Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Plant ; 176(3): e14318, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38686542

RESUMO

The function of landscape plants on the ecosystem can alleviate environmental issues of urbanization and global change. Global changes due to elevated CO2 affect plant growth and survival, but there is a lack of quantitative methods to evaluate the adaptability of landscape plants to future climate conditions. Leaf traits characterized by leaf economic spectrum (LES) are the universal currency for predicting the impact on plant ecosystem functions. Elevated CO2 usually leads to photosynthetic acclimation (PC), characterised by decreased photosynthetic capacity. Here, we proposed a theoretical and practical framework for the use of LES and PC to project the potential performance of landscape plants under future climatic conditions through principal component analysis, structural equation modelling, photosynthetic restriction analysis and nitrogen allocation analysis. We used wintersweet (an important landscaping species) to test the feasibility of this framework under elevated CO2 and different nitrogen (N) supplies. We found that elevated CO2 decreased the specific leaf area but increased leaf N concentration. The results suggest wintersweet may be characterized by an LES with high leaf construction costs, low photosynthetic return, and robust stress resistance. Elevated CO2 reduced photosynthetic capacity and stomatal conductance but increased photosynthetic rate and leaf area. These positive physio-ecological traits, e.g., larger leaf area (canopy), higher water use efficiency and stress resistance, may lead to improved performance of wintersweet under the predicted future climatic conditions. The results suggest planting more wintersweet in urban landscaping may be an effective adaptive strategy to climate change.


Assuntos
Aclimatação , Dióxido de Carbono , Mudança Climática , Nitrogênio , Fotossíntese , Folhas de Planta , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Aclimatação/fisiologia , Dióxido de Carbono/metabolismo , Nitrogênio/metabolismo , Ecossistema , Clima
2.
New Phytol ; 242(5): 1919-1931, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38532535

RESUMO

Multivariate leaf trait correlations are hypothesized to originate from natural selection on carbon economics traits that control lifetime leaf carbon gain, and energy balance traits governing leaf temperatures, physiological rates, and heat injury. However, it is unclear whether macroevolution of leaf traits primarily reflects selection for lifetime carbon gain or energy balance, and whether photosynthetic heat tolerance is coordinated along these axes. To evaluate these hypotheses, we measured carbon economics, energy balance, and photosynthetic heat tolerance traits for 177 species (157 families) in a common garden that minimizes co-variation of taxa and climate. We observed wide variation in carbon economics, energy balance, and heat tolerance traits. Carbon economics and energy balance (but not heat tolerance) traits were phylogenetically structured, suggesting macroevolution of leaf mass per area and leaf dry matter content reflects selection on carbon gain rather than energy balance. Carbon economics and energy balance traits varied along a common axis orthogonal to heat tolerance traits. Our results highlight a fundamental mismatch in the timescales over which morphological and heat tolerance traits respond to environmental variation. Whereas carbon economics and energy balance traits are constrained by species' evolutionary histories, photosynthetic heat tolerance traits are not and can acclimate readily to leaf microclimates.


Assuntos
Aclimatação , Carbono , Metabolismo Energético , Fotossíntese , Folhas de Planta , Termotolerância , Folhas de Planta/fisiologia , Carbono/metabolismo , Termotolerância/fisiologia , Temperatura Alta , Filogenia , Característica Quantitativa Herdável , Fatores de Tempo , Adaptação Fisiológica , Especificidade da Espécie
3.
J Exp Bot ; 75(10): 2982-2993, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38426531

RESUMO

Leaf gas-exchange measurements are useful in assessing plant environmental responses. However, uncertainties in the leaf gas-exchange model potentially limit its application. The main challenge in the model-dependent calculations is to detect violations of assumptions. Here, we developed a system that integrates into one instrument the direct measurement of leaf intercellular CO2 concentration and the standard open-flow (OF) and novel open-diffusion (OD) systems for flux measurement. In the OD system, a gas-permeable membrane between the leaf ambient air and outside air creates CO2 and H2O differentials, rather than the air flow in the OF chamber. We measured hypostomatous and amphistomatous leaves of several species with different photosynthetic capacities [sunflower (Helianthus annuus), grape (Vitis vinifera), lemon (Citrus limon), and cherry (Prunus avium)]. The CO2 and H2O differentials in the OD system strictly depend on the flux measured by the OF system. The lower permeability of the membrane resulted in a larger differential per flux, indicating that the OD system can increase the resolution for a small flux. An analysis of the conductance model along with observations suggested that cuticle and leaf intercellular conductances and the unsaturation of leaf humidity contributed to discrepancies between the direct measurement and standard calculation. The combined system developed here provides an opportunity to address these overlooked concepts in leaf gas exchange.


Assuntos
Dióxido de Carbono , Modelos Biológicos , Fotossíntese , Folhas de Planta , Folhas de Planta/fisiologia , Folhas de Planta/metabolismo , Dióxido de Carbono/metabolismo , Água/metabolismo
4.
Sci Total Environ ; 916: 170022, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38220006

RESUMO

The frequency and intensity of heatwaves are increasing around the world, causing severe damages to plants, but whether leaf thermal metrics is in line with leaf economic spectrum is still controversial. Here, we measured leaf damage ratio, leaf thermal metrics (tolerance and sensitivity) and economic traits of 131 woody species across five cities along the Yangtze River after a two-month natural extreme temperature event. We found that leaf thermal sensitivity but not thermal tolerance was correlated with leaf damage ratio, and the relationships between leaf thermal metrics and economic traits were weak, indicating that leaf thermal adaptation may be independent from leaf carbon construction. This study suggests a potential indicator for predicting plant survival under heatwaves, urging future research to explore more physiological traits to comprehensively understand plant heat responses and adaptations.


Assuntos
Aclimatação , Folhas de Planta , Folhas de Planta/fisiologia , Temperatura , Plantas , Resposta ao Choque Térmico
5.
New Phytol ; 241(4): 1866-1876, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38124293

RESUMO

Image-based high-throughput phenotyping promises the rapid determination of functional traits in large plant populations. However, interpretation of some traits - such as those related to photosynthesis or transpiration rates - is only meaningful if the irradiance absorbed by the measured leaves is known, which can differ greatly between different parts of the same plant and within canopies. No feasible method currently exists to rapidly measure absorbed irradiance in three-dimensional plants and canopies. We developed a method and protocols to derive absorbed irradiance at any visible part of a canopy with a thermal camera, by fitting a leaf energy balance model to transient changes in leaf temperature. Leaves were exposed to short light pulses (30 s) that were not long enough to trigger stomatal opening but strong enough to induce transient changes in leaf temperature that was proportional to the absorbed irradiance. The method was successfully validated against point measurements of absorbed irradiance in plant species with relatively simple architecture (sweet pepper, cucumber, tomato, and lettuce). Once calibrated, the model was used to produce absorbed irradiance maps from thermograms. Our method opens new avenues for the interpretation of plant responses derived from imaging techniques and can be adapted to existing high-throughput phenotyping platforms.


Assuntos
Cucumis sativus , Folhas de Planta , Folhas de Planta/fisiologia , Fotossíntese/fisiologia , Plantas , Fenótipo
6.
PLoS One ; 18(12): e0294971, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38127910

RESUMO

Although plants and animals both assess their environment and respond to stimuli, this reaction is considered a behavior in animals and a response in plants. Responses in plants are seen within various timescales- from the nanosecond stimuli is presented to a lifelong progression. Within this study, we bridge the gap between animal behavioral studies and plant response. Sensitive plants (Mimosa pudica L.) are an ideal subject for this due to the rapid closure of their primary leaflets when touched. We designed a multimodal, or stress combination, experiment to test two hypotheses with sensitive plants: if they could be distracted and if they would alter their risk assessment when exposed to external stimuli (wind and sound). To evaluate the distraction hypothesis, we measured an individual's latency to close, hypothesizing that if the plants were distracted, they would take longer to close. To evaluate the uncertain risk hypothesis, we quantified the latency to reopen, hypothesizing that if the plants were uncertain, they would take longer to reopen. We also quantified the number of pinnae closed on the selected stem to test for changes in risk assessment across treatments. We expected the unimodal treatments would distract or alter risk assessment, and the multimodal treatment would elicit an enhanced response. Multimodal stimuli had a significant effect on the number of pinnae closed before the tap, but we found no evidence that plants were distracted by any stimulus tested. We found that temperature had a significant effect on the latency to close, and that plants modified their risk assessment when exposed to experimental wind stimuli. By manipulating environmental stimuli, we found that sensitive plants trade-off energy and perceived risk much in the way that is commonly found in animals. Framing the study of plants' responses to environmental stimuli as behavioral questions may generate new insights.


Assuntos
Mimosa , Animais , Folhas de Planta/fisiologia , Plantas , Medição de Risco
7.
Oecologia ; 203(3-4): 297-310, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37874360

RESUMO

Over fifty years have passed since the publication of Harold Mooney's formative paper, "The Carbon Balance of Plants" on pages 315-346 of Volume 3 (1972) of Annual Review of Ecology and Systematics. Arguably, the conceptual framework presented in that paper, and the work by Mooney and his students leading up to the paper, provided the foundational principles from which core disciplines emerged in plant economic theory, functional trait theory and, more generally, plant physiological ecology. Here, we revisit the primary impacts of those early discoveries to understand how researchers constructed major concepts in our understanding of plant adaptations, and where those concepts are likely to take us in the near future. The discipline of functional trait ecology, which is rooted in the principles of evolutionary and economic optimization, has captured the imagination of the plant physiological ecology research community, though its emphasis has shifted toward predicting species distributions and ecological roles across resource gradients. In the face of 'big-data' research pursuits that are revealing trait expression patterns at the cellular level and mass and energy exchange patterns at the planetary scale, an opportunity exists to reconnect the principles of plant carbon balance and evolutionary optimization with trait origins at the genetic and cellular scales and trait impacts at the global scale.


Assuntos
Carbono , Folhas de Planta , Humanos , Carbono/metabolismo , Folhas de Planta/fisiologia , Ecologia , Plantas/metabolismo , Fenótipo
8.
Nature ; 621(7977): 105-111, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37612501

RESUMO

The critical temperature beyond which photosynthetic machinery in tropical trees begins to fail averages approximately 46.7 °C (Tcrit)1. However, it remains unclear whether leaf temperatures experienced by tropical vegetation approach this threshold or soon will under climate change. Here we found that pantropical canopy temperatures independently triangulated from individual leaf thermocouples, pyrgeometers and remote sensing (ECOSTRESS) have midday peak temperatures of approximately 34 °C during dry periods, with a long high-temperature tail that can exceed 40 °C. Leaf thermocouple data from multiple sites across the tropics suggest that even within pixels of moderate temperatures, upper canopy leaves exceed Tcrit 0.01% of the time. Furthermore, upper canopy leaf warming experiments (+2, 3 and 4 °C in Brazil, Puerto Rico and Australia, respectively) increased leaf temperatures non-linearly, with peak leaf temperatures exceeding Tcrit 1.3% of the time (11% for more than 43.5 °C, and 0.3% for more than 49.9 °C). Using an empirical model incorporating these dynamics (validated with warming experiment data), we found that tropical forests can withstand up to a 3.9 ± 0.5 °C increase in air temperatures before a potential tipping point in metabolic function, but remaining uncertainty in the plasticity and range of Tcrit in tropical trees and the effect of leaf death on tree death could drastically change this prediction. The 4.0 °C estimate is within the 'worst-case scenario' (representative concentration pathway (RCP) 8.5) of climate change predictions2 for tropical forests and therefore it is still within our power to decide (for example, by not taking the RCP 6.0 or 8.5 route) the fate of these critical realms of carbon, water and biodiversity3,4.


Assuntos
Aclimatação , Calor Extremo , Florestas , Fotossíntese , Árvores , Clima Tropical , Aclimatação/fisiologia , Austrália , Brasil , Calor Extremo/efeitos adversos , Aquecimento Global , Fotossíntese/fisiologia , Porto Rico , Desenvolvimento Sustentável/legislação & jurisprudência , Desenvolvimento Sustentável/tendências , Árvores/fisiologia , Folhas de Planta/fisiologia , Incerteza
9.
Sci Total Environ ; 902: 165977, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37541509

RESUMO

Dryland forests worldwide are increasingly threatened by drought stress due to climate change. Understanding the relationships between forest structure and function is essential for managing dryland forests to adapt to these changes. We investigated the structure-function relationships in four dryland conifer forests distributed along a semiarid to subhumid climatic aridity gradient. Forest structure was represented by leaf area index (LAI) and function by gross primary productivity (GPP), evapotranspiration (ET), and the derived efficiencies of water use (WUE = GPP/ET) and leaf area (LAE = GPP/LAI). Estimates of GPP and ET were based on the observed relationships between high-resolution vegetation indices from VENµS and Sentinel-2A satellites and flux data from three eddy covariance towers in the study regions between November 2015 to October 2018. The red-edge-based MERIS Terrestrial Chlorophyll Index (MTCI) from VENµS and Sentinel-2A showed strong correlations to flux tower GPP and ET measurements for the three sites (R2cal > 0.91, R2val > 0.84). Using our approach, we showed that as LAI decreased with decreasing aridity index (AI) (i.e., dryer conditions), estimated GPP and ET decreased (R2 > 0.8 to LAI), while WUE (R2 = 0.68 to LAI) and LAE increased. The observed global-scale patterns are associated with a variety of forest vegetation characteristics, at the local scale, such as tree species composition and density. However, our results point towards a canopy-level mechanism, where the ecosystem-LAI and resultant proportion of sun-exposed vs. shaded leaves are primary determinants of WUE and LAE along the studied climatic aridity gradient. This work demonstrates the importance of high-resolution (spatially and spectrally) remote sensing data conjugated with flux tower data for monitoring dryland forests and understanding the intricate structure-function interactions in their response to drying conditions.


Assuntos
Ecossistema , Traqueófitas , Água , Fotossíntese , Florestas , Folhas de Planta/fisiologia , Estações do Ano
10.
BMC Plant Biol ; 23(1): 366, 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37479980

RESUMO

BACKGROUND: Predicting relationships between plant functional traits and environmental effects in their habitats is a central issue in terms of classic ecological theories. Yet, only weak correlation with functional trait composition of local plant communities may occur, implying that some essential information might be ignored. In this study, to address this uncertainty, the objective of the study is to test whether and how the consistency of trait relationships occurs by analyzing broad variation in eight traits related to leaf morphological structure, nutrition status and physiological activity, within a large number of plant species in two distinctive but comparable harsh habitats (high-cold alpine fir forest vs. north-cold boreal coniferous forest). RESULTS: The contrasting and/or consistent relationships between leaf functional traits in the two distinctive climate regions were observed. Higher specific leaf area, photosynthetic rate, and photosynthetic nitrogen use efficiency (PNUE) with lower N concentration occurred in north-cold boreal forest rather than in high-cold alpine forest, indicating the acquisitive vs. conservative resource utilizing strategies in both habitats. The principal component analysis illuminated the divergent distributions of herb and xylophyta groups at both sites. Herbs tend to have a resource acquisition strategy, particularly in boreal forest. The structural equation modeling revealed that leaf density had an indirect effect on PNUE, primarily mediated by leaf structure and photosynthesis. Most of the traits were strongly correlated with each other, highlighting the coordination and/or trade-offs. CONCLUSIONS: We can conclude that the variations in leaf functional traits in north-cold boreal forest were largely distributed in the resource-acquisitive strategy spectrum, a quick investment-return behavior; while those in the high-cold alpine forest tended to be mainly placed at the resource-conservative strategy end. The habitat specificity for the relationships between key functional traits could be a critical determinant of local plant communities. Therefore, elucidating plant economic spectrum derived from variation in major functional traits can provide a fundamental insight into how plants cope with ecological adaptation and evolutionary strategies under environmental changes, particularly in these specific habitats.


Assuntos
Florestas , Plantas , Ecossistema , Fotossíntese/fisiologia , Clima , Folhas de Planta/fisiologia
11.
Photosynth Res ; 157(1): 37-41, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36941457

RESUMO

Unlike the light conditions commonly used to grow photosynthetic organisms in the research laboratory, the light intensity in real environments is dynamic. A simple and low-cost system is described in which a commercial dimmable LED panel is controlled to simulate a sinusoidal function representing daylight hours and overlaid with stochastic shading events. The output closely resembles light intensity measurements on Earth's surface on partly cloudy days or in lower levels of plant canopies. This tool may be useful to researchers studying photosynthetic acclimation responses.


Assuntos
Fotossíntese , Folhas de Planta , Folhas de Planta/fisiologia , Fotossíntese/fisiologia , Luz , Plantas , Pesquisa , Aclimatação/fisiologia
12.
Ecol Lett ; 26(4): 549-562, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36750322

RESUMO

In recent years, attempts have been made in linking pressure-volume parameters and the leaf economics spectrum to expand our knowledge of the interrelationships among leaf traits. We provide theoretical and empirical evidence for the coordination of the turgor loss point and associated traits with net CO2 assimilation (An ) and leaf mass per area (LMA). We measured gas exchange, pressure-volume curves and leaf structure in 45 ferns and angiosperms, and explored the anatomical and chemical basis of the key traits. We propose that the coordination observed between mass-based An , capacitance and the turgor loss point (πtlp ) emerges from their shared link with leaf density (one of the components of LMA) and, specially, leaf saturated water content (LSWC), which in turn relates to cell size and nitrogen and carbon content. Thus, considering the components of LMA and LSWC in ecophysiological studies can provide a broader perspective on leaf structure and function.


Assuntos
Magnoliopsida , Folhas de Planta , Folhas de Planta/fisiologia , Fotossíntese , Nitrogênio , Carbono
13.
New Phytol ; 238(2): 529-548, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36650668

RESUMO

Optimality-based models of stomatal conductance unify biophysical and evolutionary constraints and can improve predictions of land-atmosphere carbon and water exchange. Recent models incorporate hydraulic constraints by penalizing excessive stomatal opening in relation to hydraulic damage caused by low water potentials. We used simulation models to test whether penalties based solely on vulnerability curves adequately represent the optimality hypothesis, given that they exclude the effects of kinetic factors on stomatal behavior and integrated carbon balance. To quantify the effects of nonsteady-state phenomena on the landscape of short-term hydraulic risk, we simulated diurnal dynamics of leaf physiology for 10 000 patches of leaf in a canopy and used a ray-tracing model, Helios, to simulate realistic variation in sunfleck dynamics. Our simulations demonstrated that kinetic parameters of leaf physiology and sunfleck properties influence the economic landscape of short-term hydraulic risk, as characterized by the effect of stomatal strategy (gauged by the water potential causing a 50% hydraulic penalty) on both aggregated carbon gain and the aggregated carbon cost of short-term hydraulic risk. Hydraulic penalties in optimization models should be generalized to allow their parameters to account for kinetic factors, in addition to parameters of hydraulic vulnerability.


Assuntos
Folhas de Planta , Estômatos de Plantas , Estômatos de Plantas/fisiologia , Folhas de Planta/fisiologia , Água/fisiologia , Atmosfera , Carbono , Transpiração Vegetal/fisiologia
14.
Tree Physiol ; 43(2): 221-233, 2023 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-36209448

RESUMO

The drought susceptibility of woody saplings may explain their low survival in arid environments. Therefore, it is critical to determine which morphological and physiological traits are more responsive to drought among young plants. This study tested whether plant responses to experimental drought differ between two plant functional groups: the deciduous and evergreen species. We predicted that deciduous species would present a tighter stomatal control under drought, coupled with fast carbon fixation under no stress, tending toward isohydry and faster growth rates than the evergreen species. Using 1-year-old saplings from three evergreen and four deciduous Sonoran Desert tree species, we evaluated their hydraulic and gas exchange traits under three experimental irrigation conditions: high, intermediate and low water availability. We measured CO2 assimilation rates (A), stomatal conductance (gs), the level of iso-anisohydry (as the plant's ability to maintain constant their water potential) and seven morphological and growth-related traits throughout 2 months. Under high water availability, saplings reached their maximum values of A and gs, which were significantly higher for deciduous than evergreen species. Correlations among hydroscape area (HA) and leaf traits positioned species along the iso/anisohydric continuum. Deciduous species presented isohydric characteristics, including low HA, high gs, A and Huber values (HVs), and traits indicative of a faster use of resources, such as low stem-specific density (SSD) and low leaf mass per area (LMA). By contrast, evergreen species showed traits that indicate slow resource use and anisohydric behavior, such as high HA, SSD and LMA, and low gs, A and HVs. Deciduous species drastically reduced gas exchange rates in response to drought, while evergreen maintained low rates independently of drought intensity. Overall, desert saplings showed strategies concordant with the iso-anisohydric continuum and the fast-slow use of resources.


Assuntos
Folhas de Planta , Árvores , Folhas de Planta/fisiologia , Madeira , Plantas , Água/fisiologia , Secas , Hábitos
15.
Physiol Plant ; 174(5): e13762, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36281841

RESUMO

Water stress may greatly limit plant functionality and growth. Stomatal closure and consequently reduced transpiration are considered as early and sensitive plant responses to drought and salinity stress. An important consequence of stomatal closure under water stress is the rise of leaf temperature (Tleaf ), yet Tleaf is not only fluctuating with stomatal closure. It is regulated by several plant parameters and environmental factors. Thermal imaging and different stress indices, incorporating actual leaf/crop temperature and reference temperatures, were developed in previous studies toward normalizing for effects unassociated to water stress on Tleaf , aiming at a more efficient water stress assessment. The concept of stress indices has not been extensively studied on the model plant Arabidopsis thaliana. Therefore, the aim of this study was to examine the different indices employed in previous studies in assessing rosette transpiration rate (E) in Arabidopsis plants grown under two different light environments and subjected to salinity. After salinity imposition, E was gravimetrically quantified, and thermal imaging was employed to quantify rosette (Trosette ) and artificial reference temperature (Twet, Tdry ). Trosette and several water stress indices were tested for their relation to E. Among the microclimatic growth conditions tested, RWSI1 ([Trosette - Twet ]/[Tdry - Twet ]) and RWSI2 ([Tdry - Trosette ]/[Tdry - Twet ]) were well linearly-related to E, irrespective of the light environment, while the sole use of either Twet or Tdry in different combinations with Trosette returned less accurate results. This study provides evidence that selected combinations of Trosette , Tdry , and Twet can be utilized to assess E under water stress irrespective of the light environment.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/fisiologia , Estômatos de Plantas/fisiologia , Desidratação , Secas , Folhas de Planta/fisiologia , Plantas , Transpiração Vegetal/fisiologia
16.
Plant Cell Environ ; 45(12): 3462-3475, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36098093

RESUMO

The leaf economics spectrum (LES) describes multivariate correlations in leaf structural, physiological and chemical traits, originally based on diverse C3 species grown under natural ecosystems. However, the specific contribution of C4 species to the global LES is studied less widely. C4 species have a CO2 concentrating mechanism which drives high rates of photosynthesis and improves resource use efficiency, thus potentially pushing them towards the edge of the LES. Here, we measured foliage morphology, structure, photosynthesis, and nutrient content for hundreds of genotypes of the C4 grass Miscanthus× giganteus grown in two common gardens over two seasons. We show substantial trait variations across M.× giganteus genotypes and robust genotypic trait relationships. Compared to the global LES, M.× giganteus genotypes had higher photosynthetic rates, lower stomatal conductance, and less nitrogen content, indicating greater water and photosynthetic nitrogen use efficiency in the C4 species. Additionally, tetraploid genotypes produced thicker leaves with greater leaf mass per area and lower leaf density than triploid genotypes. By expanding the LES relationships across C3 species to include C4 crops, these findings highlight that M.× giganteus occupies the boundary of the global LES and suggest the potential for ploidy to alter LES traits.


Assuntos
Ecossistema , Poaceae , Poaceae/genética , Tetraploidia , Triploidia , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Nitrogênio
17.
Plant Cell Environ ; 45(11): 3205-3218, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36029253

RESUMO

The plant economics spectrum describes the trade-off between plant resource acquisition and storage, and sheds light on plant responses to environmental changes. However, the data used to construct the plant economics spectrum comes mainly from seed plants, thereby neglecting vascular non-seed plant lineages such as the ferns. To address this omission, we evaluated whether a fern economics spectrum exists using leaf and root traits of 23 fern species living under three subtropical forest conditions differing in light intensity and nutrient gradients. The fern leaf and root traits were found to be highly correlated and formed a plant economics spectrum. Specific leaf mass and root tissue density were found to be on one side of the spectrum (conservative strategy), whereas photosynthesis rate, specific root area, and specific root length were on the other side of the spectrum (acquisitive strategy). Ferns had higher photosynthesis and respiration rates, and photosynthetic nitrogen-use efficiency under high light conditions and higher specific root area and lower root tissue density in high nutrient environments. However, environmental changes did not significantly affect their resource acquisition strategies. Thus, the plant economics spectrum can be broadened to include ferns, which expands its phylogenetic and ecological implications and utility.


Assuntos
Gleiquênias , Florestas , Nitrogênio , Fotossíntese/fisiologia , Filogenia , Folhas de Planta/fisiologia , Plantas
18.
Ann Bot ; 130(3): 265-283, 2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-35947983

RESUMO

BACKGROUND: Plants invest photosynthates in construction and maintenance of their structures and functions. Such investments are considered costs. These costs are recovered by the CO2 assimilation rate (A) in the leaves, and thus A is regarded as the immediate, short-term benefit. In photosynthesizing leaves, CO2 diffusion from the air to the carboxylation site is hindered by several structural and biochemical barriers. CO2 diffusion from the intercellular air space to the chloroplast stroma is obstructed by the mesophyll resistance. The inverses is the mesophyll conductance (gm). Whether various plants realize an optimal gm, and how much investment is needed for a relevant gm, remain unsolved. SCOPE: This review examines relationships among leaf construction costs (CC), leaf maintenance costs (MC) and gm in various plants under diverse growth conditions. Through a literature survey, we demonstrate a strong linear relationship between leaf mass per area (LMA) and leaf CC. The overall correlation of CC vs. gm across plant phylogenetic groups is weak, but significant trends are evident within specific groups and/or environments. Investment in CC is necessary for an increase in LMA and mesophyll cell surface area (Smes). This allows the leaf to accommodate more chloroplasts, thus increasing A. However, increases in LMA and/or Smes often accompany other changes, such as cell wall thickening, which diminishes gm. Such factors that make the correlations of CC and gm elusive are identified. CONCLUSIONS: For evaluation of the contribution of gm to recover CC, leaf life span is the key factor. The estimation of MC in relation to gm, especially in terms of costs required to regulate aquaporins, could be essential for efficient control of gm over the short term. Over the long term, costs are mainly reflected in CC, while benefits also include ultimate fitness attributes in terms of integrated carbon gain over the life of a leaf, plant survival and reproductive output.


Assuntos
Dióxido de Carbono , Fotossíntese , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Análise Custo-Benefício , Células do Mesofilo , Filogenia , Folhas de Planta/fisiologia
19.
BMC Plant Biol ; 22(1): 347, 2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842580

RESUMO

BACKGROUND: Paved urban environments can pose great threats to the physiological functioning and ecological services of street trees. In this context, assessment of leaf phenotypic plasticity is crucial for understanding the ecological strategy of tree species under impervious pavements. RESULTS: In this study, we measured a set of leaf economic traits, hydraulic traits of Cinnamomum camphora, and surrounding environmental factors in a street site (the soil was covered by the impervious pavement) and a park site (the soil was covered by grass) in Hefei, eastern China. Compared with the park site, trees in the street site had higher stomatal length (SL), leaf thickness (LT), maximum photochemical quantum yield of photosystem II (Y(II)), and lower stomatal density (SD), specific leaf area (SLA), the leaf water potential at 50% loss of hydraulic conductance (P50), and leaf turgor loss point (TLP). Redundancy analysis showed that air relative humidity and volumetric soil water content caused these traits to be altered. CONCLUSIONS: Our results showed that C. camphora adapted to the street pavement environment through the coordination of leaf economic and leaf hydraulic traits, and adopted the slow investment return type in the leaf economic spectrum and high drought resistance to meet its actual physiological needs. This finding provides a new perspective for understanding the physiological strategies of street trees to adapt to urban pavement environments.


Assuntos
Cinnamomum camphora , Secas , Folhas de Planta/fisiologia , Solo , Árvores/fisiologia , Água/fisiologia
20.
Planta ; 256(1): 19, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35750944

RESUMO

MAIN CONCLUSION: The leaf patch clamp pressure probe combined with gas exchange measurements provides a non-invasive approach for measuring leaf aerenchyma pressure and study its physiological role in plants. The non-invasive leaf patch clamp pressure probe (LPCP) measures the output pressure, Pp, in response to the pressure applied by two magnets clamped to a leaf. In many plant species, it has been observed that the diel pattern of Pp follows the changes in the leaf turgor pressure reversely. The genus Hippeastrum comprises 143 species and many hybrids and cultivars of high economic value within Amaryllidaceae. Their leaves are characterized by the presence of aerenchyma composed of lacunae, running throughout the leaf and composing most of the mesophyll volume. In Hippeastrum, the diel changes of the LPCP output pressure are the reverse of that observed on the air pressure in the leaf aerenchyma, Pa, which depends on the changes in the leaf vapor pressure occurring during photosynthesis. A theoretical model is proposed and confirmed experimentally by LPCP and gas exchange measurements. The output pressure, Pp, in Hippeastrum can be related to the plant water status through the gas exchange processes that occur during photosynthesis. Considering the natural habitats of Hippeastrum species, these results agree with the physiological role of leaf aerenchyma in facilitating gas transport and light scattering in leaves, thus contributing to the photosynthetic efficiency of these plants under adverse environments. A second, but supplemental, interpretation of the LPCP output pressure, Pp, when applied on species in which the aerenchyma constitutes most of the mesophyll volume is presented.


Assuntos
Amaryllidaceae , Folhas de Planta , Água , Amaryllidaceae/fisiologia , Transporte Biológico , Fotossíntese , Folhas de Planta/fisiologia , Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA