Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38791192

RESUMO

The synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) are the most vulnerable structures in the noise-exposed cochlea. Cochlear synaptopathy results from the disruption of these synapses following noise exposure and is considered the main cause of poor speech understanding in noisy environments, even when audiogram results are normal. Cochlear synaptopathy leads to the degeneration of SGNs if damaged IHC-SGN synapses are not promptly recovered. Oxidative stress plays a central role in the pathogenesis of cochlear synaptopathy. C-Phycocyanin (C-PC) has antioxidant and anti-inflammatory activities and is widely utilized in the food and drug industry. However, the effect of the C-PC on noise-induced cochlear damage is unknown. We first investigated the therapeutic effect of C-PC on noise-induced cochlear synaptopathy. In vitro experiments revealed that C-PC reduced the H2O2-induced generation of reactive oxygen species in HEI-OC1 auditory cells. H2O2-induced cytotoxicity in HEI-OC1 cells was reduced with C-PC treatment. After white noise exposure for 3 h at a sound pressure of 118 dB, the guinea pigs intratympanically administered 5 µg/mL C-PC exhibited greater wave I amplitudes in the auditory brainstem response, more IHC synaptic ribbons and more IHC-SGN synapses according to microscopic analysis than the saline-treated guinea pigs. Furthermore, the group treated with C-PC had less intense 4-hydroxynonenal and intercellular adhesion molecule-1 staining in the cochlea compared with the saline group. Our results suggest that C-PC improves cochlear synaptopathy by inhibiting noise-induced oxidative stress and the inflammatory response in the cochlea.


Assuntos
Cóclea , Molécula 1 de Adesão Intercelular , Ruído , Estresse Oxidativo , Ficocianina , Sinapses , Animais , Estresse Oxidativo/efeitos dos fármacos , Cobaias , Ficocianina/farmacologia , Ficocianina/uso terapêutico , Cóclea/metabolismo , Cóclea/efeitos dos fármacos , Cóclea/patologia , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Ruído/efeitos adversos , Molécula 1 de Adesão Intercelular/metabolismo , Perda Auditiva Provocada por Ruído/tratamento farmacológico , Perda Auditiva Provocada por Ruído/metabolismo , Perda Auditiva Provocada por Ruído/patologia , Espécies Reativas de Oxigênio/metabolismo , Masculino , Gânglio Espiral da Cóclea/efeitos dos fármacos , Gânglio Espiral da Cóclea/metabolismo , Gânglio Espiral da Cóclea/patologia , Peróxido de Hidrogênio/metabolismo , Células Ciliadas Auditivas Internas/efeitos dos fármacos , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Internas/patologia , Antioxidantes/farmacologia , Linhagem Celular , Perda Auditiva Oculta
2.
Curr Drug Metab ; 20(12): 967-976, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31775595

RESUMO

BACKGROUND: Cancer and other disorders such as inflammation, autoimmune diseases and diabetes are the major health problems observed all over the world. Therefore, identifying a therapeutic target molecule for the treatment of these diseases is urgently needed to benefit public health. C-Phycocyanin (C-PC) is an important light yielding pigment intermittently systematized in the cyanobacterial species along with other algal species. It has numerous applications in the field of biotechnology and drug industry and also possesses antioxidant, anticancer, antiinflammatory, enhanced immune function, including liver and kidney protection properties. The molecular mechanism of action of C-PC for its anticancer activity could be the blockage of cell cycle progression, inducing apoptosis and autophagy in cancer cells. OBJECTIVES: The current review summarizes an update on therapeutic applications of C-PC, its mechanism of action and mainly focuses on the recent development in the field of C-PC as a drug that exhibits beneficial effects against various human diseases including cancer and inflammation. CONCLUSION: The data from various studies suggest the therapeutic applications of C-PC such as anti-cancer activity, anti-inflammation, anti-angiogenic activity and healing capacity of certain autoimmune disorders. Mechanism of action of C-PC for its anticancer activity is the blockage of cell cycle progression, inducing apoptosis and autophagy in cancer cells. The future perspective of C-PC is to identify and define the molecular mechanism of its anti-cancer, anti-inflammatory and antioxidant activities, which would shed light on our knowledge on therapeutic applications of C-PC and may contribute significant benefits to global public health.


Assuntos
Ficocianina/uso terapêutico , Antineoplásicos/farmacologia , Cianobactérias , Humanos , Ficobilissomas , Ficocianina/biossíntese , Ficocianina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA