Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 953
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Water Res ; 259: 121832, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38852395

RESUMO

The presence of antibiotics in aquatic ecosystems poses a significant concern for public health and aquatic life, owing to their contribution to the proliferation of antibiotic-resistant bacteria. Effective wastewater treatment strategies are needed to ensure that discharges from pharmaceutical manufacturing facilities are adequately controlled. Here we propose the sequential use of nanofiltration (NF) for concentrating a real pharmaceutical effluent derived from azithromycin production, followed by electrochemical oxidation for thorough removal of pharmaceutical compounds. The NF membrane demonstrated its capability to concentrate wastewater at a high recovery value of 95 % and 99.7 ± 0.2 % rejection to azithromycin. The subsequent electrochemical oxidation process completely degraded azithromycin in the concentrate within 30 min and reduced total organic carbon by 95 % in 180 min. Such integrated treatment approach minimized the electrochemically-treated volume through a low-energy membrane approach and enhanced mass transfer towards the electrodes, therefore driving the process toward zero-liquid-discharge objectives. Overall, our integrated approach holds promises for cost-effective and sustainable removal of trace pharmaceutical compounds and other organics in pharmaceutical wastewater.


Assuntos
Filtração , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Técnicas Eletroquímicas , Purificação da Água/métodos , Azitromicina , Preparações Farmacêuticas , Oxirredução , Nanotecnologia , Indústria Farmacêutica
2.
J Environ Manage ; 360: 121192, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38781880

RESUMO

The global demand for valuable metals and minerals necessitates the exploration of alternative, sustainable approaches to mineral recovery. Seawater mining has emerged as a promising option, offering a vast reserve of minerals and an environmentally friendly alternative to land-based mining. Among the various techniques, Nanofiltration (NF) has gained significant attention as a preliminary treatment step in Minimum Liquid Discharge (MLD) and Zero Liquid Discharge (ZLD) schemes. This study focused on the potential of two underexplored commercial polyamide based NF membranes, Synder NFX and Vontron VNF1, with enhanced divalent over monovalent separation factors, in optimizing the extraction of magnesium hydroxide (Mg(OH)2) from seawater and seawater reverse osmosis (SWRO) brines. The research encompassed a thorough characterization of the membranes utilizing advanced physic-chemical analytical techniques, followed by rigorous experimental assessments using synthetic seawater and SWRO brine in concentration configuration. The findings highlighted the superior selectivity of NFX for magnesium recovery from SWRO brine and the promising concentration factors of VNF1 for seawater treatment. Cross-validation of experimental data with a mathematical model demonstrated the model's reliability as a process design tool in predicting membrane performance. A comprehensive techno-economic evaluation demonstrates the potential of NFX, operating optimally at 23 bar pressure and 70% permeate recovery rate, to yield an estimated annual revenue of 5.683 M€/yr through Mg(OH)2 production from SWRO brine for a plant with a nominal capacity of 0.8 Mm3/y. This research shed light on the promising role of NF membranes in enhancing mineral recovery taking benefit of their separation factors and emphasizes the economic viability of leveraging NF technology for maximizing magnesium recovery from seawater and SWRO brines.


Assuntos
Filtração , Magnésio , Água do Mar , Água do Mar/química , Magnésio/química , Filtração/métodos , Membranas Artificiais , Osmose , Sais
3.
Environ Sci Technol ; 58(14): 6181-6191, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38536729

RESUMO

Flow-electrode capacitive deionization (FCDI) is a promising technology for sustainable water treatment. However, studies on the process have thus far been limited to lab-scale conditions and select fields of application. Such limitation is induced by several shortcomings, one of which is the absence of a comprehensive process model that accurately predicts the operational performance and the energy consumption of FCDI. In this study, a simulation model is newly proposed with initial validation based on experimental data and is then utilized to elucidate the performance and the specific energy consumption (SEC) of FCDI under multiple source water conditions ranging from near-groundwater to high salinity brine. Further, simulated pilot-scale FCDI system was compared with actual brackish water reverse osmosis (BWRO) and seawater reverse osmosis (SWRO) plant data with regard to SEC to determine the feasibility of FCDI as an alternative to the conventional membrane processes. Analysis showed that FCDI is competent for operation against brackish water solutions under all possible operational conditions with respect to the BWRO. Moreover, its distinction can be extended to the SWRO for seawater conditions through optimization of its total effective membrane area via scale-up. Accordingly, future directions for the advancement of FCDI was suggested to ultimately prompt the commercialization of the FCDI process.


Assuntos
Cloreto de Sódio , Purificação da Água , Filtração , Eletrodos , Água do Mar
4.
Environ Sci Pollut Res Int ; 30(58): 121983-121992, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37964145

RESUMO

Ultrafiltration (UF) is widely used in wastewater reclamation treatments. Conventional backwashing is usually performed at regular time intervals (10-120 min) with permeate and without the addition of chemicals. Chemical enhanced backwashing (CEB) is usually applied after 70-90 filtration cycles with added chemicals. These cleaning methods cause membrane fouling and require costly chemicals. Instead of conventional backwashing, we propose herein a new backwashing method involving backwashing the effluent with low doses of sodium hypochlorite (NaClO) named as BELN. The performance and cost of UF backwashing were investigated with Beijing wastewater reclamation treatment. The results showed that the transmembrane pressure (TMP) increased from 33.2 to 48.2 kPa during hydraulic backwashing after 80 filtration cycles but increased from 33.3 to 39.3 kPa during backwashing with a low NaClO content of 20 mg/L. It was also noticed that the hydraulic-irreversible fouling index decreased from 5.58 × 10-3 m2/L to 3.58 × 10-3 m2/L with the new method. According to the three-dimensional fluorescence excitation-emission (3D-EEM), the response increased from 11.9 to 15.2% with BELN. Protein-like material was identified as the main component causing membrane fouling by blocking the membrane pores. The results indicated that the low dosage of NaClO effectively stripped the fouling layer. Finally, based on an economic evaluation, the capacity of the UF process was increased from 76,959 to 109,133 m3/d with the new method. The amount of NaClO consumed for Beijing wastewater reclamation treatment was similarly compared with the conventional backwashing in per year under BELN. The new method has good potential for application.


Assuntos
Ultrafiltração , Purificação da Água , Ultrafiltração/métodos , Águas Residuárias , Membranas Artificiais , Filtração , Purificação da Água/métodos
5.
Chemosphere ; 341: 140022, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37657695

RESUMO

A gaseous mixture of methanol (M), α-pinene (P), and hydrogen sulfide (H) was treated in one/two-liquid phase biotrickling filters (OLP/TLP-BTFs) at varying inlet concentrations and at an empty bed residence time (EBRT) of 57 s. The performance of TLP-BTF [BTF (A)] improved significantly in terms of M and P removal due to the presence of silicone oil at 5% v/v. The maximum elimination capacities (ECs) of M, P, and H in BTF (A) were obtained as 309, 73, and 56 g m-3 h-1, respectively. While, the maximum ECs achieved in the BTF operated without silicone oil [BTF (B)] were 172, 28, and 21 g m-3 h-1 for M, P, and H removal, respectively. Increasing the inlet concentration of H from 32 to 337 ppm inhibited P removal in both the BTFs. The presence of silicone oil enhanced gas-liquid mass transfer, prevented the BTF from experiencing substrate inhibition effects and allowed reaching high ECs for M and P. The experiments showed promising results for the long-term operation of removal of M, P, and H mixture in a one-stage TLP-BTF with the decreasing negative effects of M and H on P degradation.


Assuntos
Poluentes Atmosféricos , Sulfeto de Hidrogênio , Metanol , Óleos de Silicone , Reatores Biológicos , Filtração/métodos , Gases , Biodegradação Ambiental
6.
Environ Sci Pollut Res Int ; 30(48): 105614-105626, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37715037

RESUMO

Performance evaluation of drilling fluids is essential for a successful drilling project, as they not only remove drill cuttings but also prevent undesired penetration or outflow of formation fluids by sealing off wellbore walls. However, concerns have been raised about the use of chemical additives in drilling fluids due to their toxicity and non-biodegradability. To this end, agricultural waste materials are recognized as a promising alternative as they are cost-effective, environmentally sustainable, and can be used as a substitute for lost circulation materials. Rice husk ash (RHA) has become popular as an additive due to its renewable characteristics, including its large surface area, silica content, and microporous structure. This research article explores the rheological properties of drilling fluid with RHA as a filter control medium. The results showed that increasing concentrations of RHA in the drilling mud significantly improved its rheology, particularly at higher concentrations (15 and 20 wt.%). The addition of RHA modified the filtration and rheological properties of the drilling mud, resulting in improved plastic viscosity, yield point, density, gel strength, and thixotropy. However, filter loss and mud cake thickness increased at elevated RHA concentrations. Furthermore, the pH test revealed that the mud's properties shifted toward the acidic region as the RHA concentration increased. The results indicate that RHA could be used as a sustainable and cost-effective alternative to conventional chemical additives with a positive environmental impact. This study may also provide valuable insights into the use of RHA in water-based bentonite mud and could serve as a guide for future research in the drilling industry.


Assuntos
Oryza , Agricultura , Bentonita , Filtração , Reologia
7.
Sci Rep ; 13(1): 13947, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37626166

RESUMO

Current evidence suggests that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can remain suspended spread in aerosols for longer period of time under poorly ventilated indoor setting. To minimize spreading, application of antiviral filter to capture infectious aerosols and to inactivate SARS-CoV-2 can be a promising solution. This study aimed to develop a method to assess simultaneously the filtration and removal efficiency of aerosolized pseudo-type SARS-CoV-2 using a vertical-type wind tunnel with relatively high face velocity (1.3 m/s). Comparing with the untreated spunlace non-woven filter, the C-POLAR™ treated filter increased the filtration efficiency from 74.2 ± 11.5% to 97.2 ± 1.7%, with the removal efficiency of 99.4 ± 0.051%. The results provided not only solid evidence to support the effectiveness of the cationic polymeric coated filter in fighting against the SARS-CoV-2 pandemic, but also a method to test viral filtration and removal efficiency under relative fast air velocity and with a safer environment to the operators.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Antivirais , Filtração , Pandemias
8.
Sci Total Environ ; 880: 163388, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37030375

RESUMO

Sludge production in the wastewater treatment sector is consistently increasing and represents a critical environmental and economic issue. This study evaluated an unconventional approach for treating wastewater generated from the cleaning of non-hazardous plastic solid waste during the plastic recycling process. The proposed scheme was based on sequencing batch biofilter granular reactor (SBBGR) technology, which was compared with the activated sludge-based treatment currently in operation. These treatment technologies were compared regarding sludge quality, specific sludge production, and effluent quality to highlight whether the reduced sludge production shown by SBBGR corresponded to an increase in the concentration of hazardous compounds in the sludge. The SBBGR technology showed remarkable removal efficiencies (TSS, VSS, and NH3 > 99 %; COD >90 %; TN and TP > 80 %) and a sludge production six-fold lower than the conventional plant (in terms of kgTSS/kg CODremoved). Biomass from the SBBGR did not show a significant accumulation of organic micropollutants (i.e., long-chain hydrocarbons, chlorinated pesticides and chlorobenzenes, PCB, PCDD/F, PAH, chlorinated and brominated aliphatic compounds, and aromatic solvents), whereas a certain accumulation of heavy metals was observed. Furthermore, an initial attempt to compare the operating costs of the two treatment approaches revealed that the SBBGR technology would provide 38 % savings.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Plásticos , Reatores Biológicos , Filtração
9.
Chemosphere ; 314: 137750, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36608493

RESUMO

Landfill leachate treatment involved with the membrane bioreactor (MBR) combined with membrane treatment via nanofiltration (NF) and/or reverse osmosis (RO) is widely used in Turkey. This treatment produces landfill leachate membrane concentrates (LLMCs) with an undesirably high concentration of contaminants. In the study, two different nanofiltration concentrates of leachate were coagulated. Coagulant dosages from 0.10 to 5.0 g of Me3+/L (Me3+: Al3+ or Fe3+), and the pH values ranged from 4.0 to 8.0 and 3.0-9.0 for Al-based and Fe-based coagulants, respectively. The most efficient pH values were 5.0 and 4.0 for Al3+ and Fe3+, respectively. These pH values are lower than those known to be effective in coagulants. The reason for this is the presence of humic substances in the wastewater. The cost of Fe2(SO4)3.xH2O was the lowest than other coagulants at the end of the cost analyses obtained from Istanbul region landfill leachate NF concentrate (NFCL-1) and Kocaeli region landfill leachate NF concentrate (NFCL-2). Under optimum conditions, the costs for NFCL-1 and NFCL-2 were calculated as 0.55 and 0.46 $/removed kg COD, respectively.


Assuntos
Ferro , Poluentes Químicos da Água , Ferro/química , Poluentes Químicos da Água/análise , Alumínio , Floculação , Filtração
10.
Biotechnol Prog ; 39(2): e3323, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36598038

RESUMO

A single-stage clarification was developed using a single-use chromatographic clarification device (CCD) to recover a recombinant protein from Chinese Hamster Ovary (CHO) harvest cell culture fluid (HCCF). Clarification of a CHO HCCF is a complex and costly process, involving multiple stages of centrifugation and/or depth filtration to remove cells and debris and to reduce process-related impurities such as host cell protein (HCP), nucleic acids, and lipids. When using depth filtration, the filter train consists of multiple filters of varying ratios, layers, pore sizes, and adsorptive properties. The depth filters, in combination with a 0.2-micron membrane filter, clarify the HCCF based on size-exclusion, adsorptive, and charge-based mechanisms, and provide robust bioburden control. Each stage of the clarification process requires time, labor, and utilities, with product loss at each step. Here, use of the 3M™ Harvest RC Chromatographic Clarifier, a single-stage CCD, is identified as an alternative strategy to a three-stage filtration train. The CCD results in less overall filter area, less volume for flushing, and higher yield. Using bioprocess cost modeling, the single-stage clarification process was compared to a three-stage filtration process. By compressing the CHO HCCF clarification to a single chromatographic stage, the overall cost of the clarification process was reduced by 17%-30%, depending on bioreactor scale. The main drivers for the cost reduction were reduced total filtration area, labor, time, and utilities. The benefits of the single-stage harvest process extended throughout the downstream process, resulting in a 25% relative increase in cumulative yield with comparable impurity clearance.


Assuntos
Reatores Biológicos , Cromatografia , Cricetinae , Animais , Cricetulus , Células CHO , Filtração/métodos , Proteínas Recombinantes/genética
11.
Environ Sci Pollut Res Int ; 30(14): 40783-40798, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36622606

RESUMO

Membrane nanofiltration (NF) process was employed to remove nitrate from synthetic and natural waters. The optimum technical and economic ranges of governing parameters for the water treatment process were determined using central composite design method and Verbernen's economic model. The results of nitrate removal from synthesized water showed the minimum and maximum rates of permeation were 16.5 and 84.3 L/m2h (LMH), respectively. The minimum and maximum nitrate rejection were 44.1% and 78.4%, respectively. Increasing pH had no significant effect on permeation flux but increased the nitrate removal rate. Additionally, as pressure was increased, the nitrate rejection and permeation flux both increased; but, as temperature was increased, the permeation flux increased while the nitrate removal decreased. In the case of natural water, the minimum and the maximum flow rate were 7.7 and 68.1 LMH. Furthermore, the minimum and maximum rejection rates of nitrate were 22.1% and 74.8%. The effects of variables on the permeation flux and nitrate removal for natural water were similar to those for synthetic water. However, by increasing pH, the amount of water passing through the membrane decreased. In all experiments, natural water had less permeation flux and less nitrate rejection than synthesized water. The presence of other anions and cations in the natural water decreases the amount of the nitrate removed. The total investment cost reduced as the pressure increased. The cost per m3 of treated water decreased from 3 to 7 bars, then increased as the pressure increased.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Nitratos , Filtração/métodos , Análise Custo-Benefício , Poluentes Químicos da Água/análise , Membranas Artificiais , Purificação da Água/métodos
12.
J Clin Apher ; 38(4): 368-375, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36420568

RESUMO

BACKGROUND: The value of double filtration plasmapheresis (DFPP) in severe hypertriglyceridemia-induced pancreatitis (sHTGP) is controversial. This study aimed to investigate the efficacy of DFPP on clinical outcomes in patients with sHTGP and the costs associated with the procedure. METHODS: Patients who underwent DFPP after admission between January 2016 and December 2021 were recruited. Data on lipid profile, clinical parameters, and costs were retrospectively collected and analyzed. RESULTS: Fifty sHTGP patients who received DFPP were enrolled. All of the lipid profile were significantly reduced and maintained a downward trend. The APACHE II score on admission was higher and the reduction after DFPP was more obvious (P < 0.05) in patients with higher triglyceride (TG) levels (≥33.9 mmol/L) than in patients with lower TG levels. More material fees were expended in the higher TG group due to more DFPP sessions (P < 0.05), but no significant differences existed in total hospital costs between the two groups. CONCLUSION: DFPP could rapidly and effectively reduce TGs to a safe level. APACHE II score reduction was obvious in patients with TGs ≥33.9 mmol/L and was associated with lipid profile changes. DFPP may benefit sHTGP patients with a TG level higher than the current initiation threshold.


Assuntos
Hiperlipidemias , Hipertrigliceridemia , Pancreatite , Humanos , Estudos Retrospectivos , Hipertrigliceridemia/complicações , Hipertrigliceridemia/terapia , Pancreatite/complicações , Pancreatite/terapia , Plasmaferese/métodos , Lipídeos , Filtração
13.
Artigo em Inglês | MEDLINE | ID: mdl-36430072

RESUMO

As a result of the COVID-19 pandemic, many new materials and masks came onto the market. To determine their suitability, several standards specify which properties to test, including bacterial filtration efficiency (BFE), while none describe how to determine viral filtration efficiency (VFE), a property that is particularly important in times of pandemic. Therefore, we focused our research on evaluating the suitability and efficiency of different systems for determining VFE. Here, we evaluated the VFE of 6 mask types (e.g., a surgical mask, a respirator, material for mask production, and cloth masks) with different filtration efficiencies in four experimental setups and compared the results with BFE results. The study included 17 BFE and 22 VFE experiments with 73 and 81 mask samples tested, respectively. We have shown that the masks tested had high VFE (>99% for surgical masks and respirators, ≥98% for material, and 87-97% for cloth masks) and that all experimental setups provided highly reproducible and reliable VFE results (coefficient of variation < 6%). Therefore, the VFE tests described in this study can be integrated into existing standards for mask testing.


Assuntos
COVID-19 , Máscaras , Humanos , Pandemias/prevenção & controle , COVID-19/prevenção & controle , Filtração , Ventiladores Mecânicos
14.
PLoS One ; 17(9): e0273830, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36070303

RESUMO

When studying financial markets, we often look at estimating a correlation matrix from asset returns. These tend to be noisy, with many more dimensions than samples, so often the resulting correlation matrix is filtered. Popular methods to do this include the minimum spanning tree, planar maximally filtered graph and the triangulated maximally filtered graph, which involve using the correlation network as the adjacency matrix of a graph and then using tools from graph theory. These assume the data fits some form of shape. We do not necessarily have a reason to believe that the data does fit into this shape, and there have been few empirical investigations comparing how the methods perform. In this paper we look at how the filtered networks are changed from the original networks using stock returns from the US, UK, German, Indian and Chinese markets, and at how these methods affect our ability to distinguish between datasets created from different correlation matrices using a graph embedding algorithm. We find that the relationship between the full and filtered networks depends on the data and the state of the market, and decreases as we increase the size of networks, and that the filtered networks do not provide an improvement in classification accuracy compared to the full networks.


Assuntos
Algoritmos , Filtração
15.
Water Environ Res ; 94(7): e10758, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35770870

RESUMO

Seawater desalination using a cost-effective reverse osmosis system is crucial for hot climate countries suffering from water scarcity. The most favorable seawater membrane characteristics were identified under typical Egyptian operating conditions. Twelve different commercially available membrane elements were investigated. A reverse osmosis system was designed and simulated using available software (e.g., ROSA and IMSDesign). The characteristics of the most promising membranes were identified for operation at Matruh (Mediterranean Sea) and Sharm El-Sheikh (Red Sea). The present work shows that the lowest cost of seawater desalination is obtained with membranes having high salt rejection, high permeate flow, high membrane active area, and permeate flux greater than 0.914 m3 /(d·m2 ). Moreover, the cost of seawater desalination in summer is lower than in winter by 5% for Matruh and 2.7% for Sharm El-Sheikh. However, the impact of water salinity on the cost and specific energy consumption is higher than that of the seawater temperature. The cost of Mediterranean seawater desalination is lower than that of the Red Sea by 10.6%. Cost analysis at five different locations in Egypt shows that the highest cost takes place at Suez (Gulf of Suez), and the lowest cost occurs at Matruh (Mediterranean Sea). PRACTITIONER POINTS: Twelve different membranes were investigated for use under typical hot climate conditions. The cost of seawater reverse osmosis (RO) desalination is lower in summer by 2.7%-5% compared with winter. RO desalination costs up to 10.6% less for the Mediterranean Sea compared with the Red Sea. The optimum membrane element performance characteristics were identified for use under hot climate conditions.


Assuntos
Purificação da Água , Filtração , Membranas Artificiais , Osmose , Água do Mar
16.
Environ Sci Pollut Res Int ; 29(38): 58222-58230, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35366723

RESUMO

There is growing awareness that nature-based solutions (NBS) prevent negative effects and secure ecosystem services. However, the potential of NBS to provide intended benefits has not been rigorously assessed. Water, food, and energy (WFE) are essential for human well-being. This study highlights the importance of NBS in terms of water, food, and energy. A set of on-site NBS that includes permeable pavements, plant microbial fuel cells, bio-filtration basins, and rain gardens is used to determine the contribution of NBS to the environmental and economic development of urban environments. The results of this study show that NBSs benefit an urban environment in terms of water treatment, stormwater retention, food production and energy generation, carbon sequestration, pollination, sedimentation retention, and cultural services dimension. This research highlights an urgent need for the integration of water, food, and energy plans to ensure that NBSs contribute to the environment and for the conservation of ecosystem services.


Assuntos
Ecossistema , Purificação da Água , Desenvolvimento Econômico , Filtração , Humanos , Chuva
17.
J Environ Manage ; 312: 114854, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35325737

RESUMO

With the rapid population growth and economic development, the necessity to explore energy-saving potentials in typical seawater desalination project is increasingly essential. Taking the Reverse Osmosis (RO) seawater desalination project in Hebei Province, China as a case, this study performed systematic accounting framework combining the direct and indirect energy consumption from the energy-water nexus perspective, and carried out the energy-saving potential assessment and systematical optimization configuration. From the results, the total direct energy consumption of the project was 2.23 × 106 kWh, and the total embodied energy consumption was 2.18 × 107 kWh. Define the embodied energy consumption (ESE) as an evaluation index of energy saving potentials, the energy consumption degree before optimization is 79.54%, which could be reduced to 26.30% after optimization. The results showed that the systematic accounting framework in this study can greatly improve the accuracy of energy consumption measurement in the project, and the systematical optimization configuration can significantly reduce energy consumption and improve the energy-saving design under the minimum investment in the seawater desalination projects.


Assuntos
Purificação da Água , Água , Filtração , Osmose , Água do Mar , Purificação da Água/métodos
18.
Sci Total Environ ; 825: 153907, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35183622

RESUMO

This research investigated the impact of permeate flux and gas sparging rate on membrane permeability, dissolved and colloidal organic matter (DCOM) rejection and process economics of granular anaerobic membrane bioreactors (AnMBRs). The goal of the study was to understand how membrane fouling control strategies influence granular AnMBR economics. To this end, short- and long-term filtration tests were performed under different permeate flux and specific gas demand (SGD) conditions. The results showed that flux and SGD conditions had a direct impact on membrane fouling. At normalised fluxes (J20) of 4.4 and 8.7 L m-2 h-1 (LMH) the most favourable SGD condition was 0.5 m3 m-2 h-1, whereas at J20 of 13.0 and 16.7 LMH the most favourable SGD condition was 1.0 m3 m-2 h-1. The flux and the SGD did not have a direct impact on DCOM rejection, with values ranging between 31 and 44%. The three-dimensional excitation-emission matrix fluorescence (3DEEM) spectra showed that protein-like fluorophores were predominant in mixed liquor and permeate samples (67-79%) and were retained by the membrane (39-50%). This suggests that protein-like fluorophores could be an important foulant for these systems. The economic analysis showed that operating the membranes at moderate fluxes (J20 = 7.8 LMH) and SGD (0.5 m3 m-2 h-1) could be the most favourable alternative. Finally, a sensitivity analysis illustrated that electricity and membrane cost were the most sensitive economic parameters, which highlights the importance of reducing SGD requirements and improving membrane permeability to reduce costs of granular AnMBRs.


Assuntos
Membranas Artificiais , Eliminação de Resíduos Líquidos , Anaerobiose , Reatores Biológicos , Filtração , Esgotos , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias
19.
Trends Biotechnol ; 40(7): 804-815, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35034769

RESUMO

The benefits of continuous processing over batch manufacturing are widely acknowledged across the biopharmaceutical industry, primary of which are higher productivity and greater consistency in product quality. Furthermore, the reduced equipment and facility footprint lead to significantly lower capital costs. Technology enablers have a major role in this migration from batch to continuous processing. In this review, we highlight the various enablers that are facilitating adoption of continuous upstream and downstream bioprocessing. This includes new bioreactors and cell retention devices for upstream operations, and on-column and continuous flow refolding, novel continuous chromatography, and single-pass filtration systems for downstream processes. We also elucidate the significant roles of process integration and control as well as of data analytics in these processes.


Assuntos
Produtos Biológicos , Reatores Biológicos , Produtos Biológicos/química , Cromatografia , Custos e Análise de Custo , Filtração
20.
Sci Total Environ ; 820: 153060, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35038508

RESUMO

Constructed wetlands (CW) are implemented to improve water quality through filtration by plants (macrophytes), which sequester nutrients and contaminants. Macrophyte beds in CWs reduce the speed of water flow, aiming to improve the water quality by sedimentation and filtration with increasing distance from the inflow. Few studies have assessed spatial distribution and accumulation concentrations of nutrients and contaminants in CW macrophytes as a performance indicator for wetland functionality and management. Macrophytes and water were analysed for nutrient and contaminant accumulation in-situ at a stormwater-fed CW and water remediation site in South Australia. During the austral summer, macrophytes were sampled at 36 sites and water at 46 sites selected by a systematic GIS produced grid covering the entire wetland, which determined distance from the inflow for each site. A total of 144 Schoenoplectus validus (stems and roots) macrophyte samples (i.e. carbon-C, nitrogen-N, Trace elements) and 183 water samples (i.e. total suspended solids-TSS, total nitrogen-TN, total carbon-TC, nitrate-NO3-/ nitrite-NO2- and ammonia-NH4+) were analysed. Concentrations of water chemistry parameters that significantly increased with distance away from inflow included; TC (P = 0.0008), TN (P = 0.0001), and NH4+ (P = 0.0001), while there was significant decrease in TSS (P = 0.0001). The macrophyte S. validus significantly decreased in height (P = 0.0001) and biomass (P = 0.03) with distance from the inflow. Spatial mapping of nutrients and contaminants with distance from inflow identified increasing TC and C characteristics from inflow to outflow and identified where TSS were removed from the water column. Through this spatial assessment approach of the Oaklands CW, management has identified problem areas with flow regimes that require further investigation to enhance macrophyte water filtration performance which can be used in CWs elsewhere in the world.


Assuntos
Cyperaceae , Áreas Alagadas , Filtração , Nitrogênio/análise , Eliminação de Resíduos Líquidos , Qualidade da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA