healthy subjects. Interestingly, anfibatide exhibited pharmacologic effects in vivo at concentrations thousand-fold lower than in vitro, a phenomenon which deserves further investigation.Trial registration: Clinicaltrials.gov NCT01588132.


Assuntos
Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Venenos de Crotalídeos/uso terapêutico , Fibrinolíticos/uso terapêutico , Lectinas Tipo C/uso terapêutico , Complexo Glicoproteico GPIb-IX de Plaquetas/antagonistas & inibidores , Venenos de Serpentes/uso terapêutico , Animais , Coagulação Sanguínea/efeitos dos fármacos , Venenos de Crotalídeos/química , Venenos de Crotalídeos/isolamento & purificação , Venenos de Crotalídeos/farmacocinética , Crotalinae , Fibrinolíticos/química , Fibrinolíticos/isolamento & purificação , Fibrinolíticos/farmacocinética , Voluntários Saudáveis , Humanos , Lectinas Tipo C/química , Lectinas Tipo C/isolamento & purificação , Modelos Moleculares , Adesividade Plaquetária/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Contagem de Plaquetas , Complexo Glicoproteico GPIb-IX de Plaquetas/química , Ligação Proteica , Conformação Proteica , Ristocetina/farmacologia , Venenos de Serpentes/química , Venenos de Serpentes/isolamento & purificação , Venenos de Serpentes/farmacocinética , Relação Estrutura-Atividade , Trombina/farmacologia , Trombose/prevenção & controle , Fator de von Willebrand/química , Fator de von Willebrand/metabolismo
2.
Sci Rep ; 8(1): 6210, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29670183

RESUMO

The harnessing of medicinal plants containing a plethora of bioactive molecules may lead to the discovery of novel, potent and safe therapeutic agents to treat thrombosis-associated cardiovascular diseases. A 35 kDa (m/z 34747.5230) serine protease (lunathrombase) showing fibrin(ogen)olytic activity and devoid of N- and O- linked oligosaccharides was purified from an extract of aqueous leaves from L. indica. The LC-MS/MS analysis, de novo sequencing, secondary structure, and amino acid composition determination suggested the enzyme's novel characteristic. Lunathrombase is an αß-fibrinogenase, demonstrating anticoagulant activity with its dual inhibition of thrombin and FXa by a non-enzymatic mechanism. Spectrofluorometric and isothermal calorimetric analyses revealed the binding of lunathrombase to fibrinogen, thrombin, and/or FXa with the generation of endothermic heat. It inhibited collagen/ADP/arachidonic acid-induced mammalian platelet aggregation, and demonstrated antiplatelet activity via COX-1 inhibition and the upregulation of the cAMP level. Lunathrombase showed in vitro thrombolytic activity and was not inhibited by endogenous protease inhibitors α2 macroglobulin and antiplasmin. Lunathrombase was non-cytotoxic to mammalian cells, non-hemolytic, and demonstrated dose-dependent (0.125-0.5 mg/kg) in vivo anticoagulant and plasma defibrinogenation activities in a rodent model. Lunathrombase (10 mg/kg) did not show toxicity or adverse pharmacological effects in treated animals.


Assuntos
Anticoagulantes/farmacologia , Fibrinolíticos/farmacologia , Lamiaceae/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Serina Proteases/farmacologia , Animais , Anticoagulantes/química , Anticoagulantes/isolamento & purificação , Fatores de Coagulação Sanguínea/química , Fatores de Coagulação Sanguínea/isolamento & purificação , Fatores de Coagulação Sanguínea/farmacologia , AMP Cíclico , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Fibrinólise/efeitos dos fármacos , Fibrinolíticos/química , Fibrinolíticos/isolamento & purificação , Hemólise/efeitos dos fármacos , Oligossacarídeos/química , Peptídeos/química , Peptídeos/isolamento & purificação , Peptídeos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Agregação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/química , Inibidores da Agregação Plaquetária/isolamento & purificação , Inibidores da Agregação Plaquetária/farmacologia , Serina Proteases/química , Serina Proteases/isolamento & purificação , Análise Espectral
3.
In Vitro Cell Dev Biol Anim ; 53(6): 494-501, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28283876

RESUMO

Ischemic stroke and cardiovascular disease can occur from blockage of blood vessels by fibrin clots formed naturally in the body. Therapeutic drugs of anticoagulant or thrombolytic agents have been studied; however, various problems have been reported such as side effects and low efficacy. Thus, development of new candidates that are more effective and safe is necessary. The objective of this study is to evaluate fibrinolytic activity, anti-coagulation, and characterization of serine protease purified from Lumbrineris nipponica, polychaeta, for new thrombolytic agents. In the present study, we isolated and identified a new fibrinolytic serine protease from L. nipponica. The N-terminal sequence of the identified serine protease was EAMMDLADQLEQSLN, which is not homologous with any known serine protease. The size of the purified serine protease was 28 kDa, and the protein purification yield was 12.7%. The optimal enzyme activity was observed at 50°C and pH 2.0. A fibrin plate assay confirmed that indirect fibrinolytic activity of the purified serine protease was higher than that of urokinase-PA, whereas direct fibrinolytic activity, which causes bleeding side effects, was relatively low. The serine protease did not induce any cytotoxicity toward the endothelial cell line. In addition, anticoagulant activity was verified by an in vivo DVT animal model system. These results suggest that serine protease purified from L. nipponica has the potential to be an alternative fibrinolytic agent for the treatment of thrombosis and use in various biomedical applications.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Fibrinolíticos/isolamento & purificação , Serina Proteases/isolamento & purificação , Acidente Vascular Cerebral/tratamento farmacológico , Sequência de Aminoácidos/genética , Animais , Fibrina/química , Fibrina/genética , Fibrinolíticos/química , Fibrinolíticos/uso terapêutico , Poliquetos/enzimologia , Serina Proteases/química , Serina Proteases/uso terapêutico
4.
PLoS One ; 8(11): e81165, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24260554

RESUMO

Saxatilin, a novel disintegrin purified and cloned from the venom of the Korean snake Gloydius saxatilis, strongly inhibits activation and aggregation of platelets. Glycoprotein (GP) IIb/IIIa receptor antagonists can resolve thrombus, so saxatilin might also have thrombolytic effects. We investigated the thrombolytic effects of saxatilin in mice using a ferric chloride-induced carotid arterial thrombosis model. Thrombotic occlusion and thrombus resolution were evaluated quantitatively by measuring blood flow in the carotid artery with an ultrasonic flow meter and calculating the degree of flow restoration on a minute-by-minute basis; results were confirmed by histological examination. Saxatilin dissolved thrombi in a dose-dependent manner. Saxatilin at 5 mg/kg restored blood flow to baseline levels. As saxatilin dose increased, time to recanalization decreased. A bolus injection of 10% of a complete dose with continuous infusion of the remaining dose for 60 minutes resulted in effective recanalization without reocclusion. The thrombolytic effect of saxatilin was also demonstrated in vitro using platelet aggregometry by administering saxatilin in preformed thrombi. Bleeding complications were observed in 2 of 71 mice that received saxatilin. Fibrin/fibrinogen zymography and platelet aggregometry studies indicated that saxatilin does not have fibrinolytic activity, but exerted its action on platelets. Integrin-binding assays showed that saxatilin inhibited multiple integrins, specifically α2bß3 (GP IIb/IIIa), α5ß1, αvß3, αvß1, and αvß5, which act on platelet adhesion/aggregation. Saxatilin inhibited multiple integrins by acting on platelets, and was safe and effective in resolving thrombi in mice.


Assuntos
Plaquetas/efeitos dos fármacos , Artérias Carótidas/efeitos dos fármacos , Desintegrinas/farmacologia , Fibrinolíticos/farmacologia , Terapia Trombolítica , Trombose/tratamento farmacológico , Animais , Plaquetas/metabolismo , Plaquetas/patologia , Artérias Carótidas/metabolismo , Artérias Carótidas/patologia , Células Cultivadas , Cloretos , Desintegrinas/isolamento & purificação , Relação Dose-Resposta a Droga , Esquema de Medicação , Compostos Férricos , Fibrinolíticos/isolamento & purificação , Hemorreologia , Hemorragia/induzido quimicamente , Integrinas/antagonistas & inibidores , Integrinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Agregação Plaquetária/efeitos dos fármacos , Venenos de Serpentes/química , Trombose/induzido quimicamente , Trombose/metabolismo , Trombose/patologia
5.
Biochim Biophys Acta ; 1830(6): 3476-88, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23416064

RESUMO

BACKGROUND: Snake venoms are rich sources of bioactive molecules, and several venom-derived proteins have entered clinical trials for use in ischemic disorders; however, late-stage failure of a recent drug candidate due to low in vivo efficacy demonstrated the need for new sources of fibrinogenolytic drug candidates. METHODS: A 51.3kDa thrombin-like serine protease (Russelobin) purified from the venom of Russell's Viper (Daboia russelii russelii) was subjected to extensive biochemical characterization, including N-terminal sequencing, substrate specificity, kinetic and inhibitor assays, glycosylation analysis and stability assays. Toxicity and pathology analyses were conducted in NSA mice. RESULTS: Russelobin has extensive N-terminus identity with a beta-fibrinogenase-like serine proteinase precursor from Daboia russelii siamensis venom, a mass of 51.3kDa and contains extensive N-linked oligosaccharides. Serine protease inhibitors and heparin significantly decreased activity, with much lower inhibition by DTT, antithrombin-III and α2-macroglobulin. Russelobin preferentially released FPA and slowly released FPB from human fibrinogen, forming a labile fibrin clot readily hydrolyzed by plasmin. The partially deglycosylated enzyme showed significantly lower activity toward fibrinogen and less resistance against neutralization by plasma α2MG and antithrombin-III. Russelobin was non-cytotoxic, non-lethal and produced no histopathologies in mice, and it demonstrated in vivo dose-dependent defibrinogenating activity. CONCLUSIONS: Russelobin is an A/B fibrinogenase with high specificity toward fibrinogen, both in vitro and in vivo. Extensive glycosylation appears to protect the molecule against endogenous protease inhibitors, prolonging its in vivo efficacy. GENERAL SIGNIFICANCE: Due to its low toxicity, stability and activity as a defibrinogenating agent, Russelobin shows high potential for cardiovascular drug development.


Assuntos
Daboia , Fibrinolíticos , Serina Proteases , Venenos de Víboras/enzimologia , Animais , Fibrinogênio/química , Fibrinogênio/metabolismo , Fibrinolíticos/química , Fibrinolíticos/isolamento & purificação , Fibrinolíticos/farmacologia , Humanos , Lagartos , Masculino , Camundongos , Peso Molecular , Serina Proteases/química , Serina Proteases/isolamento & purificação , Serina Proteases/farmacologia , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA