Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 16(6): e0252987, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34133425

RESUMO

Root-knot nematodes cause damage to several crops and the importance of each species can vary according with the crop and the agricultural region. In Brazil, Meloidogyne javanica is one of the most important nematode species parasitizing mulberry. To define management strategies, it is important to know if the crop species is damaged by the parasitism of the nematode and the best choices for control, as the use of nematicides. Biological nematicides have been extensively used in Brazil, but no information regarding its efficiency to control M. javanica in mulberry is available. Besides, it is not known if biological nematicides could improve the quality of leaves or if they alter the nutrient composition of leaves, which could interfere in the development of the silkworms that are feed with these leaves or in the quality of the silk produced. With the aim to address these questions, we propose a study that will start in the phenotyping of the main Brazilian mulberry cultivars to Meloidogyne species, passing through the test of efficiency of biological nematicides in the control of M. javanica in mulberry cultivar Miura, evaluation of the amount and quality of leaves produced and, using these leaves to feed silkworms, in the analyzes of the impact of these diet in the health of silkworms, and in the production and quality of the silk.


Assuntos
Antinematódeos/farmacologia , Bombyx/crescimento & desenvolvimento , Interações Hospedeiro-Parasita , Morus/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Seda/fisiologia , Tylenchoidea/fisiologia , Animais , Morus/efeitos dos fármacos , Morus/parasitologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/parasitologia , Seda/efeitos dos fármacos , Tylenchoidea/efeitos dos fármacos
2.
Molecules ; 26(9)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068646

RESUMO

Nowadays, the use of biostimulants to reduce agrochemical input is a major trend in agriculture. In this work, we report on calcium phosphate particles (CaP) recovered from the circular economy, combined with natural humic substances (HSs), to produce a plant biostimulant. CaPs were obtained by the thermal treatment of Salmo salar bones and were subsequently functionalized with HSs by soaking in a HS water solution. The obtained materials were characterized, showing that the functionalization with HS did not sort any effect on the bulk physicochemical properties of CaP, with the exception of the surface charge that was found to get more negative. Finally, the effect of the materials on nutrient uptake and translocation in the early stages of development (up to 20 days) of two model species of interest for horticulture, Valerianella locusta and Diplotaxis tenuifolia, was assessed. Both species exhibited a similar tendency to accumulate Ca and P in hypogeal tissues, but showed different reactions to the treatments in terms of translocation to the leaves. CaP and CaP-HS treatments lead to an increase of P accumulation in the leaves of D. tenuifolia, while the treatment with HS was found to increase only the concentration of Ca in V. locusta leaves. A low biostimulating effect on both plants' growth was observed, and was mainly scribed to the low concentration of HS in the tested materials. In the end, the obtained material showed promising results in virtue of its potential to elicit phosphorous uptake and foliar translocation by plants.


Assuntos
Agricultura/economia , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Substâncias Húmicas/análise , Plantas/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Peixes , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Plântula/anatomia & histologia , Plântula/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Valerianella/química , Difração de Raios X
3.
PLoS One ; 16(2): e0247529, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33630922

RESUMO

Rice (Oryza sativa L.) feeds to two-third of the global population by serving as staple food. It is the main export commodity of several countries; thus, contributes towards foreign exchange earnings. Unfortunately, average global rice yield is far below than its genetic potential. Low nitrogen (N) use efficiency (NUE) is among the major reasons for low average yield. Current study evaluated the impact of nitrogen fertilizer application methods (conventional and deep placement) on growth, yield-related traits, chlorophyll contents, photosynthesis rate, agronomic N-use efficiency (ANUE), partial factors productivity of applied N (PFP) and economic returns of two different transplanted rice varieties (Basmati-515 and Super-Basmati). Fertilizer application methods significantly affected allometry, yield-related traits, chlorophyll contents, photosynthesis rate, ANUE, PFP and economic returns. Deep placement of N-fertilizer (DPNF) observed better allometric traits, high chlorophyll contents, photosynthesis rate, ANUE, PFP, yield attributes and economic returns compared to conventional application of N-fertilizer (CANF). Similarly, Basmati-515 had better allometric and yield-related traits, chlorophyll contents, photosynthesis rate, ANUE, PFP and economic returns than Super-Basmati. Regarding interactions among N-fertilizer application methods and rice varieties, Basmati-515 with DPNF resulted in higher chlorophyll contents, photosynthesis rate, ANUE, PFP, allometric and yield related traits and economic returns than CANF. The lowest values of these traits were observed for Super-Basmati with no application of N-fertilizer. Both varieties had better yield and economic returns with DPNF compared to CANF. It is concluded that DPNF improved yield, ANUE and economic returns; therefore, should be opted to improve productivity of transplanted fine rice. Nonetheless, lower nitrogen doses need to be tested for DPNF to infer whether it could lower N use in rice crop.


Assuntos
Fertilizantes , Nitrogênio/farmacologia , Oryza/crescimento & desenvolvimento , Clorofila/metabolismo , Oryza/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos
4.
Ecotoxicol Environ Saf ; 196: 110549, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32251953

RESUMO

Chemicals used to assure agricultural production and the feasibility of planting sites often end up in bodies of water used for crop irrigation. In a pot study, we investigated the consequences associated with the irrigation of maize with water contaminated by ciprofloxacin (Cipro; 0, 0.2, 0.8, 1.4 and 2.0 µg l-1) and/or glyphosate (0, 5, 25 and 50 mg l-1) on yields and food safety. Glyphosate in concentrations ≥25 mg l-1 prevented plant establishment, regardless of Cipro presence. Evaluations made at the V5 stage of plants reveal that Cipro concentrations ≥0.8 µg l-1 and glyphosate decreased photosynthesis and induced changes in leaf anatomy and stem biophysical properties that may contribute to decreased kernel yields. When those chemicals were applied together, kernel yield reductions were accentuated, evidencing their interactive effects. Irrigation with contaminated water resulted in accumulations of Cipro and glyphosate (as well as its metabolite, aminomethylphosphonic acid) in plant tissues. Accumulation of these chemicals in plant tissues such as leaves and kernels is a problem, since they are used to feed animals and humans. Moreover, these chemicals are of potential toxicological concern, principally due to residue accumulations in the food chain. Specially, the antibiotic residue accumulations in maize tissues can assist the induction of antibiotic resistance in dangerous bacteria. Therefore, we point out the urgency of monitoring the quality of water used for crop irrigation to avoid economic and food-quality losses.


Assuntos
Antibacterianos/toxicidade , Ciprofloxacina/toxicidade , Glicina/análogos & derivados , Poluentes Químicos da Água/toxicidade , Zea mays/efeitos dos fármacos , Irrigação Agrícola , Animais , Antibacterianos/farmacocinética , Ciprofloxacina/farmacocinética , Produtos Agrícolas/anatomia & histologia , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/economia , Inocuidade dos Alimentos , Glicina/farmacocinética , Glicina/toxicidade , Humanos , Fotossíntese/efeitos dos fármacos , Folhas de Planta/anatomia & histologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Poluentes Químicos da Água/farmacocinética , Zea mays/anatomia & histologia , Zea mays/metabolismo , Glifosato
5.
Molecules ; 25(3)2020 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-32050507

RESUMO

The purpose of this study was to evaluate the environmental quality of polluted areas near the Baia Mare Mining and Smelting Complex for future improvements the quality of the environment in polluted areas, such as the city of Baia Mare and its surroundings. Samples of soil and organs of grapevine (Vitis vinifera L.) were collected from Baia Mare, Baia Sprie and surrounding areas (Simleul Silvaniei) and their content of Cu, Zn, Pb, Cd, Ni, Co, As, Cr, Hg were analyzed. Most soil and plant samples showed higher metal concentrations in Baia Mare and Baia Sprie areas compared to Simleul Silvaniei, exceeding the normal values. The results obtained from the translocation factors, mobility ratio, as well as from Pearson correlation study confirmed that very useful information is recorded in plant organs: root, canes, leaves and fruit. Results also indicated that Vitis vinifera L. has some highly effective strategies to tolerate heavy metal-induced stress, may also be useful as a vegetation protection barrier from considerable atmospheric pollution. At the same time, berries are safe for consumption to a large degree, which is a great advantage of this species.


Assuntos
Adaptação Fisiológica , Poluição Ambiental/análise , Metais Pesados/metabolismo , Poluentes do Solo/metabolismo , Vitis/fisiologia , Biodegradação Ambiental , Monitoramento Ambiental/métodos , Poluição Ambiental/prevenção & controle , Frutas/química , Frutas/efeitos dos fármacos , Frutas/fisiologia , Humanos , Metais Pesados/química , Metais Pesados/toxicidade , Mineração , Folhas de Planta/química , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Raízes de Plantas/química , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/fisiologia , Romênia , Solo/química , Poluentes do Solo/química , Poluentes do Solo/toxicidade , Vitis/química , Vitis/efeitos dos fármacos
6.
Chemosphere ; 245: 125605, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31883499

RESUMO

Despite extensive research progress in the recent past, the data regarding foliar uptake of heavy metals, associated biophysiochemical changes inside plants and possible health hazards are limited. This study determined the effect of foliar application of lead oxide nanoparticles (PbO-NPs) on lead (Pb) accumulation, physiological and biochemical changes inside spinach plants and associated health risks. A green method was used to prepare PbO-NPs using coconut water. Scanning electron microscopy (SEM) showed the preparation of smooth, unwrinkled, granular and spherical PbO-NPs. Spinach leaves were exposed via foliar application to three concentrations of PbO-NPs (0, 10 and 50 mg/plant). Foliar PbO-NPs application resulted in a significant accumulation of Pb in leaves (42.25 µg g-1), with limited translocation towards root tissues (4.46 µg g-1). This revealed that spinach can accumulate considerable amount of Pb via foliar uptake. Lead accumulation inside spinach caused a significant decrease in pigment contents (38%) and dry weight (67%). After foliar uptake, Pb caused several-fold increase in the activities of catalase and peroxidase. However, foliar PbO-NPs did not induce significant changes in H2O2 production, lipid peroxidation and superoxide dismutase activity. Application of PbO-NPs (50 mg/plant) showed possible health risks (non-carcinogenic) due to ingesting Pb-contaminated leaves of spinach. It is proposed that atmospheric contamination and foliar deposition of metal-PM can seriously affect vegetable growth and can provoke health issues due to ingestion of metal-enriched vegetables. Therefore, atmospheric levels of heavy metals need to be monitored on a regular basis to avoid their food chain contamination and possible human exposure.


Assuntos
Chumbo/farmacocinética , Óxidos/farmacologia , Folhas de Planta/efeitos dos fármacos , Medição de Risco , Spinacia oleracea/efeitos dos fármacos , Poluição Ambiental , Contaminação de Alimentos , Humanos , Peróxido de Hidrogênio/farmacologia , Chumbo/farmacologia , Análise Multivariada , Nanopartículas/química
7.
PLoS One ; 14(12): e0225708, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31815964

RESUMO

Culturing slowly growing tree seedlings is a potential approach for managing the conflict between the increasing demand for ornamental stock and the decreasing area of farmlands due to urbanization. In this study, Buddhist pine (Podocarpus macrophyllus [Thunb.] D. Don) seedlings were raised in multishelves with light-emitting diode lighting in the spectrum of 17:75:8 (red:green:blue) at 190-320 µmol m-2 s-1 with controlled temperature and relative humidity at 19.5°C and 60%, respectively. Seedlings were fed by exponential fertilization (EF) (nitrogen [N]-phosphorus [P]2O5-K2O, 10-7-9) at eight rates of 0 (control), 20 (E20), 40 (E40), 60 (E60), 80 (E80), 100 (E100), 120 (E120), and 140 (E140) mg N seedling-1 for four months through 16 fertilizer applications. The nutritional responses of Buddhist pine seedlings can be identified and classified into various stages in response to increasing doses, up to and over 120 N seedling-1. Morphological traits, i.e., the green color index and leaf area (LA) obtained by digital analysis and the fine root growth, all remained constant in response to doses that induced steady nutrient loading. LA had a positive relationship with most of the nutritional parameters. A dose range between 60 and 120 mg N seedling-1 was recommended for the culture of Buddhist pine seedlings. At this range of fertilizer doses, measuring the leaf area through digital scanning can easily and rapidly indicate the inherent nutrient status of the seedlings.


Assuntos
Fertilizantes , Pinus/crescimento & desenvolvimento , Reforma Urbana/métodos , Urbanização , Cor , Nitrogênio/administração & dosagem , Parques Recreativos , Fósforo/administração & dosagem , Pinus/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento
8.
Sci Rep ; 9(1): 15186, 2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31645575

RESUMO

The current study sought the effective mitigation measure of seawater-induced damage to mung bean plants by exploring the potential roles of acetic acid (AA). Principal component analysis (PCA) revealed that foliar application of AA under control conditions improved mung bean growth, which was interlinked to enhanced levels of photosynthetic rate and pigments, improved water status and increased uptake of K+, in comparison with water-sprayed control. Mung bean plants exposed to salinity exhibited reduced growth and biomass production, which was emphatically correlated with increased accumulations of Na+, reactive oxygen species and malondialdehyde, and impaired photosynthesis, as evidenced by PCA and heatmap clustering. AA supplementation ameliorated the toxic effects of seawater, and improved the growth performance of salinity-exposed mung bean. AA potentiated several physio-biochemical mechanisms that were connected to increased uptake of Ca2+ and Mg2+, reduced accumulation of toxic Na+, improved water use efficiency, enhanced accumulations of proline, total free amino acids and soluble sugars, increased catalase activity, and heightened levels of phenolics and flavonoids. Collectively, our results provided new insights into AA-mediated protective mechanisms against salinity in mung bean, thereby proposing AA as a potential and cost-effective chemical for the management of salt-induced toxicity in mung bean, and perhaps in other cash crops.


Assuntos
Ácido Acético/economia , Ácido Acético/farmacologia , Análise Custo-Benefício , Salinidade , Água do Mar/química , Vigna/fisiologia , Biomassa , Gases/metabolismo , Minerais/metabolismo , Osmose , Estresse Oxidativo/efeitos dos fármacos , Fenótipo , Fotossíntese/efeitos dos fármacos , Pigmentos Biológicos/metabolismo , Folhas de Planta/efeitos dos fármacos , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/fisiologia , Transpiração Vegetal/efeitos dos fármacos , Potássio/metabolismo , Análise de Componente Principal , Espécies Reativas de Oxigênio/metabolismo , Sódio/metabolismo , Vigna/efeitos dos fármacos , Água
9.
Ecotoxicol Environ Saf ; 184: 109593, 2019 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31479760

RESUMO

Leaf vegetables have strong capabilities to take up cadmium (Cd) compared to other vegetable varieties. Until now, the differences in Cd uptake and accumulation by leaf vegetables from different families and genera and the related health risks were unknown. To remedy this, we studied 71 leaf vegetables (multiple genotypes within 17 categories of vegetables) in soil cultivation experiments (3 Cd treatment levels). Results showed that at 2.12 mg kg-1 Cd treatment, the dry weight of only five genotypic varieties from the families Brassicaceae and Asteraceae significantly decreased compared to the control, suggesting their weak Cd tolerances. Vegetables from the Brassicaceae, Asteraceae, Apiaceae, and Convolvulaceae families had stronger Cd absorption capabilities, whereas those from the Liliaceae and Amaranthaceae families had weaker ones. Cluster analysis found that the 17 vegetable categories could be divided into three groups: vegetables with high Cd accumulation capabilities were Lactuca sativa L.var. ramosa Hort. and Lactuca sativa var. longifoliaf. Lam. Vegetables with moderate Cd accumulation capabilities were bok choy, napa cabbage, choy sum, leaf mustard, Lactuca sativa L., Sonchus oleraceus L., celery, coriander, and water spinach. Vegetables with low Cd accumulation capabilities were cabbage, crown daisy, garlic chive, Allium ascalonicum, Gynura cusimbua, and edible amaranth. Estimated daily intake (EDI) and target hazard quotient (THQ) analysis results showed that 100% genotypes of vegetables from the Apiaceae and Convolvulaceae families had health risks; 100% genotypes of Lactuca sativa L., Sonchus oleraceus L., Lactuca sativa L. var. ramosa Hort., and Lactuca sativa var. longifoliaf. Lam from the Asteraceae family carried high risks. Of vegetables in the Brassicaceae family, 42.9% showed risks. Vegetables from the Amaranthaceae and Liliaceae families, Gynura cusimbua and crown daisy from the Asteraceae family, and cabbage from the Brassicaceae family all displayed relatively low risks (all 100%).


Assuntos
Cádmio/metabolismo , Contaminação de Alimentos , Poluentes do Solo/metabolismo , Verduras/metabolismo , Cádmio/análise , Cádmio/toxicidade , Humanos , Folhas de Planta/classificação , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Medição de Risco , Solo/química , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Especificidade da Espécie , Estresse Fisiológico/efeitos dos fármacos , Verduras/classificação , Verduras/efeitos dos fármacos
10.
Ecotoxicology ; 28(8): 853-868, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31392634

RESUMO

Two common tropical grassland species, Panicum maximum Jacq. (Guinea grass) and Cenchrus ciliaris (Buffel grass) of Indo-Gangetic plains were assessed for their responses under future level of O3 (ambient +30 ppb) using open top chambers. Plants were assessed for foliar injuries, pigments, growth, biomass accumulation, histochemical localization of reactive oxygen species (ROS), antioxidant defense system and ROS scavenging activities at two stages. Foliar injuries were noticed at an early stage in P. maximum compared to C. ciliaris. Significant reductions were observed in total chlorophyll, growth and total biomass in both species. Significant increases in contents of melondialdehyde and ascorbic acid in P. maximum while total phenolics and thiols in C. ciliaris were found. Histochemical analysis showed more production of superoxide radicals and hydrogen peroxide in leaf tissues of P. maximum compared to C. ciliaris. It can be concluded that higher level of primary antioxidants (total phenolics and thiols) along with superoxide dismutase and ascorbate peroxidase scavenged O3 effectively in C. ciliaris causing less reduction of biomass which is used as a feed for cattles. In P. maximum, more photosynthates were allocated for defense, leading to higher reduction in total biomass compared to C. ciliaris. The leaf area ratio was higher in P. maximum compared to C. ciliaris under elevated O3. The study further suggests higher susceptibility of P. maximum compared to C. ciliaris under future level of O3 exposure.


Assuntos
Poluentes Atmosféricos/toxicidade , Cenchrus/efeitos dos fármacos , Ozônio/toxicidade , Panicum/efeitos dos fármacos , Antioxidantes/metabolismo , Biomassa , Cenchrus/crescimento & desenvolvimento , Cenchrus/fisiologia , Índia , Panicum/crescimento & desenvolvimento , Panicum/fisiologia , Pigmentos Biológicos/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Espécies Reativas de Oxigênio/metabolismo
11.
Anal Chem ; 91(18): 11723-11730, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31424922

RESUMO

A low-cost second harmonic generation (SHG) microscope was constructed, and, for the first time, SHG microscopy was used for imaging agrochemical materials directly on the surface of common commercial crop leaves. The microscope uses a chromatically fixed (1560 nm) femtosecond fiber laser, a commercial 2D galvanometer mirror system, and a PCIe digital oscilloscope card, which together kept total instrument costs under $40 000 (USD), a significant decrease in cost and complexity from common systems (commercial and home-built) using tunable lasers and faster beam-scanning architectures. The figures of merit of the low-cost system still enabled a variety of measurements of agrochemical materials. Following confirmation of largely background-free SHG imaging of common crop leaves (soybean, maize, wheatgrass), SHG microscopy was used to image active ingredient crystallization after solution-phase deposition directly on the leaf surface, including at industrially relevant active ingredient concentrations (<0.05% w/w). Crystallization was also followed in real-time, with differences in crystallization time observed for different application procedures (spraying vs single droplet deposition). A strong dependency of active ingredient crystallization on the substrate was found, with an increased crystallization tendency observed on leaves vs on glass slides. Different crystal habits for the same active ingredient were also observed on different plant species. Finally, a model extended-release formulation was prepared, with a decrease in active ingredient crystallinity observed vs solution-phase deposition. These collective results demonstrate the need for making diagnostic measurements directly on the leaf surface and could help inform the next generation of pesticide products that ensure optimized agricultural output for a growing world population.


Assuntos
Agroquímicos/química , Folhas de Planta/química , Microscopia de Geração do Segundo Harmônico/instrumentação , Agroquímicos/farmacologia , Cristalização , Desenho de Equipamento , Vidro , Griseofulvina/química , Griseofulvina/farmacologia , Lasers , Limite de Detecção , Praguicidas/química , Praguicidas/farmacologia , Folhas de Planta/efeitos dos fármacos , Rotenona/química , Rotenona/farmacologia , Microscopia de Geração do Segundo Harmônico/economia , Glycine max , Triticum , Zea mays
12.
Biomed Res Int ; 2019: 3698742, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31111050

RESUMO

Rauwolfia tetraphylla L. is an important medicinal plant species which is well known for its pharmaceutically important alkaloids. In the present study, we are reporting about its conservation by in vitro clonal multiplication through the standardized protocol of indirect regeneration by using leaf and stem based callus and assessment of genetic fidelity of acclimated plantlets by start codon targeted (SCoT), inter simple sequence repeats (ISSR), and randomly amplified polymorphic DNA (RAPD) marker based analysis. Initially friable callus was induced in maximum amounts (378.7, 323.8, and 412.8 in mg) from leaf, root, and stem explants on Murashige and Skoog (MS) media supplemented with 5.0 mg/L, 3.0 mg/L of 2,4-dichlorophenoxyacetic acid (2,4-D) and 5.0 mg/L of naphthalene acetic acid (NAA), respectively. Shoot regeneration with the maximum number of shoot buds (25 and 20) was obtained from leaf and stem calluses on MS media supplemented with TDZ (0.25 mg/L) + BAP (2 mg/L). The regenerated shoots were rooted successfully with maximum rooting percentage of 98.0 on full strength MS media amended with IAA (1.0 mg/L) and IBA (1.0 mg/L). The regenerated plantlets were hardened using 2:1 ratio of sterile garden soil and sand, followed by acclimatization in field conditions with 86% of survival. SCoT, ISSR, and RAPD primers based polymerase chain reaction (PCR) analysis was carried out to check possible genetic variations in micro propagated plants in comparison with mother plant. Among the ten SCoT (S), ISSR (R), and RAPD (OPA) primers used, S2, R10, and OPA3 has given good amplification with scorable DNA bands. The results revealed that the regenerated plants did not have any polymorphism with mother plant. Hence, the in vitro regenerated R. tetraphylla plantlets were confirmed as true-to-type.


Assuntos
Aclimatação/efeitos dos fármacos , Códon de Iniciação , Repetições de Microssatélites , Plantas Medicinais/crescimento & desenvolvimento , Técnica de Amplificação ao Acaso de DNA Polimórfico/métodos , Rauwolfia/crescimento & desenvolvimento , Regeneração/efeitos dos fármacos , Ácido 2,4-Diclorofenoxiacético/farmacologia , Técnicas de Cultura de Células/métodos , Meios de Cultura/química , Primers do DNA , DNA de Plantas/genética , Marcadores Genéticos , Variação Genética , Ácidos Indolacéticos/farmacologia , Cinetina/farmacologia , Compostos de Fenilureia/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Caules de Planta/efeitos dos fármacos , Caules de Planta/crescimento & desenvolvimento , Plantas Medicinais/efeitos dos fármacos , Plantas Medicinais/genética , Rauwolfia/efeitos dos fármacos , Rauwolfia/genética , Regeneração/genética , Tiadiazóis/farmacologia
13.
Environ Sci Pollut Res Int ; 26(20): 20121-20131, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30560534

RESUMO

Atmospheric contamination by heavy metal(loid)-enriched particulate matter (metal-PM) is highly topical these days because of its high persistence, toxic nature, and health risks. Globally, foliar uptake of metal(loid)s occurs for vegetables/crops grown in the vicinity of industrial or urban areas with a metal-PM-contaminated atmosphere. The current study evaluated the foliar uptake of arsenic (As), accumulation of As in different plant organs, its toxicity (in terms of ROS generation, chlorophyll degradation, and lipid peroxidation), and its defensive mechanism (antioxidant enzymes) in spinach (Spinacia oleracea) after foliar application of As in the form of nanoparticles (As-NPs). The As-NPs were prepared using a chemical method. Results indicate that spinach can absorb As via foliar pathways (0.50 to 0.73 mg/kg in leaves) and can translocate it towards root tissues (0.35 to 0.68 mg/kg). However, health risk assessment parameters showed that the As level in the edible parts of spinach was below the critical limit (hazard quotient < 1). Despite low tissue level, As-NP exposure caused phytotoxicity in terms of a decrease in plant dry biomass (up to 84%) and pigment contents (up to 38%). Furthermore, several-fold higher activities of antioxidant enzymes were observed under metal stress than control. However, no significant variation was observed in the level of hydrogen peroxide (H2O2), which can be its possible transformation to other forms of reactive oxygen species (ROS). It is proposed that As can be absorbed by spinach via foliar pathway and then disturbs the plant metabolism. Therefore, air quality needs to be considered and monitored continuously for the human health risk assessment and quality of vegetables cultivated on polluted soils (roadside and industrial vicinity). Graphical abstract ᅟ.


Assuntos
Arsênio/farmacocinética , Arsênio/toxicidade , Nanopartículas , Folhas de Planta/efeitos dos fármacos , Medição de Risco/métodos , Spinacia oleracea/efeitos dos fármacos , Poluentes Atmosféricos/farmacocinética , Poluentes Atmosféricos/toxicidade , Clorofila/metabolismo , Exposição Dietética , Enzimas/metabolismo , Contaminação de Alimentos , Humanos , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Nanopartículas/toxicidade , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Spinacia oleracea/metabolismo
14.
Sci Total Environ ; 652: 1149-1155, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30586802

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) have toxic, teratogenic, mutagenic and carcinogenic effects on living organisms. Plants can function as pollutant bioindicators and bioaccumulators due to their wide surface distribution and specific responses to atmospheric pollutants. However, various plants exhibit significant differences in their capacities to accumulate PAHs. At present, research has mainly focused on the effects of leaf morphology and physiological characteristics, and few studies have evaluated the effects of the leaf surface on PAH accumulation. We aimed to assess the factors impacting the uptake and accumulation of PAHs by leaves. We selected 8 common tree species in Shanghai, China, and used supercritical fluid extraction technology to determine the content of PAHs in their leaves. Specific measurements of leaf area, width/length, wax content, and stomatal density were applied to index the morphological and physiological characteristics; surface roughness, surface free energy, polar components, and dispersion components were compiled into an adsorption performance index. Principal component analysis (PCA) and canonical correlation analysis (CCA) were used to assess the effects of different leaf characteristics on PAH accumulation. We found that the mean concentrations of ΣPAHs ranged from 300 to 2000 ng·g-1 and that the proportions of different benzene rings were significantly different among the different tree species. Leaf morphology and physiological characteristics had more significant effects compared to surface adsorption. CCA showed a significant negative correlation between leaf morphological characteristics and wax content, but had no significant correlation with surface adsorption. Low-molecular-weight PAHs were found to be mainly affected by the morphological characteristics, while medium- and high-molecular-weight PAHs were influenced by wax content and adsorption. Our conclusions provide a theoretical basis for the establishment of a reliable plant atmosphere-monitoring system and a method for screening tree species with strong PAH adsorption capacity.


Assuntos
Poluentes Atmosféricos/toxicidade , Monitoramento Ambiental/métodos , Folhas de Planta/efeitos dos fármacos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Árvores/efeitos dos fármacos , Poluentes Atmosféricos/metabolismo , China , Modelos Teóricos , Folhas de Planta/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Análise de Componente Principal , Árvores/metabolismo
15.
Methods Mol Biol ; 1900: 127-151, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30460563

RESUMO

Physiological assays that facilitate screening for various types of responses to abiotic stresses are well established for model plants such as Arabidopsis; however, there is a need to optimize similar tests for cereal crops, including barley. We have developed a set of stress assays to characterize the response of different barley lines during two stages of development-seed germination and seedling growth. The assays presented, including the response to osmotic, salt, oxidative stresses, and exogenously applied abscisic acid, can be used for forward screening of populations after mutagenesis as well as for phenotyping of already isolated mutants, cultivars, or breeding lines. As well as protocols for stress treatments, we also provide methods for plant stress response evaluation, such as chlorophyll a fluorescence (ChlF) and image analysis.


Assuntos
Bioensaio/métodos , Hordeum/crescimento & desenvolvimento , Hordeum/fisiologia , Desenvolvimento Vegetal , Estresse Fisiológico , Ácido Abscísico/farmacologia , Clorofila A/metabolismo , Fluorescência , Germinação/efeitos dos fármacos , Hordeum/efeitos dos fármacos , Hidroponia , Processamento de Imagem Assistida por Computador , Manitol/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Desenvolvimento Vegetal/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Sementes/embriologia , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos
16.
Planta ; 249(3): 787-797, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30406410

RESUMO

MAIN CONCLUSION: Detrimental pleiotropic effects of resistance mutation(s) were observed for multiple-resistant phenotypes (resistant to both atrazine and dicamba). The multiple-resistant phenotypes had lower growth rates and less capacity for vegetative growth compared to the phenotypes only resistant to atrazine. The fitness costs that are conferred by herbicide resistance alleles can affect the rate of herbicide resistance evolution within populations. We evaluated the direct fitness costs involved with multiple resistance to dicamba and atrazine (R1 and R2) in Chenopodium album by comparing the performance of multiple-resistant phenotypes to those phenotypes that were only resistant to atrazine (S1 and S2). The R1 and R2 phenotypes were consistently shorter and produced less dry matter than the S1 and S2 phenotypes. The R1 and R2 phenotypes were shown to have lower relative growth rates (RGR) and net assimilation rates (NAR) than the S1 and S2 phenotypes at an early stage of growth. However, there was no significant difference in RGR between the R1 and R2 and, S1 and S2 phenotypes at a later stage of growth, though the R1 and R2 phenotypes still had a lower NAR at this later stage. Further investigations using a neighbouring crop competition approach showed that the R1 and R2 phenotypes were weaker competitors, and exhibited significantly less capacity for vegetative growth compared to the S1 and S2 phenotypes during competition. Overall, the results of this study revealed multiple- resistance to atrazine and dicamba endowed a significant fitness penalty to C. album, and it is possible that the frequency of multiple-resistant individuals would gradually decline once selection pressure from herbicides was discontinued.


Assuntos
Atrazina/farmacologia , Chenopodium album/efeitos dos fármacos , Dicamba/farmacologia , Resistência a Herbicidas , Herbicidas/farmacologia , Biomassa , Chenopodium album/crescimento & desenvolvimento , Chenopodium album/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo
17.
Sci Rep ; 8(1): 9495, 2018 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-29934563

RESUMO

Onion is important in the daily Ethiopian diet though the average yield obtained by farmers is very low. This is attributed to a number of constraints among which are poor agronomic practices. Therefore, field experiment was conducted at Tahtay Koraro district to study the effect of nitrogen fertilizer and intra-row spacing on growth and yield of onion. The treatments consisted of a factorial combination of four rates of nitrogen (0, 50, 100 and 150 kg N ha-1) and four intra- row spacings (4, 6, 8, and 10 cm). Bombay Red was the variety of onion used in the experiment. The experiment was laid out as RCBD with three replications. The analysis of variance revealed that N and intra-row spacing were significant. Both N and intra-row spacing significantly affected percentage of Bolting plants, leaf length, bulb diameter, and marketable yield. 100 kg N ha-1 and a population of 833,300 plants ha-1 was found to be the optimum rate to obtain higher marketable bulb yield of 26.72 t ha-1 and economically attractive benefits. Therefore, Bombay red variety could be planted at an optimum spacing of 6 cm × 20 cm or 833,300 plant population density ha-1 in Tahtay koraro district of northern Ethiopia.


Assuntos
Agricultura/métodos , Fertilizantes , Nitrogênio/farmacologia , Cebolas/efeitos dos fármacos , Cebolas/crescimento & desenvolvimento , Chuva , Agricultura/economia , Análise Custo-Benefício , Etiópia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento
18.
Environ Pollut ; 240: 802-816, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29783198

RESUMO

The present study for the first time demonstrated the interactions of metal oxide (MO) nano-pollutants (CuO and Al2O3-NPs) with tissues and cellular DNA of tomato plants grown in soil sand: silt: clay (667:190:143) and Hoagland-hydroponic system and assessed the hazardous effects of NPs on cell physiology and biochemistry. Results of SEM equipped with EDX revealed attachment of variably shaped CuO-NPs (18 nm) and Al2O3-NPs (21 nm) on roots, and internalization followed by translocation in plants by ICP-MS and TEM. Significant variations in foliage surface area, chlorophyll, proteins, LPO, and antioxidant enzymes were recorded. Roots and shoots accumulated 225.8 ±â€¯8.9 and 70.5 ±â€¯4 µgAl g-1 DW, whereas Cu accumulation was 341.6 ±â€¯14.3 (roots) and 146.9 ±â€¯8.1 µg g-1 DW (shoots) which was significant (p ≤ 0.0005) as compared to control. The total soluble protein content in roots, shoots, and leaves collected from Al2O3-NPs treated plants increased by 120, 80, and 132%, respectively while in CuO-NPs treatments, the increase was 68 (roots), 36 (shoots), and 86% (leaves) over control. The level of antioxidant enzymes in plant tissues was significantly (p ≤ 0.05) higher at 2000 µg ml-1 of MONPs over control. A dose-dependent increase in reactive oxygen species (ROS), biphasic change of lower and higher fluorescence in mitochondria due to dissipation of mitochondrial membrane potential (ΔΨm) and membrane defects using propidium iodide were observed. Comparatively, CuO-NPs induced higher toxicity than Al2O3-NPs. Perceptible changes in proteins (amide-I & II), cellulose, glucose, galactose and other carbohydrates were observed under FT-IR. The binding studies with TmDNA showed fluorescence quenching of EtBr-TmDNA and acridine orange-TmDNA complex only by CuO-NPs with -ΔG and +ΔH and +ΔS values. However, Al2O3-NPs induced lesser change in TmDNA conformation. Conclusively, the results are novel in better demonstrating the mechanistic basis of nano-phyto-toxicity and are important which could be used to develop strategies for safe disposal of Al2O3-NPs and CuO-NPs.


Assuntos
Metais/toxicidade , Desenvolvimento Vegetal/efeitos dos fármacos , Poluentes do Solo/toxicidade , Solanum lycopersicum/fisiologia , Antioxidantes/metabolismo , Morte Celular , Clorofila/metabolismo , Cobre/análise , Hidroponia , Solanum lycopersicum/efeitos dos fármacos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Óxidos/análise , Células Vegetais/efeitos dos fármacos , Células Vegetais/metabolismo , Folhas de Planta/efeitos dos fármacos , Raízes de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Solanum , Espectroscopia de Infravermelho com Transformada de Fourier
19.
Environ Monit Assess ; 190(4): 190, 2018 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-29502252

RESUMO

Tropospheric ozone (O3) is a well-known threat to global agricultural production. Wheat (Triticum aestivum L.) is the second most important staple crop in India, although little is known about intra-specific variability of Indian wheat cultivars in terms of their sensitivity against O3. In this study, 14 wheat cultivars widely grown in India were exposed to 30 ppb elevated O3 above ambient level using open top chambers to evaluate their response against O3 stress. Different growth and physiological parameters, foliar injury and grain yield were evaluated to assess the sensitivity of cultivars and classified them on the basis of their cumulative stress response index (CSRI). Due to elevated O3, growth parameters, plant biomass, and photosynthetic rates were negatively affected, whereas variable reductions in yield were observed among the test cultivars. Based on CSRI values, HD 2987, DBW 50, DBW 77, and PBW 550 were classified as O3 sensitive; HD 2967, NIAW 34, HD 3059, PBW 502, HUW 213, and HUW 251 as intermediately sensitive, while HUW12, KUNDAN, HUW 55, and KHARCHIYA 65 were found to be O3-tolerant cultivars. Cultivars released after year 2000 were found to be more sensitive compared to earlier released cultivars. Path analysis approach showed that leaf area, plant biomass, stomatal conductance, net assimilation rate, and absolute growth rate were the most important variables influencing yield under O3 stress. Findings of the current study highlight the importance of assessing differential sensitivity and tolerance of wheat cultivars and response of different traits in developing resistance against elevated O3.


Assuntos
Poluentes Atmosféricos/toxicidade , Monitoramento Ambiental/métodos , Ozônio/toxicidade , Triticum/efeitos dos fármacos , Triticum/crescimento & desenvolvimento , Biomassa , Índia , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Especificidade da Espécie
20.
Plant Cell Environ ; 40(11): 2820-2830, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28815648

RESUMO

Seagrasses access HCO3- for photosynthesis by 2 mechanisms, apoplastic carbonic anhydrase-mediated dehydration of HCO3- to CO2 and direct HCO3- uptake. Here, we have studied plasma membrane energization and the mechanism for HCO3- import in Posidonia oceanica. Classical electrophysiology and ion-selective microelectrodes were used to measure the membrane potential, cytosolic pH, and the cytosolic concentrations of Na+ and Cl- upon the addition of HCO3- . The photosynthetic response to HCO3- and to inhibitors was also measured. Results indicate that the primary pump of P. oceanica plasma membrane is a fusicoccin-sensitive H+ -ATPase. Bicarbonate depolarizes the plasma membrane voltage and transiently acidifies the cytosol, indicating that HCO3- is transported into the cells by an H+ -symport. Initial cytosolic acidification is followed by an alkalinization, suggesting an internal dehydration of HCO3- . The lack of cytosolic Na+ and Cl- responses rules out the contribution of these ions to HCO3- transport. The energetics of nH+ /HCO3- symport allows, for n = 1, an estimate of cytosolic accumulation of 0.22 mM HCO3- . Because this transporter could permit accumulation of HCO3- up to 100 times above the equilibrium concentration, it would be a significant component of a carbon-concentrating mechanism in this species.


Assuntos
Organismos Aquáticos/metabolismo , Bicarbonatos/metabolismo , Membrana Celular/metabolismo , Magnoliopsida/metabolismo , Prótons , Ânions/metabolismo , Organismos Aquáticos/efeitos dos fármacos , Dióxido de Carbono/farmacologia , Membrana Celular/efeitos dos fármacos , Cloretos/metabolismo , Citosol/metabolismo , Glicosídeos/farmacologia , Concentração de Íons de Hidrogênio , Cinética , Magnoliopsida/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Modelos Biológicos , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Água do Mar , Sódio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA