Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Agric Food Chem ; 69(2): 638-645, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33398988

RESUMO

With widespread applications of the latest neonicotinoid in agriculture, dinotefuran has gradually become a hazardous contaminant for plants through the generation of excessive reactive oxygen species. However, the potential toxic mechanisms of oxidative damages to plants induced by dinotefuran are still unknown. As a core component of the glutathione antioxidant enzyme system, glutathione peroxidases have been used as biomarkers to reflect excessive oxidative stress. In this study, the hazardous effects of dinotefuran on AtGPX6 were investigated at the molecular level. The intrinsic fluorescence intensity of AtGPX6 was quenched using the static quenching mechanism upon binding with dinotefuran. Moreover, a single binding site was predicted for AtGPX6 toward dinotefuran, and the complex formation was presumed to be driven by hydrogen bonds or van der Waals forces, which conformed with the molecular docking results. In addition, AtGPX6 exhibited moderate binding affinity with dinotefuran based on the bio-layer interferometry assay. In addition, the loosening and unfolding of the protein skeleton of AtGPX6 with the addition of dinotefuran were explored along with the increase of hydrophobicity around tryptophan residues. Lastly, the toxic effects of dinotefuran on the root growth of Arabidopsis seedlings were also examined. The exploration of the binding mechanism of dinotefuran with AtGPX6 at the molecular level would provide the toxicity assessment of dinotefuran on plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/enzimologia , Guanidinas/farmacologia , Inseticidas/farmacologia , Neonicotinoides/farmacologia , Nitrocompostos/farmacologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Arabidopsis/química , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sítios de Ligação , Inseticidas/química , Simulação de Acoplamento Molecular , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/química , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Plântula/química , Plântula/efeitos dos fármacos , Plântula/enzimologia , Plântula/genética
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 229: 117955, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31887676

RESUMO

As a most abundant plasticizer, Di-(2-ethylhexyl) phthalate (DEHP) has been widely used in agriculture with an associated potential toxicity to many species including plants via the production of the excessive reactive oxygen species (ROS). However, the potential toxic mechanisms of the plasticizer DEHP-induced oxidative damage to plants remain unknown. The antioxidant enzyme glutathione peroxidase has been suggested as biomarkers to reflect over excessive oxidative stress. In this study, the effect of DEHP on AtGPX6 was evaluated by multi-spectroscopic techniques and molecular docking method. The fluorescence intensity of AtGPX6 was reduced by the static quenching mechanism upon the addition of DEHP. The predominant forces in complex formation was mainly impelled by hydrogen bonding and Van der Waals forces based on the negative ΔH and ΔS, which was in accordance with the molecular docking results. In addition, the secondary structural changes resulted from the complex formation were investigated in presence of different amounts of DEHP by the combination of fluorescence, UV-vis absorption and Circular dichroism spectra, which revealed the loosening and unfolding of the framework of AtGPX6 accompanied with the enhancement of the hydrophilicity around the tryptophan residues. The exploration of the interaction mechanism of DEHP with AtGPX6 at molecular level would help to evaluate the toxicity of the plasticizers and forecast the related adverse effects on plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Biomarcadores/metabolismo , Dietilexilftalato/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Plastificantes/toxicidade , Medição de Risco/métodos , Antioxidantes/metabolismo , Arabidopsis/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA