Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microbiol Spectr ; 11(4): e0059023, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37428087

RESUMO

Changes in diet and environment can lead to acute diarrhea in companion animals, but the composition and interactions of the gut microbiome during acute diarrhea remain unclear. In this multicenter case-control study, we investigated the relationship between intestinal flora and acute diarrhea in two breeds of cats. Acutely diarrheic American Shorthair (MD, n = 12) and British Shorthair (BD, n = 12) and healthy American Shorthair (MH, n = 12) and British Shorthair (BH, n = 12) cats were recruited. Gut microbial 16S rRNA sequencing, metagenomic sequencing, and untargeted metabolomic analysis were performed. We observed significant differences in beta-diversity (Adonis, P < 0.05) across breeds and disease state cohorts. Profound differences in gut microbial structure and function were found between the two cat breeds. In comparison to healthy British Shorthair cats, Prevotella, Providencia, and Sutterella were enriched while Blautia, Peptoclostridium, and Tyzzerella were reduced in American Shorthair cats. In the case-control cohort, cats with acute diarrhea exhibited an increased abundance of Bacteroidota, Prevotella, and Prevotella copri and a decreased abundance of Bacilli, Erysipelotrichales, and Erysipelatoclostridiaceae (both MD and BD cats, P < 0.05). Metabolomic analysis identified significant changes in the BD intestine, affecting 45 metabolic pathways. Moreover, using a random forest classifier, we successfully predicted the occurrence of acute diarrhea with an area under the curve of 0.95. Our findings indicate a distinct gut microbiome profile that is associated with the presence of acute diarrhea in cats. However, further investigations using larger cohorts of cats with diverse conditions are required to validate and extend these findings. IMPORTANCE Acute diarrhea is common in cats, and our understanding of the gut microbiome variations across breeds and disease states remains unclear. We investigated the gut microbiome of two cat breeds (British Shorthair and American Shorthair) with acute diarrhea. Our study revealed significant effects of breeds and disease states on the structure and function of the gut microbiota in cats. These findings emphasize the need to consider breed-related factors in animal nutrition and research models. Additionally, we observed an altered gut metabolome in cats with acute diarrhea, closely linked to changes in bacterial genera. We identified a panel of microbial biomarkers with high diagnostic accuracy for feline acute diarrhea. These findings provide novel insights into the diagnosis, classification, and treatment of feline gastrointestinal diseases.


Assuntos
Microbioma Gastrointestinal , Gatos , Animais , RNA Ribossômico 16S/genética , Estudos de Casos e Controles , Fezes/microbiologia , Diarreia/veterinária , Diarreia/microbiologia , Firmicutes/genética
2.
Biomed Res Int ; 2020: 1482109, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32190648

RESUMO

The human gut microbiota is affected by genetic and environmental factors. It remains unclear how host genetic and environmental factors affect the composition and function of gut microbiota in populations living at high altitudes. We used a metagenome-wide analysis to investigate the gut microbiota composition in 15 native Tibetans and 12 Hans living on the Tibetan Plateau. The composition of gut microbiota differed significantly between these two groups (P < 0.05). The Planctomycetes was the most abundant phyla both in native Tibetans and in Hans. Furthermore, the most relatively abundant phyla for native Tibetans were Bacteroidetes (15.66%), Firmicutes (11.10%), Proteobacteria (1.32%), Actinobacteria (1.10%), and Tenericutes (0.35%), while the most relatively abundant phyla for Hans were Bacteroidetes (16.28%), Firmicutes (8.41%), Proteobacteria (2.93%), Actinobacteria (0.49%), and Cyanobacteria (0.21%). The abundance of the majority of genera was significantly higher in Tibetans than in Hans (P < 0.01). The number of microbial genes was 4.9 times higher in Tibetans than in Hans. The metabolic pathways and clusters of orthologous groups differed significantly between the two populations (P < 0.05). The abundance of carbohydrate-active enzyme modules and antibiotic resistance genes was significantly lower in Tibetans compared to Hans (P < 0.05). Our results suggest that different genetic factors (race) and environmental factors (diets and consumption of antibiotics) may play important roles in shaping the composition and function of gut microbiota in populations living at high altitudes.


Assuntos
Altitude , Microbioma Gastrointestinal , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Actinobacteria/metabolismo , Adulto , Antibacterianos/administração & dosagem , Povo Asiático , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Bacteroidetes/metabolismo , Índice de Massa Corporal , China , Cianobactérias/genética , Cianobactérias/isolamento & purificação , Cianobactérias/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Dieta , Farmacorresistência Bacteriana Múltipla/genética , Fezes/microbiologia , Feminino , Firmicutes/genética , Firmicutes/isolamento & purificação , Firmicutes/metabolismo , Comportamentos Relacionados com a Saúde , Humanos , Masculino , Metagenoma , Proteobactérias/genética , Proteobactérias/isolamento & purificação , Proteobactérias/metabolismo , Análise de Sequência de DNA , Tenericutes/genética , Tenericutes/isolamento & purificação , Tenericutes/metabolismo , Tibet
3.
Genes (Basel) ; 10(2)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30717284

RESUMO

The imbalance of human gut microbiota has been associated with colorectal cancer. In recent years, metagenomics research has provided a large amount of scientific data enabling us to study the dedicated roles of gut microbes in the onset and progression of cancer. We removed unrelated and redundant features during feature selection by mutual information. We then trained a random forest classifier on a large metagenomics dataset of colorectal cancer patients and healthy people assembled from published reports and extracted and analysed the information from the learned decision trees. We identified key microbial species associated with colorectal cancers. These microbes included Porphyromonasasaccharolytica, Peptostreptococcusstomatis, Fusobacterium,Parvimonas sp., Streptococcusvestibularis and Flavonifractorplautii. We obtained the optimal splitting abundance thresholds for these species to distinguish between healthy and colorectal cancer samples. This extracted consensus decision tree may be applied to the diagnosis of colorectal cancers.


Assuntos
Algoritmos , Neoplasias Colorretais/microbiologia , Microbioma Gastrointestinal , Metagenoma , Firmicutes/genética , Firmicutes/isolamento & purificação , Fusobacterium/genética , Fusobacterium/isolamento & purificação , Humanos , Porphyromonas/genética , Porphyromonas/isolamento & purificação , Análise de Sequência de DNA/métodos
4.
Sci China Life Sci ; 61(6): 696-705, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29744782

RESUMO

Gut microbiota of four economically important Asian carp species (silver carp, Hypophthalmichthys molitrix; bighead carp, Hypophthalmichthys nobilis; grass carp, Ctenopharyngodon idella; common carp, Cyprinus carpio) were compared using 16S rRNA gene pyrosequencing. Analysis of more than 590,000 quality-filtered sequences obtained from the foregut, midgut and hindgut of these four carp species revealed high microbial diversity among the samples. The foregut samples of grass carp exhibited more than 1,600 operational taxonomy units (OTUs) and the highest alpha-diversity index, followed by the silver carp foregut and midgut. Proteobacteria, Firmicutes, Bacteroidetes and Fusobacteria were the predominant phyla regardless of fish species or gut type. Pairwise (weighted) UniFrac distance-based permutational multivariate analysis of variance with fish species as a factor produced significant association (P<0.01). The gut microbiotas of all four carp species harbored saccharolytic or proteolytic microbes, likely in response to the differences in their feeding habits. In addition, extensive variations were also observed even within the same fish species. Our results indicate that the gut microbiotas of Asian carp depend on the exact species, even when the different species were cohabiting in the same environment. This study provides some new insights into developing commercial fish feeds and improving existing aquaculture strategies.


Assuntos
Carpas/microbiologia , Microbioma Gastrointestinal/fisiologia , Animais , Bactérias/classificação , Bactérias/genética , Bacteroidetes/genética , Carpas/classificação , Firmicutes/genética , Fusobactérias/genética , Microbioma Gastrointestinal/genética , Filogenia , Proteobactérias/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos , Especificidade da Espécie
5.
Appl Environ Microbiol ; 84(9)2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29475869

RESUMO

Metagenomic data from Obsidian Pool (Yellowstone National Park, USA) and 13 genome sequences were used to reassess genus-wide biodiversity for the extremely thermophilic Caldicellulosiruptor The updated core genome contains 1,401 ortholog groups (average genome size for 13 species = 2,516 genes). The pangenome, which remains open with a revised total of 3,493 ortholog groups, encodes a variety of multidomain glycoside hydrolases (GHs). These include three cellulases with GH48 domains that are colocated in the glucan degradation locus (GDL) and are specific determinants for microcrystalline cellulose utilization. Three recently sequenced species, Caldicellulosiruptor sp. strain Rt8.B8 (renamed here Caldicellulosiruptor morganii), Thermoanaerobacter cellulolyticus strain NA10 (renamed here Caldicellulosiruptor naganoensis), and Caldicellulosiruptor sp. strain Wai35.B1 (renamed here Caldicellulosiruptor danielii), degraded Avicel and lignocellulose (switchgrass). C. morganii was more efficient than Caldicellulosiruptor bescii in this regard and differed from the other 12 species examined, both based on genome content and organization and in the specific domain features of conserved GHs. Metagenomic analysis of lignocellulose-enriched samples from Obsidian Pool revealed limited new information on genus biodiversity. Enrichments yielded genomic signatures closely related to that of Caldicellulosiruptor obsidiansis, but there was also evidence for other thermophilic fermentative anaerobes (Caldanaerobacter, Fervidobacterium, Caloramator, and Clostridium). One enrichment, containing 89.8% Caldicellulosiruptor and 9.7% Caloramator, had a capacity for switchgrass solubilization comparable to that of C. bescii These results refine the known biodiversity of Caldicellulosiruptor and indicate that microcrystalline cellulose degradation at temperatures above 70°C, based on current information, is limited to certain members of this genus that produce GH48 domain-containing enzymes.IMPORTANCE The genus Caldicellulosiruptor contains the most thermophilic bacteria capable of lignocellulose deconstruction, which are promising candidates for consolidated bioprocessing for the production of biofuels and bio-based chemicals. The focus here is on the extant capability of this genus for plant biomass degradation and the extent to which this can be inferred from the core and pangenomes, based on analysis of 13 species and metagenomic sequence information from environmental samples. Key to microcrystalline hydrolysis is the content of the glucan degradation locus (GDL), a set of genes encoding glycoside hydrolases (GHs), several of which have GH48 and family 3 carbohydrate binding module domains, that function as primary cellulases. Resolving the relationship between the GDL and lignocellulose degradation will inform efforts to identify more prolific members of the genus and to develop metabolic engineering strategies to improve this characteristic.


Assuntos
Firmicutes/genética , Firmicutes/metabolismo , Genoma Bacteriano , Lignina/metabolismo , Metagenoma , Celulose/metabolismo , Firmicutes/classificação , Genômica , Metagenômica
6.
Appl Environ Microbiol ; 83(4)2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27913413

RESUMO

The extent of arsenic contamination in drinking water and its potential threat to human health have resulted in considerable research interest in the microbial species responsible for arsenic reduction. The arsenate reductase gene (arrA), an important component of the microbial arsenate reduction system, has been widely used as a biomarker to study arsenate-reducing microorganisms. A new primer pair was designed and evaluated for quantitative PCR (qPCR) and high-throughput sequencing of the arrA gene, because currently available PCR primers are not suitable for these applications. The primers were evaluated in silico and empirically tested for amplification of arrA genes in clones and for amplification and high-throughput sequencing of arrA genes from soil and groundwater samples. In silico, this primer pair matched (≥90% DNA identity) 86% of arrA gene sequences from GenBank. Empirical evaluation showed successful amplification of arrA gene clones of diverse phylogenetic groups, as well as amplification and high-throughput sequencing of independent soil and groundwater samples without preenrichment, suggesting that these primers are highly specific and can amplify a broad diversity of arrA genes. The arrA gene diversity from soil and groundwater samples from the Cache Valley Basin (CVB) in Utah was greater than anticipated. We observed a significant correlation between arrA gene abundance, quantified through qPCR, and reduced arsenic (AsIII) concentrations in the groundwater samples. Furthermore, we demonstrated that these primers can be useful for studying the diversity of arsenate-reducing microbial communities and the ways in which their relative abundance in groundwater may be associated with different groundwater quality parameters. IMPORTANCE: Arsenic is a major drinking water contaminant that threatens the health of millions of people worldwide. The extent of arsenic contamination and its potential threat to human health have resulted in considerable interest in the study of microbial species responsible for the reduction of arsenic, i.e., the conversion of AsV to AsIII In this study, we developed a new primer pair to evaluate the diversity and abundance of arsenate-reducing microorganisms in soil and groundwater samples from the CVB in Utah. We observed significant arrA gene diversity in the CVB soil and groundwater samples, and arrA gene abundance was significantly correlated with the reduced arsenic (AsIII) concentrations in the groundwater samples. We think that these primers are useful for studying the ecology of arsenate-reducing microorganisms in different environments.


Assuntos
Arseniato Redutases/genética , Arsênio/metabolismo , Água Potável/química , Água Subterrânea/química , Inativação Metabólica/genética , Poluentes Químicos da Água/metabolismo , Arsênio/química , Sequência de Bases , Primers do DNA/genética , Firmicutes/enzimologia , Firmicutes/genética , Firmicutes/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Inativação Metabólica/fisiologia , Proteobactérias/enzimologia , Proteobactérias/genética , Proteobactérias/metabolismo , Microbiologia do Solo , Microbiologia da Água , Poluentes Químicos da Água/análise
7.
Sci Rep ; 6: 37473, 2016 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-27886221

RESUMO

Oil spills from pipeline ruptures are a major source of terrestrial petroleum pollution in cold regions. However, our knowledge of the bacterial response to crude oil contamination in cold regions remains to be further expanded, especially in terms of community shifts and potential development of hydrocarbon degraders. In this study we investigated changes of microbial diversity, population size and keystone taxa in permafrost soils at four different sites along the China-Russia crude oil pipeline prior to and after perturbation with crude oil. We found that crude oil caused a decrease of cell numbers together with a reduction of the species richness and shifts in the dominant phylotypes, while bacterial community diversity was highly site-specific after exposure to crude oil, reflecting different environmental conditions. Keystone taxa that strongly co-occurred were found to form networks based on trophic interactions, that is co-metabolism regarding degradation of hydrocarbons (in contaminated samples) or syntrophic carbon cycling (in uncontaminated samples). With this study we demonstrate that after severe crude oil contamination a rapid establishment of endemic hydrocarbon degrading communities takes place under favorable temperature conditions. Therefore, both endemism and trophic correlations of bacterial degraders need to be considered in order to develop effective cleanup strategies.


Assuntos
DNA Bacteriano/genética , Pergelissolo/microbiologia , Petróleo/metabolismo , RNA Ribossômico 16S/genética , Microbiologia do Solo , Acidobacteria/classificação , Acidobacteria/genética , Acidobacteria/isolamento & purificação , Acidobacteria/metabolismo , Actinobacteria/classificação , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Actinobacteria/metabolismo , Bacteroidetes/classificação , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Bacteroidetes/metabolismo , Biodegradação Ambiental , Contagem de Colônia Microbiana , Firmicutes/classificação , Firmicutes/genética , Firmicutes/isolamento & purificação , Firmicutes/metabolismo , Hidrocarbonetos/metabolismo , Consórcios Microbianos/genética , Poluição por Petróleo/análise , Filogenia , Proteobactérias/classificação , Proteobactérias/genética , Proteobactérias/isolamento & purificação , Proteobactérias/metabolismo
8.
Microb Ecol ; 72(1): 240-251, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27079454

RESUMO

Previous investigations observed that when soil was fumigated with ethanol-free CHCl3 for 24 h and then incubated under appropriate conditions, after the initial flush of CO2 was over, soil organic carbon (SOC) mineralization continued at the same rate as in the non-fumigated soil. This indicates that, following fumigation, the much diminished microbial population still retained the same ability to mineralize SOC as the much larger non-fumigated population. We hypothesize that although fumigation drastically alters the soil bacterial community abundance, composition, and diversity, it has little influence on the bacterial C-metabolic functions. Here, we conducted a 30-day incubation experiment involving a grassland soil and an arable soil with and without CHCl3 fumigation. At days 0, 7, and 30 of the incubation, the bacterial abundances were determined by quantitative PCR, and the bacterial community composition and diversity were assessed via the 16S rRNA gene amplicon sequencing. PICRUSt was used to predict the metagenome functional content from the sequence data. Fumigation considerably changed the composition and decreased the abundance and diversity of bacterial community at the end of incubation. At day 30, Firmicutes (mainly Bacilli) accounted for 70.9 and 94.6 % of the total sequences in the fumigated grassland and arable soil communities, respectively. The two fumigated soil communities exhibited large compositional and structural differences during incubation. The families Paenibacillaceae, Bacillaceae, and Symbiobacteriaceae dominated the bacterial community in the grassland soil, and Alicyclobacillaceae in the arable soil. Fumigation had little influence on the predicted abundances of KEGG orthologs (KOs) assigned to the metabolism of the main acid esters, saccharides, amino acids, and lipids in the grassland soil community. The saccharide-metabolizing KO abundances were decreased, but the acid ester- and fatty acid-metabolizing KO abundances were elevated by fumigation in the arable soil community. Our study suggests functional redundancy regarding the bacterial genetic potential associated with SOC mineralization.


Assuntos
Firmicutes/classificação , Fumigação , Microbiologia do Solo , Solo/química , Agricultura/métodos , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , DNA Bacteriano/genética , Firmicutes/genética , Firmicutes/isolamento & purificação , Genes Bacterianos , Pradaria , Metagenoma , Filogenia , RNA Ribossômico 16S/genética
9.
J Biosci ; 41(1): 133-43, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26949095

RESUMO

Type VII Secretion System (T7SS) is one of the factors involved in virulence of Mycobacterium tuberculosis H37Rv. Numerous research efforts have been made in the last decade towards characterizing the components of this secretion system. An extensive genome-wide analysis through compilation of isolated information is required to obtain a global view of diverse characteristics and pathogenicity-related aspects of this machinery. The present study suggests that differences in structural components (of T7SS) between Actinobacteria and Firmicutes, observed earlier in a few organisms, is indeed a global trend. A few hitherto uncharacterized T7SS-like clusters have been identified in the pathogenic bacteria Enterococcus faecalis, Saccharomonospora viridis, Streptococcus equi, Streptococcus gordonii and Streptococcus sanguinis. Experimental verification of these clusters can shed lights on their role in bacterial pathogenesis. Similarly, verification of the identified variants of T7SS clusters consisting additional membrane components may help in unraveling new mechanism of protein translocation through T7SS. A database of various components of T7SS has been developed to facilitate easy access and interpretation of T7SS related data.


Assuntos
Proteínas de Bactérias/genética , Mycobacterium tuberculosis/genética , Sistemas de Secreção Tipo VII/genética , Actinobacteria/genética , Proteínas de Bactérias/química , Simulação por Computador , Firmicutes/genética , Genoma Bacteriano , Humanos , Cadeias de Markov , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/patogenicidade , Conformação Proteica , Tuberculose/genética , Tuberculose/microbiologia , Sistemas de Secreção Tipo VII/química
10.
Nat Commun ; 6: 6505, 2015 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-25807110

RESUMO

Recent studies suggest that gut microbiomes of urban-industrialized societies are different from those of traditional peoples. Here we examine the relationship between lifeways and gut microbiota through taxonomic and functional potential characterization of faecal samples from hunter-gatherer and traditional agriculturalist communities in Peru and an urban-industrialized community from the US. We find that in addition to taxonomic and metabolic differences between urban and traditional lifestyles, hunter-gatherers form a distinct sub-group among traditional peoples. As observed in previous studies, we find that Treponema are characteristic of traditional gut microbiomes. Moreover, through genome reconstruction (2.2-2.5 MB, coverage depth × 26-513) and functional potential characterization, we discover these Treponema are diverse, fall outside of pathogenic clades and are similar to Treponema succinifaciens, a known carbohydrate metabolizer in swine. Gut Treponema are found in non-human primates and all traditional peoples studied to date, suggesting they are symbionts lost in urban-industrialized societies.


Assuntos
Agricultura , Dieta Paleolítica , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Adolescente , Adulto , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Biodiversidade , Criança , Pré-Escolar , Classificação , Dieta , Feminino , Firmicutes/genética , Firmicutes/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Desenvolvimento Industrial , Lactente , Masculino , Metagenoma/genética , Pessoa de Meia-Idade , Oklahoma , Peru , Treponema/genética , Treponema/isolamento & purificação , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA