Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Planta ; 260(1): 2, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38761315

RESUMO

MAIN CONCLUSION: Leaf vein network cost (total vein surface area per leaf volume) for major veins and vascular bundles did not differ between monocot and dicot species in 21 species from the eastern Colorado steppe. Dicots possessed significantly larger minor vein networks than monocots. Across the tree of life, there is evidence that dendritic vascular transport networks are optimized, balancing maximum speed and integrity of resource delivery with minimal resource investment in transport and infrastructure. Monocot venation, however, is not dendritic, and remains parallel down to the smallest vein orders with no space-filling capillary networks. Given this departure from the "optimized" dendritic network, one would assume that monocots are operating at a significant energetic disadvantage. In this study, we investigate whether monocot venation networks bear significantly greater carbon/construction costs per leaf volume than co-occurring dicots in the same ecosystem, and if so, what physiological or ecological advantage the monocot life form possesses to compensate for this deficit. Given that venation networks could also be optimized for leaf mechanical support or provide herbivory defense, we measured the vascular system of both monocot and dicots at three scales to distinguish between leaf investment in mechanical support (macroscopic vein), total transport and capacitance (vascular bundle), or exclusively water transport (xylem) for both parallel and dendritic venation networks. We observed that vein network cost (total vein surface area per leaf volume) for major veins and vascular bundles was not significantly different between monocot species and dicot species. Dicots, however, possess significantly larger minor vein networks than monocots. The 19 species subjected to gas-exchange measurement in the field displayed a broad range of Amax and but demonstrated no significant relationships with any metric of vascular network size in major or minor vein classes. Given that monocots do not seem to display any leaf hydraulic disadvantage relative to dicots, it remains an important research question why parallel venation (truly parallel, down to the smallest vessels) has not arisen more than once in the history of plant evolution.


Assuntos
Folhas de Planta , Folhas de Planta/anatomia & histologia , Colorado , Feixe Vascular de Plantas/anatomia & histologia , Feixe Vascular de Plantas/fisiologia , Xilema/anatomia & histologia , Xilema/fisiologia , Pradaria , Magnoliopsida/fisiologia , Magnoliopsida/anatomia & histologia , Carbono/metabolismo , Ecossistema
2.
New Phytol ; 237(5): 1684-1695, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36427292

RESUMO

If trees minimize self-shading, new foliage in shaded parts of the crown should remain minimal. However, many species have abundant foliage on short shoots inside their crown. In this paper, we test the hypothesis that short shoots allow trees to densify their foliage in self-shaded parts of the crown thanks to reduced costs. Using 30 woody species in Mediterranean and tropical biomes, we estimated the contribution of short shoots to total plant foliage, calculated their costs relative to long shoots including wood cost and used 3D plant simulations calibrated with field measurements to quantify their light interception, self-shading and yield. In species with short shoots, leaves on short shoots account for the majority of leaf area. The reduced cost of short stems enables the production of leaf area with 36% less biomass. Simulations show that although short shoots are more self-shaded, they benefit the plant because they cost less. Lastly, the morphological properties of short shoots have major implications for whole plant architecture. Taken together, our results question the validity of only assessing leaf costs to understand leaf economics and call for more integrated observations at the crown scale to understand light capture strategies in woody plants.


Assuntos
Ecossistema , Madeira , Brotos de Planta/anatomia & histologia , Análise Custo-Benefício , Biomassa , Árvores/anatomia & histologia , Folhas de Planta/anatomia & histologia
3.
Sci Rep ; 11(1): 23807, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34893677

RESUMO

Leaf functional traits support plant survival and growth in different stress and disturbed conditions and respond according to leaf habit. The present study examined 13 leaf traits (3 morphological, 3 chemical, 5 physiological, and 2 stoichiometry) of nine dominant forest tree species (3 coniferous, 3 deciduous broad-leaved, 3 evergreen broad-leafed) to understand the varied response of leaf habits. The hypothesis was to test if functional traits of the conifers, deciduous and evergreen differ significantly in the temperate forest and to determine the applicability of leaf economic theory i.e., conservative vs. acquisitive resource investment, in the temperate Himalayan region. The attributes of the functional traits i.e., leaf area (LA), specific leaf area (SLA), leaf dry matter content (LDMC), leaf water content (LWC), stomatal conductance (Gs), and transpiration (E) followed the order deciduous > evergreen > coniferous. Leaf carbon and leaf C/N ratio showed the opposite pattern, coniferous > evergreen > deciduous. Chlorophyll (Chl) and photosynthetic rate (A) were highest for evergreen species, followed by deciduous and coniferous species. Also, structural equation modelling determined that morphological factors were negatively related to physiological and positively with chemical factors. Nevertheless, physiological and chemical factors were positively related to each other. The physiological traits were mainly regulated by stomatal conductance (Gs) however the morphological traits were determined by LDMC. Stoichiometry traits, such as leaf C/N, were found to be positively related to leaf carbon, and leaf N/P was found to be positively related to leaf nitrogen. The result of the leaf functional traits relationship would lead to precise prediction for the functionality of the temperate forest ecosystem at the regional scale.


Assuntos
Ecossistema , Meio Ambiente , Florestas , Folhas de Planta/anatomia & histologia , Árvores/anatomia & histologia , Árvores/fisiologia , Biodiversidade , Clima , Modelos Teóricos , Compostos Fitoquímicos/análise , Folhas de Planta/química , Fenômenos Fisiológicos Vegetais , Característica Quantitativa Herdável
4.
Sci Rep ; 11(1): 14115, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34239000

RESUMO

Excessive ingestion of fluorides might adversely affect the health of humans. Hence, this study aimed to investigate the concentrations of infusible fluoride in five different types of tea and herbal products; additionally, the probabilistic health risks associated with the ingestion of fluoride in drinking tea and herbal products were estimated. The highest and lowest concentrations of infusible fluoride were detected in black and white tea, respectively. On average, the highest amount of infusible fluoride was extracted following a short brewing time of 5 min in the case of black tea (2.54 mg/L), herbal tea (0.40 mg/L), and white tea (0.21 mg/L). The level of infusible fluoride during brewing was inversely associated with the leaf size of the tea and herbal products. Furthermore, the type of water used influenced the release of infusible fluoride; purified water yielded lower amounts of infused fluoride. The findings of the probabilistic health risk assessment indicated that the consumption of black tea can increase the fluoride intake leading to chronic exposure. Thus, the health risk posed by fluoride intake from drinking tea needs to be evaluated in more details in the future. Appropriate measures for health risk mitigation need to be implemented to minimize the total body burden of fluorides in humans.


Assuntos
Fluoretos/análise , Probabilidade , Medição de Risco , Chá/química , Chás de Ervas/análise , Adolescente , Adulto , Criança , Humanos , Folhas de Planta/anatomia & histologia , Fatores de Tempo , Incerteza , Água
5.
Molecules ; 26(8)2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33918091

RESUMO

The aim of the study was to investigate the micromorphology of Mentha pulegium leaves and flowers harvested in three different Sicilian (Italy) areas with peculiar pedo-climatic conditions, and to characterize the phytochemical profile, the phytotoxic activity, and the eco-compatibility of their essential oils (EOs) for potential use as safe bioherbicides. Light microscopy (LM) and scanning electron microscopy (SEM) highlighted that M. pulegium indumentum consists of non-glandular and glandular trichomes of different types. Peltate trichomes of plants from the different sites showed few significant differences in dimension and abundance, but they were characterized by a surprisingly high number of secretory cells both in leaves and flowers. Phytochemical analyses showed that oxygenated monoterpenes were the most abundant class in all the EOs investigated (92.2-97.7%), but two different chemotypes, pulegone/isomenthone and piperitone/isomenthone, were found. The complex of morphological and phytochemical data indicates that soil salinity strongly affects the expression of the toxic metabolite pulegone, rather than the EO yield. Phytotoxicity tests showed a moderate activity of EOs against the selected species as confirmed by α-amylase assay. Moreover, the low toxicity on brine shrimp provided a rationale for the possible use of investigated EOs as eco-friendly herbicides.


Assuntos
Economia , Mentha pulegium/química , Animais , Artemia , Flores/anatomia & histologia , Flores/ultraestrutura , Geografia , Itália , Mentha pulegium/anatomia & histologia , Mentha pulegium/ultraestrutura , Óleos Voláteis/análise , Óleos Voláteis/economia , Compostos Fitoquímicos/toxicidade , Folhas de Planta/anatomia & histologia , Folhas de Planta/ultraestrutura , Sus scrofa , Testes de Toxicidade , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/metabolismo
6.
PLoS One ; 15(12): e0243243, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33332376

RESUMO

The control of plant leaf diseases is crucial as it affects the quality and production of plant species with an effect on the economy of any country. Automated identification and classification of plant leaf diseases is, therefore, essential for the reduction of economic losses and the conservation of specific species. Various Machine Learning (ML) models have previously been proposed to detect and identify plant leaf disease; however, they lack usability due to hardware sophistication, limited scalability and realistic use inefficiency. By implementing automatic detection and classification of leaf diseases in fruit trees (apple, grape, peach and strawberry) and vegetable plants (potato and tomato) through scalable transfer learning on Amazon Web Services (AWS) SageMaker and importing it into AWS DeepLens for real-time functional usability, our proposed DeepLens Classification and Detection Model (DCDM) addresses such limitations. Scalability and ubiquitous access to our approach is provided by cloud integration. Our experiments on an extensive image data set of healthy and unhealthy fruit trees and vegetable plant leaves showed 98.78% accuracy with a real-time diagnosis of diseases of plant leaves. To train DCDM deep learning model, we used forty thousand images and then evaluated it on ten thousand images. It takes an average of 0.349s to test an image for disease diagnosis and classification using AWS DeepLens, providing the consumer with disease information in less than a second.


Assuntos
Computação em Nuvem , Processamento de Imagem Assistida por Computador/métodos , Aprendizado de Máquina , Doenças das Plantas , Folhas de Planta , Algoritmos , Doenças das Plantas/classificação , Folhas de Planta/anatomia & histologia
7.
BMC Plant Biol ; 20(1): 565, 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33317475

RESUMO

BACKGROUND: Environmental lodging stress, which is a result of numerous factors, is characterized by uncertainty. However, several studies related to lodging in cereal crops have reported that lodging in the Hippeastrum rutilum environment is very rare. Hippeastrum rutilum is a garden flower with high ornamental value and abundant germplasm resources. Under past cultivation practices, it was found that the plant types of 'Red Lion', with red flowers, and 'Apple Blossom', with pink flowers, are quite different. The leaves of 'Red Lion' are upright, while the leaves of 'Apple Blossom' show lodging, which seriously affects its ornamental value. The aims of this study were to compare the differences between the two varieties with leaf lodging and upright leaves according to morphological and physiological attributes. In this study, karyotype analysis and phenotypic morphological and physiological characteristics were compared to explore the differences between the two plant types. RESULTS: The karyotype analysis of the two cultivars showed that their chromosome types were both tetraploid plants. The results showed that the lignin content in the leaves of 'Red Lion' was high, the cross-sectional structure of the leaf vascular bundle was more stable, and the chlorophyll content was high. In addition, significantly less energy was transferred to the electron transport chain (ETR) during the photoreaction. Similarly, the results regarding the maximum photosynthetic rate (Fv/Fm), nonphotochemical quenching (NPQ) and effective quantum yield of photosystem II photochemistry (△F/Fm') all indicated that the photosynthetic capacity of "Red Lion" was greater than that of "Apple Blossom", which was affected by leaf lodging. The size of the leaves was significantly smaller, and the leaf sag angle, leaf width, and leaf tip angle presented significantly lower values in 'Red Lion' than in 'Apple Blossom', which exhibits leaf sag. The difference in these factors may be the reason for the different phenotypes of the two cultivars. CONCLUSION: The results of this study proved that lodging affects the photosynthetic capacity of Hippeastrum rutilum and revealed some indexes that might be related to leaf lodging, laying a theoretical foundation for cultivating and improving new varieties.


Assuntos
Amaryllidaceae/anatomia & histologia , Amaryllidaceae/fisiologia , Amaryllidaceae/genética , Melhoramento Vegetal , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia
8.
Nat Commun ; 11(1): 4519, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32908150

RESUMO

The leaf economics spectrum (LES) describes consistent correlations among a variety of leaf traits that reflect a gradient from conservative to acquisitive plant strategies. So far, whether the LES holds in wetland plants at a global scale has been unclear. Using data on 365 wetland species from 151 studies, we find that wetland plants in general show a shift within trait space along the same common slope as observed in non-wetland plants, with lower leaf mass per area, higher leaf nitrogen and phosphorus, faster photosynthetic rates, and shorter leaf life span compared to non-wetland plants. We conclude that wetland plants tend to cluster at the acquisitive end of the LES. The presented global quantifications of the LES in wetland plants enhance our understanding of wetland plant strategies in terms of resources acquisition and allocation, and provide a stepping-stone to developing trait-based approaches for wetland ecology.


Assuntos
Fotossíntese/genética , Folhas de Planta/genética , Plantas/genética , Áreas Alagadas , Nitrogênio/análise , Fósforo/análise , Folhas de Planta/anatomia & histologia , Folhas de Planta/química , Plantas/anatomia & histologia , Plantas/metabolismo
9.
Ecotoxicol Environ Saf ; 196: 110549, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32251953

RESUMO

Chemicals used to assure agricultural production and the feasibility of planting sites often end up in bodies of water used for crop irrigation. In a pot study, we investigated the consequences associated with the irrigation of maize with water contaminated by ciprofloxacin (Cipro; 0, 0.2, 0.8, 1.4 and 2.0 µg l-1) and/or glyphosate (0, 5, 25 and 50 mg l-1) on yields and food safety. Glyphosate in concentrations ≥25 mg l-1 prevented plant establishment, regardless of Cipro presence. Evaluations made at the V5 stage of plants reveal that Cipro concentrations ≥0.8 µg l-1 and glyphosate decreased photosynthesis and induced changes in leaf anatomy and stem biophysical properties that may contribute to decreased kernel yields. When those chemicals were applied together, kernel yield reductions were accentuated, evidencing their interactive effects. Irrigation with contaminated water resulted in accumulations of Cipro and glyphosate (as well as its metabolite, aminomethylphosphonic acid) in plant tissues. Accumulation of these chemicals in plant tissues such as leaves and kernels is a problem, since they are used to feed animals and humans. Moreover, these chemicals are of potential toxicological concern, principally due to residue accumulations in the food chain. Specially, the antibiotic residue accumulations in maize tissues can assist the induction of antibiotic resistance in dangerous bacteria. Therefore, we point out the urgency of monitoring the quality of water used for crop irrigation to avoid economic and food-quality losses.


Assuntos
Antibacterianos/toxicidade , Ciprofloxacina/toxicidade , Glicina/análogos & derivados , Poluentes Químicos da Água/toxicidade , Zea mays/efeitos dos fármacos , Irrigação Agrícola , Animais , Antibacterianos/farmacocinética , Ciprofloxacina/farmacocinética , Produtos Agrícolas/anatomia & histologia , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/economia , Inocuidade dos Alimentos , Glicina/farmacocinética , Glicina/toxicidade , Humanos , Fotossíntese/efeitos dos fármacos , Folhas de Planta/anatomia & histologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Poluentes Químicos da Água/farmacocinética , Zea mays/anatomia & histologia , Zea mays/metabolismo , Glifosato
10.
Sensors (Basel) ; 20(4)2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32093006

RESUMO

Hyperspectral imaging techniques have been expanding considerably in recent years. The cost of current solutions is decreasing, but these high-end technologies are not yet available for moderate to low-cost outdoor and indoor applications. We have used some of the latest compressive sensing methods with a single-pixel imaging setup. Projected patterns were generated on Fourier basis, which is well-known for its properties and reduction of acquisition and calculation times. A low-cost, moderate-flow prototype was developed and studied in the laboratory, which has made it possible to obtain metrologically validated reflectance measurements using a minimal computational workload. From these measurements, it was possible to discriminate plant species from the rest of a scene and to identify biologically contrasted areas within a leaf. This prototype gives access to easy-to-use phenotyping and teaching tools at very low-cost.


Assuntos
Custos e Análise de Custo , Imageamento Tridimensional , Plantas/anatomia & histologia , Análise Espectral , Hydrangea/anatomia & histologia , Fenótipo , Folhas de Planta/anatomia & histologia
11.
New Phytol ; 225(1): 222-233, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31247133

RESUMO

Strategies for deep soil water acquisition (WAdeep ) are critical to a species' adaptation to drought. However, it is unknown how WAdeep determines the abundance and resource economy strategies of understorey shrub species. With data from 13 understorey shrub species in subtropical coniferous plantations, we investigated associations between the magnitude of WAdeep , the seasonal plasticity of WAdeep , midday leaf water potential (Ψmd ), species abundance and resource economic traits across organs. Higher capacity for WAdeep was associated with higher intrinsic water use efficiency, but was not necessary for maintaining higher Ψmd in the dry season nor was it an ubiquitous trait possessed by the most common shrub species. Species with higher seasonal plasticity of WAdeep had lower wood density, indicating that fast species had higher plasticity in deep soil resource acquisition. However, the magnitude and plasticity of WAdeep were not related to shallow fine root economy traits, suggesting independent dimensions of soil resource acquisition between deep and shallow soil. Our results provide new insights into the mechanisms through which the magnitude and plasticity of WAdeep interact with shallow soil and aboveground resource acquisition traits to integrate the whole-plant economic spectrum and, thus, community assembly processes.


Assuntos
Pinus/fisiologia , Folhas de Planta/fisiologia , Solo/química , Água/metabolismo , Secas , Isótopos de Oxigênio/análise , Fenótipo , Pinus/anatomia & histologia , Folhas de Planta/anatomia & histologia , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/fisiologia , Estações do Ano , Madeira
12.
Sensors (Basel) ; 19(12)2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-31200576

RESUMO

Flood has an important effect on plant growth by affecting their physiologic and biochemical properties. Soybean is one of the main cultivated crops in the world and the United States is one of the largest soybean producers. However, soybean plant is sensitive to flood stress that may cause slow growth, low yield, small crop production and result in significant economic loss. Therefore, it is critical to develop soybean cultivars that are tolerant to flood. One of the current bottlenecks in developing new crop cultivars is slow and inaccurate plant phenotyping that limits the genetic gain. This study aimed to develop a low-cost 3D imaging system to quantify the variation in the growth and biomass of soybean due to flood at its early growth stages. Two cultivars of soybeans, i.e. flood tolerant and flood sensitive, were planted in plant pots in a controlled greenhouse. A low-cost 3D imaging system was developed to take measurements of plant architecture including plant height, plant canopy width, petiole length, and petiole angle. It was found that the measurement error of the 3D imaging system was 5.8% in length and 5.0% in angle, which was sufficiently accurate and useful in plant phenotyping. Collected data were used to monitor the development of soybean after flood treatment. Dry biomass of soybean plant was measured at the end of the vegetative stage (two months after emergence). Results show that four groups had a significant difference in plant height, plant canopy width, petiole length, and petiole angle. Flood stress at early stages of soybean accelerated the growth of the flood-resistant plants in height and the petiole angle, however, restrained the development in plant canopy width and the petiole length of flood-sensitive plants. The dry biomass of flood-sensitive plants was near two to three times lower than that of resistant plants at the end of the vegetative stage. The results indicate that the developed low-cost 3D imaging system has the potential for accurate measurements in plant architecture and dry biomass that may be used to improve the accuracy of plant phenotyping.


Assuntos
Produtos Agrícolas , Glycine max/anatomia & histologia , Imageamento Tridimensional/métodos , Folhas de Planta/anatomia & histologia , Biomassa , Inundações , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/química , Glycine max/classificação
13.
Microsc Res Tech ; 82(6): 731-740, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30666742

RESUMO

The study is aimed to provide a comprehensive account on authentication of herbal drug named as Tukhm-e-balango (Lallemantia royleana Benth.) from the seeds of Ocimum basilicum by using microscopic, pharmacognostic, and phytochemical characterization. The crude medicinal plants and their parts are often adulterated or substituted in market due to improper identification by the consumers while among herbal plant sellers, taxonomic confusion is caused due to morphological similarities of the plant parts and lack of a standard identification system.In microscopy, both herbarium and fresh specimens were studied using qualitative and quantitative morphological characteristics of leaves, seeds, and pollen. For pharmacognosy, solubility, fluorescence, and physicochemical characterizers were analyzed whereas a total phenolic and flavonoids contents was determined in addition to DPPH radical scavenging activity. In current study, microscopic, pharmacognostic, and phytochemical characterization clearly differentiated L. royleana from O. basilicum. The major problem in herbal drug industry is caused due to confusion and controversy of certain synonyms used for more than one or two drugs. Sometimes, under the same common or local name, entirely different taxa are being sold in herbal markets. It is concluded that correct and proper identification of medicinal plants is very crucial to ensure the safety and efficacy of herbal medicines, as many medicinal plants are intentionally or unintentionally adulterated with similar species or varieties. In herbal market, the seeds of L. royleana are adulterated with seeds of O. basilicum due to their similar morphology.


Assuntos
Lamiaceae/classificação , Compostos Fitoquímicos/análise , Plantas Medicinais/classificação , Biometria , Fenômenos Químicos , Lamiaceae/anatomia & histologia , Lamiaceae/química , Microscopia , Farmacognosia , Folhas de Planta/anatomia & histologia , Folhas de Planta/química , Plantas Medicinais/anatomia & histologia , Plantas Medicinais/química , Pólen/química , Pólen/citologia , Sementes/anatomia & histologia , Sementes/química , Solubilidade
14.
Artigo em Inglês | MEDLINE | ID: mdl-30455208

RESUMO

Functional traits are increasingly used to understand the ecology of plants and to predict their responses to global changes. Unfortunately, trait data are unavailable for the majority of plant species. The lack of trait data is especially prevalent for hard-to-measure traits and for tropical plant species, potentially owing to the many inherent difficulties of working with species in remote, hyperdiverse rainforest systems. The living collections of botanic gardens provide convenient access to large numbers of tropical plant species and can potentially be used to quickly augment trait databases and advance our understanding of species' responses to climate change. In this review, we quantitatively assess the availability of trait data for tropical versus temperate species, the diversity of species available for sampling in several exemplar tropical botanic gardens and the validity of garden-based leaf and root trait measurements. Our analyses support the contention that the living collections of botanic gardens are a valuable scientific resource that can contribute significantly to research on plant functional ecology and conservation.This article is part of the theme issue 'Biological collections for understanding biodiversity in the Anthropocene'.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Características de História de Vida , Plantas , Clima Tropical , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Fenômenos Fisiológicos Vegetais , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/fisiologia , Plantas/anatomia & histologia
15.
PLoS One ; 13(10): e0205564, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30312352

RESUMO

Hybrid vigour, or heterosis, has been of tremendous importance in agriculture for the improvement of both crops and livestock. Notwithstanding large efforts to study the phenomenon of heterosis in the last decades, the identification of common molecular mechanisms underlying hybrid vigour remain rare. Here, we conducted a systematic survey of the degree of heterosis in Arabidopsis thaliana hybrids. For this purpose, two overlapping Arabidopsis hybrid populations were generated by crossing a large collection of naturally occurring accessions to two common reference lines. In these Arabidopsis hybrid populations the range of heterosis for several developmental and yield related traits was examined, and the relationship between them was studied. The traits under study were projected leaf area at 17 days after sowing, flowering time, height of the main inflorescence, number of side branches from the main stem or from the rosette base, total seed yield, seed weight, seed size and the estimated number of seeds per plant. Predominantly positive heterosis was observed for leaf area and height of the main inflorescence, whereas mainly negative heterosis was observed for rosette branching. For the other traits both positive and negative heterosis was observed in roughly equal amounts. For flowering time and seed size only low levels of heterosis were detected. In general the observed heterosis levels were highly trait specific. Furthermore, no correlation was observed between heterosis levels and the genetic distance between the parental lines. Since all selected lines were a part of the Arabidopsis genome wide association (GWA) mapping panel, a genetic mapping approach was applied to identify possible regions harbouring genetic factors causal for heterosis, with separate calculations for additive and dominance effects. Our study showed that the genetic mechanisms underlying heterosis were highly trait specific in our hybrid populations and greatly depended on the genetic background, confirming the elusive character of heterosis.


Assuntos
Arabidopsis/genética , Vigor Híbrido , Arabidopsis/anatomia & histologia , Arabidopsis/crescimento & desenvolvimento , Mapeamento Cromossômico , Flores/anatomia & histologia , Flores/crescimento & desenvolvimento , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Sementes/anatomia & histologia , Especificidade da Espécie
16.
J Exp Bot ; 69(22): 5599-5609, 2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30189099

RESUMO

The leaf economics spectrum (LES) is an ecophysiological concept describing the trade-offs of leaf structural and physiological traits, and has been widely investigated on multiple scales. However, the effects of the breeding process on the LES in crops, as well as the mechanisms of the trait trade-offs underlying the LES, have not been thoroughly elucidated to date. In this study, a dataset that included leaf anatomical, biochemical, and functional traits was constructed to evaluate the trait covariations and trade-offs in domesticated species, namely rice (Oryza species). The slopes and intercepts of the major bivariate correlations of the leaf traits in rice were significantly different from the global LES dataset (Glopnet), which is based on multiple non-crop species in natural ecosystems, although the general patterns were similar. The photosynthetic traits responded differently to leaf structural and biochemical changes, and mesophyll conductance was the most sensitive to leaf nitrogen (N) status. A further analysis revealed that the relative limitation of mesophyll conductance declined with leaf N content; however, the limitation of the biochemistry increased relative to leaf N content. These findings indicate that breeding selection and high-resource agricultural environments lead crops to deviate from the leaf trait covariation in wild species, and future breeding to increase the photosynthesis of rice should primarily focus on improvement of the efficiency of photosynthetic enzymes.


Assuntos
Oryza , Fotossíntese , Folhas de Planta , Células do Mesofilo/química , Células do Mesofilo/citologia , Células do Mesofilo/fisiologia , Oryza/anatomia & histologia , Oryza/química , Oryza/fisiologia , Fenótipo , Folhas de Planta/anatomia & histologia , Folhas de Planta/química , Folhas de Planta/fisiologia
17.
Plant Cell Environ ; 41(1): 64-78, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28346742

RESUMO

Leaf economic and hydraulic theories have rarely been applied to the ecological differentiation of speciose herbaceous plant radiations. The role of character trait divergences and network reorganization in the differentiation of the functional types in the megadiverse Neotropical Bromeliaceae was explored by quantifying a range of leaf economic and hydraulic traits in 50 diverse species. Functional types, which are defined by combinations of C3 or Crassulacean acid metabolism (CAM) photosynthesis, terrestrial or epiphytic habits, and non-specialized, tank-forming or atmospheric morphologies, segregated clearly in trait space. Most classical leaf economic relationships were supported, but they were weakened by the presence of succulence. Functional types differed in trait-network architecture, suggesting that rewiring of trait-networks caused by innovations in habit and photosynthetic pathway is an important aspect of ecological differentiation. The hydraulic data supported the coupling of leaf hydraulics and gas exchange, but not the hydraulic safety versus efficiency hypothesis, and hinted at an important role for the extra-xylary compartment in the control of bromeliad leaf hydraulics. Overall, our findings highlight the fundamental importance of structure-function relationships in the generation and maintenance of ecological diversity.


Assuntos
Bromeliaceae/fisiologia , Fenômenos Ecológicos e Ambientais , Água/fisiologia , Bromeliaceae/anatomia & histologia , Clima , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Análise de Componente Principal , Característica Quantitativa Herdável , Especificidade da Espécie
18.
Sci Rep ; 7(1): 14172, 2017 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-29074869

RESUMO

In order to define the effects of fruit crop load on the distribution and utilization of carbon and nitrogen in dwarf apple trees, we conducted three crop load levels (High-crop load, 6 fruits per trunk cross-sectional area (cm2, TCA)), Medium-crop load (4 fruits cm-2 TCA), Low-crop load (2 fruits cm-2 TCA)) in 2014 and 2015. The results indicated that the 15N derived from fertilizer (Ndff) values of fruits decreased with the reduction of crop load, but the Ndff values of annual branches, leaves and roots increased. The plant 15N-urea utilization rates on Medium and Low-crop load were 1.12-1.35 times higher than the High-crop load. With the reduction of crop load, the distribution rate of 13C and 15N in fruits was gradually reduced, but in contrast, the distribution of 13C and 15N gradually increased in annual branches, leaves and roots. Compared with High-crop load, the Medium and Low-crop load significantly improved fruit quality p < 0.05. Hence, controlling fruit load effectively regulated the distribution of carbon and nitrogen in plants, improved the nitrogen utilization rate and fruit quality. The appropriate crop load level for mature M.26 interstocks apple orchards was deemed to be 4.0 fruits cm-2 TCA.


Assuntos
Isótopos de Carbono/metabolismo , Frutas/fisiologia , Malus/fisiologia , Isótopos de Nitrogênio/metabolismo , Isótopos de Carbono/análise , China , Comércio , Fertilizantes , Qualidade dos Alimentos , Frutas/economia , Frutas/crescimento & desenvolvimento , Nitrogênio/metabolismo , Isótopos de Nitrogênio/análise , Fotossíntese , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Árvores , Ureia/metabolismo , Ureia/farmacocinética
19.
New Phytol ; 214(4): 1447-1463, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28295374

RESUMO

The leaf economics spectrum (LES) represents a suite of intercorrelated leaf traits concerning construction costs per unit leaf area, nutrient concentrations, and rates of carbon fixation and tissue turnover. Although broad trade-offs among leaf structural and physiological traits have been demonstrated, we still do not have a comprehensive view of the fundamental constraints underlying the LES trade-offs. Here, we investigated physiological and structural mechanisms underpinning the LES by analysing a novel data compilation incorporating rarely considered traits such as the dry mass fraction in cell walls, nitrogen allocation, mesophyll CO2 diffusion and associated anatomical traits for hundreds of species covering major growth forms. The analysis demonstrates that cell wall constituents are major components of leaf dry mass (18-70%), especially in leaves with high leaf mass per unit area (LMA) and long lifespan. A greater fraction of leaf mass in cell walls is typically associated with a lower fraction of leaf nitrogen (N) invested in photosynthetic proteins; and lower within-leaf CO2 diffusion rates, as a result of thicker mesophyll cell walls. The costs associated with greater investments in cell walls underpin the LES: long leaf lifespans are achieved via higher LMA and in turn by higher cell wall mass fraction, but this inevitably reduces the efficiency of photosynthesis.


Assuntos
Células do Mesofilo/metabolismo , Nitrogênio/metabolismo , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Dióxido de Carbono/metabolismo , Parede Celular/química , Parede Celular/metabolismo , Difusão , Células do Mesofilo/química , Proteínas de Plantas/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo
20.
PLoS One ; 12(2): e0170281, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28151972

RESUMO

Pilocarpus microphyllus Stapf ex Wardleworth (jaborandi, Rutaceae) is one of the most important Brazilian medicinal species owing to its content of pilocarpine (PIL), an alkaloid used for treating glaucoma and xerostomia. This species contains another alkaloid, epiisopiloturine (EPI), which has demonstrated effectiveness against schistosomiasis. The aim of this work was to assess seasonal changes of PIL and EPI in three populations of cultivated P. microphyllus from northeastern Brazil over one year, including the dry and rainy seasons. Alkaloid profiles were correlated to phenotypic and genetic patterns in the morphological and molecular characterizations. PIL was the primary alkaloid and its levels differed among populations in all months except September. The S01 population (green line) showed an especially high PIL content compared to populations S02 and S03 (traditional line), which had similar alkaloid contents. PIL content gradually decreased in the three populations in the rainy season.EPI content was significantly different between the green line (S01) and the traditional line (S02 and S03).S01 had a significantly lower EPI content in all months, demonstrating that it was not the best source for EPI extraction. Inter simple sequence repeat (ISSR) markers and morphological analyses clearly separated S01 from S02 and S03, in agreement with the alkaloid results. This study shows the first correlation between the chemical, morphological, and molecular markers of P. microphyllus and highlights the potential benefits of a multidisciplinary research approach aimed at supporting both industry and conservation of natural resources.


Assuntos
Alcaloides/análise , Pilocarpus/química , Plantas Medicinais/química , 4-Butirolactona/análogos & derivados , 4-Butirolactona/análise , Brasil , DNA de Plantas/genética , Genética Populacional , Imidazóis/análise , Repetições de Microssatélites , Pilocarpina/análise , Pilocarpus/anatomia & histologia , Pilocarpus/genética , Folhas de Planta/anatomia & histologia , Folhas de Planta/química , Folhas de Planta/genética , Plantas Medicinais/anatomia & histologia , Plantas Medicinais/genética , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA