Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 241
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8145, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38584229

RESUMO

Photoplethysmography (PPG) uses light to detect volumetric changes in blood, and is integrated into many healthcare devices to monitor various physiological measurements. However, an unresolved limitation of PPG is the effect of skin pigmentation on the signal and its impact on PPG based applications such as pulse oximetry. Hence, an in-silico model of the human finger was developed using the Monte Carlo (MC) technique to simulate light interactions with different melanin concentrations in a human finger, as it is the primary determinant of skin pigmentation. The AC/DC ratio in reflectance PPG mode was evaluated at source-detector separations of 1 mm and 3 mm as the convergence rate (Q), a parameter that quantifies the accuracy of the simulation, exceeded a threshold of 0.001. At a source-detector separation of 3 mm, the AC/DC ratio of light skin was 0.472 times more than moderate skin and 6.39 than dark skin at 660 nm, and 0.114 and 0.141 respectively at 940 nm. These findings are significant for the development of PPG-based sensors given the ongoing concerns regarding the impact of skin pigmentation on healthcare devices.


Assuntos
Melaninas , Fotopletismografia , Humanos , Fotopletismografia/métodos , Método de Monte Carlo , Oximetria/métodos , Dedos/fisiologia
2.
Sensors (Basel) ; 24(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38400254

RESUMO

Stress has emerged as a major concern in modern society, significantly impacting human health and well-being. Statistical evidence underscores the extensive social influence of stress, especially in terms of work-related stress and associated healthcare costs. This paper addresses the critical need for accurate stress detection, emphasising its far-reaching effects on health and social dynamics. Focusing on remote stress monitoring, it proposes an efficient deep learning approach for stress detection from facial videos. In contrast to the research on wearable devices, this paper proposes novel Hybrid Deep Learning (DL) networks for stress detection based on remote photoplethysmography (rPPG), employing (Long Short-Term Memory (LSTM), Gated Recurrent Units (GRU), 1D Convolutional Neural Network (1D-CNN)) models with hyperparameter optimisation and augmentation techniques to enhance performance. The proposed approach yields a substantial improvement in accuracy and efficiency in stress detection, achieving up to 95.83% accuracy with the UBFC-Phys dataset while maintaining excellent computational efficiency. The experimental results demonstrate the effectiveness of the proposed Hybrid DL models for rPPG-based-stress detection.


Assuntos
Aprendizado Profundo , Humanos , Fotopletismografia , Face , Custos de Cuidados de Saúde , Memória de Longo Prazo
3.
J Biomed Opt ; 29(1): 017001, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38188965

RESUMO

Significance: The study of sublingual microcirculation offers valuable insights into vascular changes and overcomes some limitations of peripheral microcirculation assessment. Videomicroscopy and pulse oximetry have been used to assess microcirculation, providing insights into organ perfusion beyond macrohemodynamics parameters. However, both techniques have important limitations that preclude their use in clinical practice. Aim: To address this, we propose a non-invasive approach using photoplethysmography (PPG) to assess microcirculation. Approach: Two experiments were performed on different samples of 31 subjects. First, multi-wavelength, finger PPG signals were compared before and while applying pressure on the sensor to determine if PPG signals could detect changes in peripheral microcirculation. For the second experiment, PPG signals were acquired from the ventral region of the tongue, aiming to assess the microcirculation through features calculated from the PPG signal and its first derivative. Results: In experiment 1, 13 out of 15 features extracted from green PPG signals showed significant differences (p<0.05) before and while pressure was applied to the sensor, suggesting that green light could detect flow distortion in superficial capillaries. In experiment 2, 15 features showed potential application of PPG signal for sublingual microcirculation assessment. Conclusions: The PPG signal and its first derivative have the potential to effectively assess microcirculation when measured from the fingertip and the tongue. The assessment of sublingual microcirculation was done through the extraction of 15 features from the green PPG signal and its first derivative. Future studies are needed to standardize and gain a deeper understanding of the evaluated features.


Assuntos
Luz Verde , Soalho Bucal , Humanos , Valores de Referência , Microcirculação , Fotopletismografia
4.
Sci Rep ; 14(1): 2024, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263412

RESUMO

Cardiovascular diseases (CVDs) remain the leading cause of global mortality, therefore understanding arterial stiffness is essential to developing innovative technologies to detect, monitor and treat them. The ubiquitous spread of photoplethysmography (PPG), a completely non-invasive blood-volume sensing technology suitable for all ages, highlights immense potential for arterial stiffness assessment in the wider healthcare setting outside specialist clinics, for example during routine visits to a General Practitioner or even at home with the use of mobile and wearable health devices. This study employs a custom-manufactured in vitro cardiovascular system with vessels of varying stiffness to test the hypothesis that PPG signals may be used to detect and assess the level of arterial stiffness under controlled conditions. Analysis of various morphological features demonstrated significant (p < 0.05) correlations with vessel stiffness. Particularly, area related features were closely linked to stiffness in red PPG signals, while for infrared PPG signals the most correlated features were related to pulse-width. This study demonstrates the utility of custom vessels and in vitro investigations to work towards non-invasive cardiovascular assessment using PPG, a valuable tool with applications in clinical healthcare, wearable health devices and beyond.


Assuntos
Doenças Cardiovasculares , Sistema Cardiovascular , Rigidez Vascular , Humanos , Fotopletismografia , Volume Sanguíneo
5.
IEEE J Biomed Health Inform ; 28(2): 1078-1088, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37948137

RESUMO

OBJECTIVE: The proliferation of wearable devices has escalated the standards for photoplethysmography (PPG) signal quality. This study introduces a lightweight model to address the imperative need for precise, real-time evaluation of PPG signal quality, followed by its deployment and validation utilizing our integrated upper computer and hardware system. METHODS: Multiscale Markov Transition Fields (MMTF) are employed to enrich the morphological information of the signals, serving as the input for our proposed hybrid model (HM). HM undergoes initial pre-training utilizing the MIMIC-III and UCI databases, followed by fine-tuning the Queensland dataset. Knowledge distillation (KD) then transfers the large-parameter model's knowledge to the lightweight hybrid model (LHM). LHM is subsequently deployed on the upper computer for real-time signal quality assessment. RESULTS: HM achieves impressive accuracies of 99.1% and 96.0% for binary and ternary classification, surpassing current state-of-the-art methods. LHM, with only 0.2 M parameters (0.44% of HM), maintains high accuracy despite a 2.6% drop. It achieves an inference speed of 0.023 s per image, meeting real-time display requirements. Furthermore, LHM attains a 97.7% accuracy on a self-created database. HM outperforms current methods in PPG signal quality accuracy, demonstrating the effectiveness of our approach. Additionally, LHM substantially reduces parameter count while maintaining high accuracy, enhancing efficiency and practicality for real-time applications. CONCLUSION: The proposed methodology demonstrates the capability to achieve high-precision and real-time assessment of PPG signal quality, and its practical validation has been successfully conducted during deployment. SIGNIFICANCE: This study contributes a convenient and accurate solution for the real-time evaluation of PPG signals, offering extensive application potential.


Assuntos
Processamento de Sinais Assistido por Computador , Dispositivos Eletrônicos Vestíveis , Humanos , Algoritmos , Fotopletismografia/métodos , Frequência Cardíaca , Artefatos
6.
Artigo em Inglês | MEDLINE | ID: mdl-38082838

RESUMO

Retinopathy is one of the most common micro vascular impairments in diabetic subjects. Elevated blood glucose leads to capillary occlusion, provoking the uncontrolled increase in local growth of new vessels in the retina. When left untreated, it can lead to blindness. Traditional approaches for retinopathy detection require expensive devices and high specialized personnel. Being a microvascular complication, the retinopathy could be detected using the photoplethysmography (PPG) technology. In this paper we investigate the predictive value of the pulse wave velocity and PPG signal analysis with machine and deep learning approaches to detect retinopathy in diabetic subjects. PPG signals and pulse wave velocity (PWV) showed promising results in assessing the diabetic retinopathy. The best performances were scored by a LightGBM based model trained over a subset of the available dataset obtaining 80% of specificity and sensitivity.Clinical relevance- PPG based retinopathy detection could make the retinopathy detection more accessible since it does not need neither expensive devices for signal acquisition nor highly specialized personnel to be interpreted.


Assuntos
Aprendizado Profundo , Diabetes Mellitus , Retinopatia Diabética , Humanos , Fotopletismografia , Retinopatia Diabética/diagnóstico , Análise de Onda de Pulso , Medição de Risco
7.
Artigo em Inglês | MEDLINE | ID: mdl-38083362

RESUMO

In this work, we classify the stress state of car drivers using multimodal physiological signals and regularized deep kernel learning. Using a driving simulator in a controlled environment, we acquire electrocardiography (ECG), electrodermal activity (EDA), photoplethysmography (PPG), and respiration rate (RESP) from N = 10 healthy drivers in experiments of 25min duration with different stress states (5min resting, 10min driving, 10min driving + answering cognitive questions). We manually remove unusable segments and approximately 4h of data remain. Multimodal time and frequency features are extracted and employed to regularized deep kernel machine learning based on a fusion framework. Task-specific representations of different physiological signals are combined using intermediate fusion. Subsequently, the fused multimodal features are fed a support vector machine (SVM) and a random forest (RF) for stress classification. The experimental results show that the proposed approach can discriminate between stress states. The combination of PPG and ECG using RF as classifier yields the highest F1-score of 0.97 in the test set. PPG only and RF yield a maximum F1-score of 0.90. Furthermore, subject-specific cross-validation improves performance. ECG and PPG signals are reliable in classifying the stress state of a car driver. In summary, the proposed framework could be extended to real-time stress state assessment in driving conditions.


Assuntos
Eletrocardiografia , Aprendizado de Máquina , Taxa Respiratória , Fotopletismografia , Máquina de Vetores de Suporte
8.
Sensors (Basel) ; 23(24)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38139610

RESUMO

Sensor data has been used in social security and welfare infrastructures such as insurance and medical care to provide personalized products and services; there is a risk that attackers can alter sensor data to obtain unfair benefits. We consider that one of the attack methods to modify sensor data is to attack the wearer's body to modify biometric information. In this study, we propose a noninvasive attack method to modify the sensor value of a photoplethysmogram. The proposed method can disappear pulse wave peaks by pressurizing the upper arm with air pressure to control blood volume. Seven subjects experiencing a rest environment and five subjects experiencing an after-exercise environment wore five different models of smartwatches, and three pressure patterns were performed. It was confirmed in both situations that the displayed heart rate decreased from the true heart rate.


Assuntos
Determinação da Pressão Arterial , Fotopletismografia , Humanos , Pressão Sanguínea/fisiologia , Fotopletismografia/métodos , Determinação da Pressão Arterial/métodos , Frequência Cardíaca/fisiologia , Computadores
9.
Sensors (Basel) ; 23(24)2023 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-38139728

RESUMO

This review outlines the latest methods and innovations for assessing arterial stiffness, along with their respective advantages and disadvantages. Furthermore, we present compelling evidence indicating a recent growth in research focused on assessing arterial stiffness using photoplethysmography (PPG) and propose PPG as a potential tool for assessing vascular ageing in the future. Blood vessels deteriorate with age, losing elasticity and forming deposits. This raises the likelihood of developing cardiovascular disease (CVD), widely reported as the global leading cause of death. The ageing process induces structural modifications in the vascular system, such as increased arterial stiffness, which can cause various volumetric, mechanical, and haemodynamic alterations. Numerous techniques have been investigated to assess arterial stiffness, some of which are currently used in commercial medical devices and some, such as PPG, of which still remain in the research space.


Assuntos
Doenças Cardiovasculares , Rigidez Vascular , Humanos , Fotopletismografia/métodos , Envelhecimento , Artérias
10.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 40(6): 1102-1107, 2023 Dec 25.
Artigo em Chinês | MEDLINE | ID: mdl-38151932

RESUMO

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia. Early diagnosis and effective management are important to reduce atrial fibrillation-related adverse events. Photoplethysmography (PPG) is often used to assist wearables for continuous electrocardiograph monitoring, which shows its unique value. The development of PPG has provided an innovative solution to AF management. Serial studies of mobile health technology for improving screening and optimized integrated care in atrial fibrillation have explored the application of PPG in screening, diagnosing, early warning, and integrated management in patients with AF. This review summarizes the latest progress of PPG analysis based on artificial intelligence technology and mobile health in AF field in recent years, as well as the limitations of current research and the focus of future research.


Assuntos
Fibrilação Atrial , Humanos , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/terapia , Fotopletismografia , Inteligência Artificial , Eletrocardiografia , Tecnologia Biomédica
11.
Surg Endosc ; 37(11): 8919-8929, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37872427

RESUMO

BACKGROUND: An objective evaluation of the functional state and viability of biological tissues during minimally invasive surgery remains unsolved task. Various non-contact methods for evaluating perfusion during laparoscopic surgery are discussed in the literature, but so far there have been no reports of their use in clinical settings. METHODS AND PATIENTS: Imaging photoplethysmography (iPPG) is a new method for quantitative assessment of perfusion distribution along the tissue. This is the first study in which we demonstrate successful use of iPPG to assess perfusion of organs during laparoscopic surgery in an operation theater. We used a standard rigid laparoscope connected to a standard digital monochrome camera, and abdominal organs were illuminated by green light. A distinctive feature is the synchronous recording of video frames and electrocardiogram with subsequent correlation data processing. During the laparoscopically assisted surgeries in nine cancer patients, the gradient of perfusion of the affected organs was evaluated. In particular, measurements were carried out before preparing a part of the intestine or stomach for resection, after anastomosis, or during physiological tests. RESULTS: The spatial distribution of perfusion and its changes over time were successfully measured in all surgical cases. In particular, perfusion gradient of an intestine before resection was visualized and quantified by our iPPG laparoscope in all respective cases. It was also demonstrated that systemic administration of norepinephrine leads to a sharper gradient between well and poorly perfused areas of the colon. In four surgical cases, we have shown capability of the laparoscopic iPPG system for intra-abdominal assessment of perfusion in the anastomosed organs. Moreover, good repeatability of continuous long-term measurements of tissue perfusion inside the abdominal cavity was experimentally demonstrated. CONCLUSION: Our study carried out in real clinical settings has shown that iPPG laparoscope is feasible for intra-abdominal visualization and quantitative assessment of perfusion distribution.


Assuntos
Cavidade Abdominal , Laparoscopia , Humanos , Fotopletismografia/métodos , Laparoscopia/métodos , Diagnóstico por Imagem , Perfusão
12.
Psychosom Med ; 85(7): 568-576, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37678565

RESUMO

OBJECTIVE: Heart rate variability-biofeedback (HRV-BF) is an effective intervention to reduce stress and anxiety and requires accurate measures of real-time HRV. HRV can be measured through photoplethysmography (PPG) using the camera of a mobile phone. No studies have directly compared HRV-BF supported through PPG against classical electrocardiogram (ECG). The current study aimed to validate PPG HRV measurements during HRV-BF against ECG. METHODS: Fifty-seven healthy participants (70% women) with a mean (standard deviation) age of 26.70 (9.86) years received HRV-BF in the laboratory. Participants filled out questionnaires and performed five times a 5-minute diaphragmatic breathing exercise at different paces (range, ~6.5 to ~4.5 breaths/min). Four HRV indices obtained through PPG, using the Happitech software development kit, and ECG, using the validated NeXus apparatus, were calculated and compared: RMSSD, pNN50, LFpower, and HFpower. Resonance frequency (i.e., optimal breathing pace) was also compared between methods. RESULTS: All intraclass correlation coefficient values of the five different breathing paces were "near perfect" (>0.90) for all HRV indices: lnRMSSD, lnpNN50, lnLFpower, and lnHFpower. All Bland-Altman analyses (with just three incidental exceptions) showed good interchangeability of PPG- and ECG-derived HRV indices. No systematic evidence for proportional bias was found for any of the HRV indices. In addition, correspondence in resonance frequency detection was good with 76.6% agreement between PPG and ECG. CONCLUSIONS: PPG is a potentially reliable and valid method for the assessment of HRV. PPG is a promising replacement of ECG assessment to measure resonance frequency during HRV-BF.


Assuntos
Eletrocardiografia , Frequência Cardíaca , Aplicativos Móveis , Fotopletismografia , Humanos , Masculino , Feminino , Adulto , Frequência Cardíaca/fisiologia , Telefone Celular , Biorretroalimentação Psicológica , Ansiedade , Eletrocardiografia/métodos , Estudos Transversais , Reprodutibilidade dos Testes , Estresse Psicológico
13.
Sensors (Basel) ; 23(16)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37631601

RESUMO

In the last few years, interest in wearable technology for physiological signal monitoring is rapidly growing, especially during and after the COVID-19 pandemic [...].


Assuntos
COVID-19 , Dispositivos Eletrônicos Vestíveis , Humanos , COVID-19/diagnóstico , Pandemias , Fotopletismografia
14.
Sensors (Basel) ; 23(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37420772

RESUMO

Photoplethysmography (PPG) is used to measure blood volume changes in the microvascular bed of tissue. Information about these changes along time can be used for estimation of various physiological parameters, such as heart rate variability, arterial stiffness, and blood pressure, to name a few. As a result, PPG has become a popular biological modality and is widely used in wearable health devices. However, accurate measurement of various physiological parameters requires good-quality PPG signals. Therefore, various signal quality indexes (SQIs) for PPG signals have been proposed. These metrics have usually been based on statistical, frequency, and/or template analyses. The modulation spectrogram representation, however, captures the second-order periodicities of a signal and has been shown to provide useful quality cues for electrocardiograms and speech signals. In this work, we propose a new PPG quality metric based on properties of the modulation spectrum. The proposed metric is tested using data collected from subjects while they performed various activity tasks contaminating the PPG signals. Experiments on this multi-wavelength PPG dataset show the combination of proposed and benchmark measures significantly outperforming several benchmark SQIs with improvements of 21.3% BACC (balanced accuracy) for green, 21.6% BACC for red, and 19.0% BACC for infrared wavelengths, respectively, for PPG quality detection tasks. The proposed metrics also generalize for cross-wavelength PPG quality detection tasks.


Assuntos
Fotopletismografia , Dispositivos Eletrônicos Vestíveis , Humanos , Frequência Cardíaca/fisiologia , Pressão Sanguínea , Volume Sanguíneo , Processamento de Sinais Assistido por Computador , Algoritmos
15.
Technol Health Care ; 31(6): 2165-2192, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37302054

RESUMO

BACKGROUND: The emergency rescue ability of firefighters is particularly important in the event of major disasters or accidents. Therefore, an assessment of the firefighter-training effectiveness is necessary. OBJECTIVE: This paper aims to achieve a scientific and effective assessment of the firefighter-training effectiveness in China. An assessment method based on human factor parameters and machine learning was proposed. METHOD: The model is constructed by collecting the corresponding human factor parameters such as electrocardiographic signals, electroencephalographic signals, surface electromyographic signals, and photoplethysmographic signals through wireless sensors and using them as constraint indicators. For the problems of weak human factor parameters and high noise proportion, an improved flexible analytic wavelet transform algorithm is used to denoise and extract the corresponding feature values. To overcome the limitations of traditional assessment methods, improved machine learning algorithms are used to comprehensively assess the training effectiveness of firefighters and provide targeted training suggestions. RESULTS: The effectiveness of this study's evaluation method is verified by comparing it with the expert scoring method and considering firefighters from a special fire station in Xhongmen, Daxing District, Beijing, as an example. CONCLUSION: This study can effectively guide the scientific training of firefighters and the method is more objective and accurate than the traditional method.


Assuntos
Bombeiros , Humanos , China , Eletrocardiografia , Aprendizado de Máquina , Fotopletismografia
16.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 40(3): 536-543, 2023 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-37380394

RESUMO

Photoplethysmography (PPG) is often affected by interference, which could lead to incorrect judgment of physiological information. Therefore, performing a quality assessment before extracting physiological information is crucial. This paper proposed a new PPG signal quality assessment by fusing multi-class features with multi-scale series information to address the problems of traditional machine learning methods with low accuracy and deep learning methods requiring a large number of samples for training. The multi-class features were extracted to reduce the dependence on the number of samples, and the multi-scale series information was extracted by a multi-scale convolutional neural network and bidirectional long short-term memory to improve the accuracy. The proposed method obtained the highest accuracy of 94.21%. It showed the best performance in all sensitivity, specificity, precision, and F1-score metrics, compared with 6 quality assessment methods on 14 700 samples from 7 experiments. This paper provides a new method for quality assessment in small samples of PPG signals and quality information mining, which is expected to be used for accurate extraction and monitoring of clinical and daily PPG physiological information.


Assuntos
Aprendizado de Máquina , Fotopletismografia , Redes Neurais de Computação
17.
IEEE Trans Biomed Circuits Syst ; 17(2): 349-361, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37163387

RESUMO

This article presents a novel PPG acquisition platform capable of synchronous multi-wavelength signal acquisition from two measurement locations with up to 4 independent wavelengths from each in parallel. The platform is fully configurable and operates at 1ksps, accommodating a wide variety of transmitters and detectors to serve as both a research tool for experimentation and a clinical tool for disease monitoring. The sensing probes presented in this work acquire 4 PPG channels from the wrist and 4 PPG channels from the fingertip, with wavelengths such that surrogates for pulse wave velocity and haematocrit can be extracted. For conventional PPG sensing, we have achieved the mean error of 4.08 ± 3.72 bpm for heart-rate and a mean error of 1.54 ± 1.04% for SpO 2 measurement, with the latter lying within the FDA limits for commercial pulse oximeters. We have further evaluated over 700 individual peak-to-peak time differences between wrist and fingertip signals, achieving a normalized weighted average PWV of 5.80 ± 1.58 m/s, matching with values of PWV found for this age group in literature. Lastly, we introduced and computed a haematocrit ratio ( Rhct) between the deep IR and deep red wavelength from the fingertip sensor, finding a significant difference between male and female values (median of 1.9 and 2.93 respectively) pointing to devices sensitivity to Hct.


Assuntos
Fotopletismografia , Análise de Onda de Pulso , Masculino , Humanos , Feminino , Oximetria , Oxigênio , Dedos , Frequência Cardíaca
18.
Sensors (Basel) ; 23(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37050728

RESUMO

With wearable sensors, the acquisition of physiological signals has become affordable and feasible in everyday life. Specifically, Photoplethysmography (PPG), being a low-cost and highly portable technology, has attracted notable interest for measuring and diagnosing cardiac activity, one of the most important physiological and autonomic indicators. In addition to the technological development, several specific signal-processing algorithms have been designed to enable reliable detection of heartbeats and cope with the lower quality of the signals. In this study, we compare three heartbeat detection algorithms: Derivative-Based Detection (DBD), Recursive Combinatorial Optimization (RCO), and Multi-Scale Peak and Trough Detection (MSPTD). In particular, we considered signals from two datasets, namely, the PPG-DALIA dataset (N = 15) and the FANTASIA dataset (N = 20) which differ in terms of signal characteristics (sampling frequency and length) and type of acquisition devices (wearable and medical-grade). The comparison is performed both in terms of heartbeat detection performance and computational workload required to execute the algorithms. Finally, we explore the applicability of these algorithms on the cardiac component obtained from functional Near InfraRed Spectroscopy signals (fNIRS).The results indicate that, while the MSPTD algorithm achieves a higher F1 score in cases that involve body movements, such as cycling (MSPTD: Mean = 74.7, SD = 14.4; DBD: Mean = 54.4, SD = 21.0; DBD + RCO: Mean = 49.5, SD = 22.9) and walking up and down the stairs (MSPTD: Mean = 62.9, SD = 12.2; DBD: Mean = 50.5, SD = 11.9; DBD + RCO: Mean = 45.0, SD = 14.0), for all other activities the three algorithms perform similarly. In terms of computational complexity, the computation time of the MSPTD algorithm appears to grow exponentially with the signal sampling frequency, thus requiring longer computation times in the case of high-sampling frequency signals, where the usage of the DBD and RCO algorithms might be preferable. All three algorithms appear to be appropriate candidates for exploring the applicability of heartbeat detection on fNIRS data.


Assuntos
Algoritmos , Fotopletismografia , Humanos , Frequência Cardíaca/fisiologia , Fotopletismografia/métodos , Processamento de Sinais Assistido por Computador , Análise Espectral
19.
Sensors (Basel) ; 23(3)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36772543

RESUMO

Despite the notable recent developments in the field of remote photoplethysmography (rPPG), extracting a reliable pulse rate variability (PRV) signal still remains a challenge. In this study, eight image-based photoplethysmography (iPPG) extraction methods (GRD, AGRD, PCA, ICA, LE, SPE, CHROM, and POS) were compared in terms of pulse rate (PR) and PRV features. The algorithms were made robust for motion and illumination artifacts by using ad hoc pre- and postprocessing steps. Then, they were systematically tested on the public dataset UBFC-RPPG, containing data from 42 subjects sitting in front of a webcam (30 fps) while playing a time-sensitive mathematical game. The performances of the algorithms were evaluated by statistically comparing iPPG-based and finger-PPG-based PR and PRV features in terms of Spearman's correlation coefficient, normalized root mean square error (NRMSE), and Bland-Altman analysis. The study revealed POS and CHROM techniques to be the most robust for PR estimation and the assessment of overall autonomic nervous system (ANS) dynamics by using PRV features in time and frequency domains. Furthermore, we demonstrated that a reliable characterization of the vagal tone is made possible by computing the Poincaré map of PRV series derived from the POS and CHROM methods. This study supports the use of iPPG systems as promising tools to obtain clinically useful and specific information about ANS dynamics.


Assuntos
Fotopletismografia , Dispositivos Eletrônicos Vestíveis , Humanos , Fotopletismografia/métodos , Processamento de Sinais Assistido por Computador , Frequência Cardíaca/fisiologia , Diagnóstico por Imagem , Algoritmos
20.
Europace ; 25(3): 835-844, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36748247

RESUMO

AIMS: Although mobile health tools using photoplethysmography (PPG) technology have been validated for the detection of atrial fibrillation (AF), their utility for heart rate assessment during AF remains unclear. Therefore, we aimed to evaluate the accuracy of continuous PPG-based 1 min mean heart rate assessment during AF. METHODS AND RESULTS: Persistent AF patients were provided with Holter electrocardiography (ECG) (for ≥24 h) simultaneously with a PPG-equipped smartwatch. Both the PPG-based smartwatch and Holter ECG automatically and continuously monitored patients' heart rate/rhythm. ECG and PPG recordings were synchronized and divided into 1 min segments, from which a PPG-based and an ECG-based average heart rate estimation were extracted. In total, 47 661 simultaneous ECG and PPG 1 min heart rate segments were analysed in 50 patients (34% women, age 73 ± 8 years). The agreement between ECG-determined and PPG-determined 1 min mean heart rate was high [root mean squared error (RMSE): 4.7 bpm]. The 1 min mean heart rate estimated using PPG was accurate within ±10% in 93.7% of the corresponding ECG-derived 1 min mean heart rate segments. PPG-based 1 min mean heart rate estimation was more often accurate during night-time (97%) than day-time (91%, P < 0.001) and during low levels (96%) compared to high levels of motion (92%, P < 0.001). A neural network with a 10 min history of the recording did not further improve the PPG-based 1 min mean heart rate assessment [RMSE: 4.4 (95% confidence interval: 3.5-5.2 bpm)]. Only chronic heart failure was associated with a lower agreement between ECG-derived and PPG-derived 1 min mean heart rates (P = 0.040). CONCLUSION: During persistent AF, continuous PPG-based 1 min mean heart rate assessment is feasible in 60% of the analysed period and shows high accuracy compared with Holter ECG for heart rates <110 bpm.


Assuntos
Fibrilação Atrial , Humanos , Feminino , Idoso , Idoso de 80 Anos ou mais , Masculino , Fibrilação Atrial/diagnóstico , Frequência Cardíaca , Fotopletismografia/métodos , Eletrocardiografia/métodos , Eletrocardiografia Ambulatorial , Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA