Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Dis ; 108(9): 2710-2721, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38600772

RESUMO

Formally described in 2009, Phytophthora sansomeana is a pathogen of increasing interest in native, agricultural, and horticulturally important plant species. The objective of this study was to elucidate the symptomatic and asymptomatic host range of P. sansomeana on six agricultural crop species commonly used in field crop rotations in Michigan. In addition, sensitivity to oomicides commonly used in seed treatments, including oxathiapiprolin, mefenoxam, ethaboxam, and pyraclostrobin, was performed to aid in disease management recommendations. Plant biomass, quantity of P. sansomeana DNA in roots, and reisolations were used to assess pathogenicity and virulence of 18 isolates of P. sansomeana on each plant species using an inoculated seedling growth chamber assay. Isolates displayed varying levels of virulence to the hosts tested. Reisolations were completed for each plant species tested, and varying quantities of P. sansomeana DNA were found within all plant species root samples. Corn, wheat, soybean, dry bean, and winter cereal rye plants were symptomatic hosts with significant reduction observed in the total plant biomass. No significant reduction in total plant biomass was observed in oats, and oat roots harbored the least amount of P. sansomeana DNA. No P. sansomeana isolates were insensitive to the oomicide compounds tested with mean absolute inhibition (EC50) values of fungicide required for 50% growth inhibition values of 7.8 × 10-2 µg/ml for mefenoxam, 1.13 × 10-1 µg/ml for ethaboxam, 2.6 × 10-2 µg/ml for oxathiapiprolin, and 3.04 × 10-1 µg/ml for pyraclostrobin. These results suggest that common crop rotations in Michigan may not be a viable option to reduce soilborne inoculum accumulation and oomicide seed treatments could be considered for early-season management of P. sansomeana.


Assuntos
Avena , Glycine max , Phytophthora , Doenças das Plantas , Secale , Sementes , Triticum , Zea mays , Phytophthora/efeitos dos fármacos , Phytophthora/fisiologia , Phytophthora/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Secale/microbiologia , Zea mays/microbiologia , Avena/microbiologia , Triticum/microbiologia , Sementes/microbiologia , Glycine max/microbiologia , Especificidade de Hospedeiro , Fungicidas Industriais/farmacologia , Estrobilurinas/farmacologia , Raízes de Plantas/microbiologia , Virulência , Produtos Agrícolas/microbiologia , Michigan , Plântula/microbiologia , Biomassa , Carbamatos/farmacologia , Piridinas , Benzamidas , Alanina/análogos & derivados , Hidrocarbonetos Fluorados , Pirazóis
2.
Pestic Biochem Physiol ; 200: 105806, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582572

RESUMO

Boscalid, a widely used SDHI fungicide, has been employed in plant disease control for over two decades. However, there is currently no available information regarding its antifungal activity against Sclerotium rolfsii and the potential risk of resistance development in this pathogen. In this study, we evaluated the sensitivity of 100 S. rolfsii strains collected from five different regions in China during 2018-2019 to boscalid using mycelial growth inhibition method and assessed the risk of resistance development. The EC50 values for boscalid ranged from 0.2994 µg/mL to 1.0766 µg/mL against the tested strains, with an average EC50 value of 0.7052 ± 0.1473 µg/mL. Notably, a single peak sensitivity baseline was curved, indicating the absence of any detected resistant strains. Furtherly, 10 randomly selected strains of S. rolfsii were subjected to chemical taming to evaluate its resistance risk to boscalid, resulting in the successful generation of six stable and inheritable resistant mutants. These mutants exhibited significantly reduced mycelial growth, sclerotia production, and virulence compared to their respective parental strains. Cross-resistance tests revealed a correlation between boscalid and flutolanil, benzovindiflupyr, pydiflumetofen, fluindapyr, and thifluzamide; however, no cross-resistance was observed between boscalid and azoxystrobin. Thus, we conclude that the development risk of resistance in S. rolfsii to boscalid is low. Boscalid can be used as an alternative fungicide for controlling peanut sclerotium blight when combined with other fungicides that have different mechanisms of action. Finally, the target genes SDHB, SDHC, and SDHD in S. rolfsii were initially identified, cloned and sequenced to elucidate the mechanism of S. rolfsii resistance to boscalid. Two mutation genotypes were found in the mutants: SDHD-D111H and SDHD-H121Y. The mutants carrying SDHD-H121Y exhibited moderate resistance, while the mutants with SDHD-D111H showed low resistance. These findings contribute to our comprehensive understanding of molecular mechanisms underlying plant pathogens resistance to SDHI fungicides.


Assuntos
Basidiomycota , Compostos de Bifenilo , Fungicidas Industriais , Niacinamida/análogos & derivados , Fungicidas Industriais/farmacologia , Succinato Desidrogenase , Medição de Risco , Doenças das Plantas/microbiologia
3.
Pest Manag Sci ; 80(8): 3979-3987, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38520375

RESUMO

BACKGROUND: Sclerotium rolfsii is a destructive soil-borne fungal pathogen which is distributed worldwide. In previous study, the succinate dehydrogenase inhibitor (SDHI) fungicide benzovindiflupyr has been identified for its great antifungal activity against Sclerotium rolfsii. This study is aimed to investigate the resistance risk and mechanism of benzovindiflupyr in Sclerotium rolfsii. RESULTS: Eight stable benzovindiflupyr-resistant isolates were generated by fungicide adaptation. Although the obtained eight resistant isolates have a stronger pathogenicity than the parental sensitive isolate, they have a fitness penalty in the mycelial growth and sclerotia formation compared to the parental isolate. A positive cross-resistance existed in the resistant isolates between benzovindiflupyr and thifluzamide, carboxin, boscalid and isopyrazam. Three-point mutations, including SdhBN180D, SdhCQ68E and SdhDH103Y, were identified in the benzovindiflupyr-resistant isolates. However, molecular docking analysis indicated that only SdhDH103Y could influence the sensitivity of Sclerotium rolfsii to benzovindiflupyr. After mycelial co-incubation of resistant isolates and the sensitive isolate, resistance genes may be transmitted to the sensitive isolate. The in vivo efficacy of benzovindiflupyr and thifluzamide against benzovindiflupyr-resistant isolates was a little lower than that against the sensitive isolate but with no significant difference. CONCLUSION: The results suggested a low to medium resistance risk of Sclerotium rolfsii to benzovindiflupyr. However, once resistance occurs, it is possible to spread in the population of Sclerotium rolfsii. This study is helpful to understanding the risk and mechanism of resistance to benzovindiflupyr in multinucleate pathogens such as Sclerotium rolfsii. © 2024 Society of Chemical Industry.


Assuntos
Basidiomycota , Farmacorresistência Fúngica , Fungicidas Industriais , Fungicidas Industriais/farmacologia , Farmacorresistência Fúngica/genética , Basidiomycota/genética , Basidiomycota/efeitos dos fármacos , Medição de Risco , Succinato Desidrogenase/genética , Succinato Desidrogenase/antagonistas & inibidores , Doenças das Plantas/microbiologia
4.
Pestic Biochem Physiol ; 198: 105719, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38225065

RESUMO

The cucumber target spot, caused by Corynespora cassiicola, is a major cucumber disease in China. Mefentrifluconazole, a new triazole fungicide, exhibits remarkable efficacy in controlling cucumber target spot. However, the resistance risk and mechanism remain unclear. In this study, the inhibitory activity of mefentrifluconazole against 101 C. cassiicola isolates was determined, and the results indicated that the EC50 values ranged between 0.15 and 12.85 µg/mL, with a mean of 4.76 µg/mL. Fourteen mefentrifluconazole-resistant mutants of C. cassiicola were generated from six parental isolates in the laboratory through fungicide adaptation or UV irradiation. The resistance was relatively stable after ten consecutive transfers on a fungicide-free medium. No cross-resistance was observed between mefentrifluconazole and pyraclostrobin, fluopyram, prochloraz, mancozeb, or difenoconazole. Investigations into the biological characteristics of the resistant mutants revealed that six resistant mutants exhibited an enhanced compound fitness index (CFI) compared to the parental isolates, while others displayed a reduced or comparable CFI. The overexpression of CcCYP51A and CcCYP51B was detected in the resistant mutants, regardless of the presence or absence of mefentrifluconazole. Additionally, a two-way mixture of mefentrifluconazole and prochloraz at a concentration of 7:3 demonstrated superior control efficacy against the cucumber target spot, achieving a protection rate of 80%. In conclusion, this study suggests that the risk of C. cassiicola developing resistance to mefentrifluconazole is medium, and the overexpression of CcCYP51A and CcCYP51B might be associated with mefentrifluconazole resistance in C. cassiicola. The mefentrifluconazole and prochloraz two-way mixture presented promising control efficacy against the cucumber target spot.


Assuntos
Ascomicetos , Cucumis sativus , Fluconazol/análogos & derivados , Fungicidas Industriais , Imidazóis , Fungicidas Industriais/farmacologia
5.
Plant Dis ; 108(2): 461-472, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37669181

RESUMO

Tar spot, caused by Phyllachora maydis, is the most significant yield-limiting disease of corn (Zea mays L.) in Indiana. Currently, fungicides are an effective management tool for this disease, and partial returns from their use under different disease severity conditions has not previously been studied. Between 2019 and 2021, two separate field experiments were conducted in each year in Indiana to assess the efficacy of nine foliar fungicide products and nine fungicide application timings based on corn growth stages on tar spot symptoms and stromata, canopy greenness, yield, and influence on partial returns. All fungicides evaluated significantly suppressed tar spot development in the canopy and increased canopy greenness over the nontreated control. Additionally, applications of mefentrifluconazole + pyraclostrobin, metconazole + pyraclostrobin, cyproconazole + picoxystrobin at tassel, and propiconazole + benzovindiflupyr + azoxystrobin between the tassel and dough growth stages were the most effective at significantly reducing disease severity, increasing canopy greenness, protecting yield, and offered the greatest partial return. Fungicide products varied in their ability to protect yield under low and high disease severity conditions relative to the nontreated control. Consistently, positive yield increases were observed when disease severity was high, which translated to greater profitability relative to low severity conditions. On average, the yield increases across foliar fungicide products and timed application treatments were 544.6 and 1,020.7 kg/ha greater, and partial returns using a grain value of $0.17/kg were $92.6/ha and $173.5/ha greater, respectively, when high severity conditions occurred. This research demonstrates that foliar fungicides and appropriately timed fungicide applications can profitably be used to manage tar spot in Indiana under high disease severity conditions.


Assuntos
Fungicidas Industriais , Estrobilurinas , Fungicidas Industriais/farmacologia , Zea mays , Indiana
6.
Pest Manag Sci ; 80(4): 1802-1811, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38029343

RESUMO

BACKGROUND: Brown rot disease, caused by Monilinia fructicola, poses a significant challenge to peach production in China. The efficacy of mefentrifluconazole, a new triazole fungicide, in controlling brown rot in peaches has been remarkable. However, the resistance risk and mechanism associated with this fungicide remain unclear. This study was designed to assess the resistance risk of M. fructicola to mefentrifluconazole and reveal the potential resistance mechanism. RESULTS: The mean median effective concentration (EC50 ) of 101 M. fructicola isolates to mefentrifluconazole was 0.003 µg mL-1 , and the sensitivity exhibited a unimodal distribution. Seven mefentrifluconazole-resistant mutants were generated from three parental isolates in the laboratory through fungicide adaption. The biological characteristics of the resistant mutants revealed that three of them exhibited enhanced survival fitness compared to the parental isolates, whereas the remaining four mutants displayed reduced survival fitness. Mefentrifluconazole showed strong positive cross-resistance with fenbuconazole, whereas no cross-resistance was observed with pyrimethanil, procymidone or pydiflumetofen. No overexpression of MfCYP51 gene was detected in the resistant mutants. Multiple sequence alignment revealed that three resistant mutants (MXSB2-2, Mf12-1 and Mf12-2) had a point mutation (G461S) in MfCYP51 protein. Molecular docking techniques confirmed the contribution of this point mutation to mefentrifluconazole resistance. CONCLUSION: The risk of M. fructicola developing resistance to mefentrifluconazole is relatively low-to-medium and point mutation G461S in MfCYP51 could confer mefentrifluconazole resistance in M. fructicola. This study provided essential data for monitoring the emergence of resistance and developing resistance management strategies for mefentrifluconazole. © 2023 Society of Chemical Industry.


Assuntos
Ascomicetos , Fluconazol/análogos & derivados , Fungicidas Industriais , Prunus persica , Fungicidas Industriais/farmacologia , Simulação de Acoplamento Molecular , Medição de Risco
7.
Ecotoxicol Environ Saf ; 266: 115577, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37839184

RESUMO

The use of Plant Protection Products (PPPs) is leading to high exposure scenarios with potential risk to soil organisms, including non-target species. Assessment of the effects of PPPs on non-target organisms is one of the most important components of environmental risk assessment (ERA) since they play crucial functions in ecosystems, being main driving forces in different soil processes. As part of the framework, EFSA is proposing the use of the ecosystem services approach for setting specific protection goals. In fact, the services provided by soil organisms can be impacted by the misuse of PPPs in agroecosystems. The aim of this work was to assess PPPs potential risk upon ecosystem services along European soils, considering impacts on earthworms and collembola. Four well-known (2 insecticides-esfenvalerate and cyclaniliprole- and 2 fungicides - picoxystrobin and fenamidone-) worst case application (highest recommended application) were studied; exploring approaches for linked observed effects with impacts on ecosystem services, accounting for their mode of action (MoA), predicted exposure, time-course effects in Eisenia fetida and Folsomia sp. and landscape variability. The selected fungicides exerted more effects than insecticides on E. fetida, whereas few effects were reported for both pesticides regarding Folsomia sp. The most impacted ecosystem services after PPP application to crops appeared to be habitat provision, soil formation and retention, nutrient cycling, biodiversity, erosion regulation, soil remediation/waste treatment and pest and disease regulation. The main factors to be taken into account for a correct PPP use management in crops are discussed.


Assuntos
Artrópodes , Fungicidas Industriais , Inseticidas , Animais , Ecossistema , Fungicidas Industriais/farmacologia , Inseticidas/toxicidade , Solo , Medição de Risco
8.
Plant Dis ; 107(12): 3877-3885, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37311234

RESUMO

Wheat leaf rust, caused by Puccinia triticina f. sp. tritici (Pt), is distributed widely in wheat-producing areas and results in serious yield losses worldwide. In China, leaf rust has been largely controlled with a demethylation inhibitor (DMI) fungicide, triadimefon. Although high levels of fungicide resistance in pathogens have been reported, no field failure of wheat leaf rust to DMI fungicides has been reported in China. A resistance risk assessment of triadimefon to Pt was investigated in the present study. The sensitivity of 197 Pt isolates across the country to triadimefon was determined, and the density distribution of EC50 values (concentration at which mycelial growth is inhibited by 50%) showed a continuous multimodal curve because of the extensive use of this fungicide in wheat production, with a mean value of 0.46 µg/ml. The majority of the tested Pt isolates were sensitive to triadimefon, whereas 10.2% developed varying degrees of resistance. Characterization of parasitic fitness revealed that the triadimefon-resistant isolates exhibited strong adaptive traits in urediniospore germination rate, latent period, sporulation intensity, and lesion expansion rate. No correlation was observed between triadimefon and tebuconazole and hexaconazole, which have the similar mode of action, or pyraclostrobin and flubeneteram, which have different modes of action. Overexpression of the target gene Cyp51 led to the triadimefon resistance of Pt. The risk of resistance to triadimefon in Pt may be low to moderate. This study provided important data for fungicide resistance risk management against wheat leaf rust.


Assuntos
Basidiomycota , Fungicidas Industriais , Doenças das Plantas/genética , Basidiomycota/genética , Fungicidas Industriais/farmacologia , China , Triticum/genética , Medição de Risco
9.
Bioresour Technol ; 383: 129244, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37263446

RESUMO

The aim of this work was to perform a life-cycle analysis of the production process of a fungicide based on amphidinols. Two scenarios were evaluated: (1) biorefinery process -biofungicide, fatty acids and carotenoids were considered as co-products-, and (2) biofungicide as only product. Inventory data were taken and scaled-up from previous work on pilot-scale reactors, as well as lab-scale downstream equipment. A yearly production of 22,000 L of fungicide, was selected as the production objective. Despite, photosynthetic biomass is a sink of anthropogenic CO2, harvesting and downstream processing have large carbon footprints that exceed the biomass fixed carbon. Producing the biofungicide resulted in 34.61 and 271.33 ton of CO2e (15 years) for the Scenarios 1 and 2, respectively. Different commercial agricultural fungicides were compared with the microalgal fungicide. A lower impact of the microalgal product for most of the indicators, including carbon footprint, was shown.


Assuntos
Fungicidas Industriais , Microalgas , Biocombustíveis , Biomassa , Ácidos Graxos , Fungicidas Industriais/farmacologia , Pegada de Carbono
10.
Pestic Biochem Physiol ; 191: 105346, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36963928

RESUMO

Fusarium crown rot (FCR), primarily caused by Fusarium pseudograminearum, poses significant threats to cereal crops worldwide. Prothioconazole is a demethylation inhibitor (DMI) fungicide used to control FCR. However, the risk of resistance in F. pseudograminearum to prothioconazole has not yet been evaluated. In this study, the sensitivity of a total of 255 F. pseudograminearum strains obtained from Henan Province, China to prothioconazole were determined by the mycelial growth inhibition. The results showed that the effective concentration to 50% growth inhibition (EC50) of these strains ranged from 0.4228 µg/mL to 2.5284 µg/mL, with a mean EC50 value of 1.0692 ± 0.4527 µg/mL (mean ± SD). Thirty prothioconazole-resistant mutants were obtained out of six selected sensitive parental strains by means of fungicide taming. The resistant mutants exhibited defects in vegetative growth, conidia production, and pathogenicity on wheat seedlings compared to their parental strains. Under ion, cell wall, and temperature stress conditions but not osmotic stress, all the mutants exhibited decreased growth rates compared with their parental strains, which was consistent with the control treatment. Cross-resistance test showed that there was a cross-resistance relationship between prothioconazole and four DMI fungicides, including prochloraz, metconazole, tebuconazole and hexaconazole, but no cross-resistance was observed between prothioconazole and carbendazim, phenamacril, fludioxonil, or azoxystrobin. Although no site mutation occurred on Cyp51a and Cyp51b genes, the constitutive expression level of the Cyp51a gene was significantly increased in all mutants. After being treated with prothioconazole, the Cyp51a and Cyp51b genes were significantly increased in both the resistant mutants and their parents. These results suggested that the resistance to prothioconazole of the mutants may be attributed to the changes of the relative expression level of Cyp51a and Cyp51b genes. Taken together, these results could provide a theoretical basis for the scientific use of prothioconazole in the field and fungicide resistance management strategies.


Assuntos
Fungicidas Industriais , Fusarium , Fusarium/genética , Triticum , Grão Comestível , Fungicidas Industriais/farmacologia , Doenças das Plantas/prevenção & controle
11.
Commun Biol ; 6(1): 180, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36797413

RESUMO

The evolution of resistance to pesticides is a major burden in agriculture. Resistance management involves maximizing selection pressure heterogeneity, particularly by combining active ingredients with different modes of action. We tested the hypothesis that alternation may delay the build-up of resistance not only by spreading selection pressure over longer periods, but also by decreasing the rate of evolution of resistance to alternated fungicides, by applying an experimental evolution approach to the economically important crop pathogen Zymoseptoria tritici. Our results show that alternation is either neutral or slows the overall resistance evolution rate, relative to continuous fungicide use, but results in higher levels of generalism in evolved lines. We demonstrate that the nature of the fungicides, and therefore their relative intrinsic risk of resistance may underly this trade-off, more so than the number of fungicides and the rhythm of alternation. This trade-off is also dynamic over the course of resistance evolution. These findings open up new possibilities for tailoring resistance management effectively while optimizing interplay between alternation components.


Assuntos
Fungicidas Industriais , Fungicidas Industriais/farmacologia , Antifúngicos/farmacologia
12.
Plant Dis ; 107(9): 2606-2612, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36802297

RESUMO

Podosphaera leucotricha, causal agent of apple powdery mildew, is a pathogen endemic worldwide where apples are produced. In the absence of durable host resistance, the disease is most effectively managed in conventional orchards with single-site fungicides. In New York State, increasingly erratic precipitation patterns and warmer temperatures due to climate change may create a regional environment more conducive to apple powdery mildew development and spread. In this scenario, outbreaks of apple powdery mildew may supplant the apple diseases of current management concern: apple scab and fire blight. Presently, there have been no reports from producers of fungicide control failures for apple powdery mildew, though increased disease incidence has been reported to and observed by the authors. As such, action was needed to assess the fungicide resistance status of populations of P. leucotricha to ensure key classes of single-site fungicides (FRAC 3, demethylation inhibitors, DMI; FRAC 11, quinone outside inhibitors, QoI; and FRAC 7, succinate dehydrogenase inhibitors, SDHI) remain effective. In a 2-year survey (2021 to 2022), we collected 160 samples of P. leucotricha from 43 orchards, representing conventional, organic, low-input, and unmanaged orchards from New York's primary production regions. Samples were screened for mutations in the target genes (CYP51, cytb, and sdhB) historically known to confer fungicide resistance in other fungal pathogens to the DMI, QoI, and SDHI fungicide classes, respectively. Across all samples, no nucleotide sequence mutations that translated into problematic amino acid substitutions were found in the target genes, suggesting that New York populations of P. leucotricha remain sensitive to the DMI, QoI, and SDHI fungicide classes, provided no other fungicide resistance mechanism is at play in the population.


Assuntos
Ascomicetos , Fungicidas Industriais , Malus , Fungicidas Industriais/farmacologia , Malus/microbiologia , New York , Doenças das Plantas/microbiologia , Ascomicetos/genética , Erysiphe
13.
Plant Dis ; 107(4): 1131-1138, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36190301

RESUMO

Seed treatments for the management of sudden death syndrome (SDS) caused by Fusarium virguliforme are available in the United States and Canada; however, side-by-side comparisons of these seed treatments are lacking. Sixteen field experiments were established in Illinois, Indiana, Iowa, Michigan, and Wisconsin, United States, and Ontario, Canada, in 2019 and 2020 to evaluate seed treatment combinations. Treatments included a nontreated check (NTC), fungicide and insecticide base seed treatments (base), fluopyram, base + fluopyram, base + saponin extracts from Chenopodium quinoa, base + fluopyram + heat-killed Burkholderia rinojenses, base + pydiflumetofen, base + thiabendazole + heat-killed B. rinojenses, and base + thiabendazole + C. quinoa extracts + heat-killed B. rinojenses. Treatments were tested on SDS moderately resistant and susceptible soybean cultivars at each location. Overall, NTC and base had the most root rot, most foliar disease index (FDX), and lowest yield. Base + fluopyram and base + pydiflumetofen were most effective for managing SDS. Moderately resistant cultivars reduced FDX in both years but visual root rot was greater on the moderately resistant than the susceptible cultivars in 2020. Yield response to cultivar was also inconsistent between the 2 years. In 2020, the susceptible cultivar provided significantly more yield than the moderately resistant cultivar. Treatment effect for root rot and FDX was similar in field and greenhouse evaluations. These results reinforce the need to include root rot evaluations in addition to foliar disease evaluations in the breeding process for resistance to F. virguliforme and highlights the importance of an integrated SDS management plan because not a single management tactic alone provides adequate control of the disease.


Assuntos
Fungicidas Industriais , Glycine max , Estados Unidos , Fungicidas Industriais/farmacologia , Tiabendazol , Doenças das Plantas/prevenção & controle , Melhoramento Vegetal , Ontário , Sementes , Morte Súbita
14.
Pest Manag Sci ; 78(8): 3394-3403, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35514230

RESUMO

BACKGROUND: Cucumber fruit rot (CFR) caused by Fusarium incarnatum is a devastating fungal disease in cucumber. In recent years, CFR has occurred frequently, resulting in serious yield and quality losses in China. Phenamacril exhibits a specific antifungal activity against Fusarium species. However, no data for phenamacril against F. incarnatum is available. RESULTS: The sensitivity of 80 F. incarnatum strains to phenamacril was determined. The half maximal effective concentration (EC50 ) values ranged from 0.1134 to 0.3261 µg mL-1 with a mean EC50 value of 0.2170 ± 0.0496 µg mL-1 . A total of seven resistant mutants were obtained from 450 mycelial plugs by phenamacril-taming on potato dextrose agar (PDA) plates with 10 µg mL-1 of phenamacril, and the resistant frequency was 1.56%. Phenamacril-resistant mutants showed decreased mycelial growth, conidiation and virulence as compared with the corresponding wild-type strains, indicating that phenamacril resistance suffered a fitness penalty in F. incarnatum. In addition, using sequence analysis, the point mutations of S217P or I424S were discovered in Fimyosin-5 (the target of phenamacril). The site-directed mutagenesis of the S217P, P217S, I424S and S424I substitutions were constructed to reveal the relationship between the point mutations and phenamacril resistance. The results strongly demonstrated that the mutations of S217P and I424S in Fimyosin-5 conferred phenamacril-resistance in F. incarnatum. CONCLUSION: Phenamacril-resistant mutants were easily induced and their resistance level was high. The S217P or I424S substitutions in Fimyosin-5 conferring phenamacril resistance were detected and futherly verified by transformation assay with site-directed mutagenesis. Thus, we proposed that the resistance development of F. incarnatum to phenamacril is high risk. © 2022 Society of Chemical Industry.


Assuntos
Fungicidas Industriais , Fusarium , Cianoacrilatos , Fungicidas Industriais/farmacologia , Fusarium/efeitos dos fármacos , Medição de Risco
15.
Plant Dis ; 106(8): 2097-2104, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35171639

RESUMO

Fusarium head blight (FHB), caused mainly by Fusarium graminearum, is one of the most devastating diseases of wheat. Prothioconazole is a broad-spectrum demethylation inhibitor fungicide with excellent efficacy against FHB. In this study, 235 strains of F. graminearum collected from different regions of Henan Province of China in 2016, 2017, and 2018 were randomly selected. The sensitivity of F. graminearum to prothioconazole was determined by the mycelial growth inhibition method. The results showed that the half maximal effective concentration (EC50) values of F. graminearum to prothioconazole ranged from 0.4742 to 3.4403 µg/ml, and the average EC50 value was 1.7758 ± 0.6667 µg/ml. The sensitivity frequency distribution presented a consequent unimodal curve, and thus the average EC50 value can be established as the baseline sensitivity of F. graminearum to prothioconazole. Ten strains of prothioconazole-resistant mutants were obtained by fungicide taming, and the resistance factor of the mutants ranged from 5.71 to 12.32. The genetic stability assay showed that resistance can be inherited stably for 10 generations. All mutants displayed different degrees of defects in vegetative growth, conidia formation, and pathogenicity compared with the parental strain. These results indicated that F. graminearum has a low risk of resistance to prothioconazole. Cross-resistance assay showed that no cross-resistance was found between prothioconazole and carbendazim, tebuconazole, phenamacril, and pydiflumetofen. Among all mutants, sequence analysis showed that no mutation site was found in cyp51A and cyp51B. Real-time PCR assays showed that the expression levels of cyp51A and cyp51B of the mutants were significantly increased after prothioconazole treatment for 24 h. In summary, our study provided a theoretical basis for the resistance risk assessment of F. graminearum to prothioconazole and scientific application of prothioconazole in controlling FHB.


Assuntos
Fungicidas Industriais , Fusarium , Farmacorresistência Fúngica/genética , Fungicidas Industriais/farmacologia , Medição de Risco , Triazóis , Triticum
16.
Insect Sci ; 29(5): 1373-1386, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35143114

RESUMO

Fungicides are used to control pathogenic fungi of crop species, but they have also been shown to alter behavioral, life history and fitness related traits of nontarget insects. Here, we tested the fungicide effects on feeding behavior, survival and physiology of the nontarget pest insect, the Colorado potato beetle (CPB) (Leptinotarsa decemlineata). Feeding behavior was studied by a choice test of adult beetles, which were allowed to choose between a control and a fungicide (fluazinam) treated potato leaf. Larval survival was recorded after 24 and 72 h exposure to control and fungicide-treated leaves with 2 different concentrations. The adults did not show fungicide avoidance behavior. Similarly, survival of the larvae was not affected by the exposure to fungicides. Finally, to understand the effects of fungicides at the physiological level (gene expression), we tested whether the larval exposure to fungicide alter the expression of 5 metabolic pathway and stress associated genes. Highest concentration and 72-h exposure caused upregulation of 1 cytochrome P450 (CYP9Z14v2) and 1 insecticide resistance gene (Ldace1), whereas metabolic detoxification gene (Ugt1) was downregulated. At 24-h exposure, highest concentration caused downregulation of another common detoxification gene (Gs), while both exposure times to lowest concentration caused upregulation of the Hsp70 stress tolerance gene. Despite these overall effects, there was a considerable amount of variation among different families in the gene expression levels. Even though the behavioral effects of the fungicide treatments were minor, the expression level differences of the studied genes indicate changes on the metabolic detoxifications and stress-related pathways.


Assuntos
Besouros , Fungicidas Industriais , Solanum tuberosum , Aminopiridinas , Animais , Besouros/fisiologia , Sistema Enzimático do Citocromo P-450/metabolismo , Fungicidas Industriais/metabolismo , Fungicidas Industriais/farmacologia , Insetos/genética , Larva/metabolismo , Solanum tuberosum/genética , Transcriptoma
17.
Pest Manag Sci ; 78(4): 1448-1456, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34927349

RESUMO

BACKGROUND: Gray mold caused by Botrytis cinerea Pers. is one of the most significant airborne diseases. It can infest a wide range of crops, causing significant losses in yield and quality worldwide. Pydiflumetofen, a new generation succinate dehydrogenase inhibitor (SDHI), is currently being registered in China to control gray mold in a variety of crops. The baseline sensitivity, resistance risk, and resistance mechanism of Botrytis cinerea to pydiflumetofen were assessed in this study. RESULTS: A total of 138 strains of B. cinerea from 10 different regions were tested for their sensitivity to pydiflumetofen, and the mean EC50 value was 0.0056 µg mL-1 . Eight mutants were obtained by fungicide adaption from five sensitive parental isolates, and the resistance factor (RF) ranged from 51 to 135. The mutants exhibited strong adaptive traits in conidial production, conidial germination, and pathogenicity. Positive cross-resistance was only observed between other SDHIs (i.e. boscalid, fluopyram, and isopyrazam). Two different types of pydiflumetofen-resistant mutants were identified: point mutation P225L in sdhB and double mutation G85A and I93V in sdhC. The in vivo control efficacy of pydiflumetofen on the resistant mutants carrying P225L in sdhB as well as G85A and I93V in sdhC was significantly decreased to 52.62% and 32.27%, respectively. CONCLUSION: The fitness was significantly higher for all pydiflumetofen-resistant mutants than the corresponding parental. Two types of point mutations, sdhB-P225L and sdhC-G85A and I93V, might confer resistance to pydiflumetofen in B. cinerea. A precautionary resistance management strategy should be implemented. © 2021 Society of Chemical Industry.


Assuntos
Fungicidas Industriais , Succinato Desidrogenase , Botrytis/genética , Farmacorresistência Fúngica/genética , Fungicidas Industriais/farmacologia , Doenças das Plantas , Mutação Puntual , Pirazóis , Medição de Risco , Succinato Desidrogenase/genética
18.
Plant Dis ; 106(6): 1690-1699, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34962420

RESUMO

Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a destructive disease of wheat that seriously threatens production safety in wheat-producing areas worldwide. In China, the disease has been largely controlled with the fungicide triadimefon. Although high levels of fungicide resistance in other fungal pathogens have been reported, failure to control Pst with any fungicides has seldomly been reported, and fungicide sensitivity of Pst has not been evaluated in China. The distribution of triadimefon-resistant Pst isolates was investigated in the present study. The baseline sensitivity of 446 Pst isolates across the country to triadimefon was determined, and the concentration for 50% of maximal effect showed a unimodal distribution curve, with a mean value of 0.19 µg ml-1. The results indicated a wide range of sensitivity to triadimefon, with more insensitive isolates collected from Pst winter-increasing areas and northwest oversummering areas, whereas more sensitive isolates were collected from southwest oversummering areas and epidemic areas of Xinjiang and Tibet. The majority of the tested Pst isolates were sensitive to triadimefon; only 6.79% had developed varying degrees of resistance. Characterization of parasitic fitness revealed that the triadimefon-resistant isolates exhibited strong adaptive traits in the urediniospore germination rate, latent period, sporulation intensity, and lesion expansion rate. Positive cross-resistance was observed between triadimefon and tebuconazole or hexaconazole, but not between pyraclostrobin or flubeneteram. The point mutation Y134F in the 14α-demethylase enzyme (CYP51) was detected in triadimefon-resistant isolates. A molecular method (kompetitive allele-specific PCR) was established for the rapid detection of Y134F mutants in the Pst population. Two genotypes with one point mutation Y134F conferred resistance to triadimefon in Pst. The risk of resistance to triadimefon in Pst may be low to moderate. This study provided important data for establishment of high throughput molecular detection methods, fungicide resistance risk management, and the development of new target fungicides.


Assuntos
Basidiomycota , Fungicidas Industriais , Basidiomycota/genética , Fungicidas Industriais/farmacologia , Doenças das Plantas/microbiologia , Puccinia , Medição de Risco , Triazóis
19.
Pest Manag Sci ; 77(10): 4331-4339, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33950556

RESUMO

BACKGROUND: Fungicides of the succinate dehydrogenase inhibitors (SDHIs) group have been used in soybean to control Asian soybean rust (ASR) caused by Phakopsora pachyrhizi. Fungal populations with less sensitivity to SDHI fungicides have been reported since 2015. RESULTS: In this study, fungal sensitivity to benzovindiflupyr (BZV) and fluxapyroxad (FXD) was assessed using a total of 770 P. pachyrhizi populations sampled over four soybean growing seasons. Cross-resistance, intrinsic activity, and frequency of SDHC-I86F mutation were also analyzed. The average effective concentration to inhibit 50% (EC50 ) and SDHC-I86F frequency increased over the 2015/2016, 2016/2017, 2017/2018 and 2018/2019 soybean-seasons. Fourteen P. pachyrhizi populations had the EC50 value above 10 mg L-1 for both carboxamides. No difference was found in intrinsic active to BZV and FXD fungicides for sensitive P. pachyrhizi populations. For P. pachyrhizi classified as less sensitive BZV showed the highest fungitoxicity effect. High frequency of the C-I86F mutation was observed in samples collected in volunteer soybean plants. The maximum frequency of SDHC-I86F mutation in the population was 50% and resulting in ASR populations with low sensitivity to SDHIs. A low correlation between bioassay and SDHC-I86F mutation was observed possible due to the dikaryotic nature of rust fungi or other mutations in the other succinate dehydrogenase subunits. CONCLUSION: The present work provides an overview of a large sampling size of P. pachyrhizi populations and their performance over the four crop seasons. The high frequency of SDHC-I86F mutation and low sensitivity to SDHIs are widely distributed in the main soybean growing regions in Brazil and present in volunteer plants in the soybean-free period. Further detailed studies are needed to identify novel point mutations affecting the effectiveness of SDHIs. © 2021 Society of Chemical Industry.


Assuntos
Fungicidas Industriais , Phakopsora pachyrhizi , Succinato Desidrogenase/genética , Amidas , Brasil , Fungicidas Industriais/farmacologia , Taxa de Mutação , Norbornanos , Phakopsora pachyrhizi/genética , Doenças das Plantas , Pirazóis
20.
Pest Manag Sci ; 77(1): 538-547, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32816384

RESUMO

BACKGROUND: Fusarium asiaticum is one of predominant pathogens of Fusarium head blight (FHB) in China. Pydiflumetofen (Pyd) is a novel succinate dehydrogenase inhibitor (SDHI) which has been commercialized in China for the controlling of wheat FHB since 2019. In the current study, a risk assessment of the pydiflumetofen-resistance selected in Fusarium asiaticum was investigated. RESULTS: One PydMR mutant [resistance factor (RF) < 80] and four PydHR mutants (RF > 3000) were generated by fungicide-taming from 1000 mycelial discs of the wild-type strain 2021. Nucleotide sequences alignment results of FaSdh from the wild-type strain and resistant mutants showed that all the mutations were categorized into three genotypes, i.e. FaSdhBH248Y from PydMR mutant, both FaSdhC1 A64V and FaSdhC1 R67K from PydHR mutants. All the resistant mutants possessed no fitness penalty based on the data of mycelial linear growth, conidiation and virulence. In addition, the FaSdhC1 A64V mutants showed positive cross-resistance between pydiflumetofen and boscalid or thifluzamide, but no cross-resistance between pydiflumetofen and Y13149 or Y12196, while the FaSdhC1 R67K mutants exhibited positive cross-resistance between pydiflumetofen and boscalid, thifluzamide or Y12196, and no cross-resistance between pydiflumetofen and Y13149. Furthermore, positive cross-resistance between the five tested SDHIs was detected in the FaSdhBH248Y mutants. CONCLUSION: The results suggest a moderate to high resistance risk of F. asiaticum to pydiflumetofen, and provide essential data for monitoring the emergence of resistance and resistance management strategies for pydiflumetofen, which will be useful for scientific application of this fungicide in China.


Assuntos
Fungicidas Industriais , Fusarium , China , Farmacorresistência Fúngica/genética , Fungicidas Industriais/farmacologia , Fusarium/genética , Doenças das Plantas , Pirazóis , Medição de Risco , Succinato Desidrogenase/genética , Ácido Succínico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA