Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 255, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594641

RESUMO

BACKGROUND: Orchidaceae is one of the largest groups of angiosperms, and most species have high economic value and scientific research value due to their ornamental and medicinal properties. In China, Chinese Cymbidium is a popular ornamental orchid with high economic value and a long history. However, to date, no detailed information on the mitochondrial genome of any species of Chinese Cymbidium has been published. RESULTS: Here, we present the complete assembly and annotation of the mitochondrial genome of Cymbidium ensifolium (L.) Sw. The mitogenome of C. ensifolium was 560,647 bp in length and consisted of 19 circular subgenomes ranging in size from 21,995 bp to 48,212 bp. The genome encoded 35 protein-coding genes, 36 tRNAs, 3 rRNAs, and 3405 ORFs. Repeat sequence analysis and prediction of RNA editing sites revealed a total of 915 dispersed repeats, 162 simple repeats, 45 tandem repeats, and 530 RNA editing sites. Analysis of codon usage showed a preference for codons ending in A/T. Interorganellar DNA transfer was identified in 13 of the 19 chromosomes, with plastid-derived DNA fragments representing 6.81% of the C. ensifolium mitochondrial genome. The homologous fragments of the mitochondrial genome and nuclear genome were also analysed. Comparative analysis showed that the GC content was conserved, but the size, structure, and gene content of the mitogenomes varied greatly among plants with multichromosomal mitogenome structure. Phylogenetic analysis based on the mitogenomes reflected the evolutionary and taxonomic statuses of C. ensifolium. Interestingly, compared with the mitogenomes of Cymbidium lancifolium Hook. and Cymbidium macrorhizon Lindl., the mitogenome of C. ensifolium lost 8 ribosomal protein-coding genes. CONCLUSION: In this study, we assembled and annotated the mitogenome of C. ensifolium and compared it with the mitogenomes of other Liliidae and plants with multichromosomal mitogenome structures. Our findings enrich the mitochondrial genome database of orchid plants and reveal the rapid structural evolution of Cymbidium mitochondrial genomes, highlighting the potential for mitochondrial genes to help decipher plant evolutionary history.


Assuntos
Genoma Mitocondrial , Orchidaceae , Genoma Mitocondrial/genética , Filogenia , Mitocôndrias/genética , DNA , Orchidaceae/genética
2.
Genes (Basel) ; 13(5)2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35627288

RESUMO

The boring giant clam Tridacna crocea is an evolutionary, ecologically, economically, and culturally important reef-dwelling bivalve targeted by a profitable ornamental fishery in the Indo-Pacific Ocean. In this study, we developed genomic resources for T. crocea. Using low-pass (=low-coverage, ~6×) short read sequencing, this study, for the first time, estimated the genome size, unique genome content, and nuclear repetitive elements, including the 45S rRNA DNA operon, in T. crocea. Furthermore, we tested if the mitochondrial genome can be assembled from RNA sequencing data. The haploid genome size estimated using a k-mer strategy was 1.31-1.39 Gbp, which is well within the range reported before for other members of the family Cardiidae. Unique genome content estimates using different k-mers indicated that nearly a third and probably at least 50% of the genome of T. crocea was composed of repetitive elements. A large portion of repetitive sequences could not be assigned to known repeat element families. Taking into consideration only annotated repetitive elements, the most common were classified as Satellite DNA which were more common than Class I-LINE and Class I-LTR Ty3-gypsy retrotransposon elements. The nuclear ribosomal operon in T. crocea was partially assembled into two contigs, one encoding the complete ssrDNA and 5.8S rDNA unit and a second comprising a partial lsrDNA. A nearly complete mitochondrial genome (92%) was assembled from RNA-seq. These newly developed genomic resources are highly relevant for improving our understanding of the biology of T. crocea and for the development of conservation plans and the fisheries management of this iconic reef-dwelling invertebrate.


Assuntos
Bivalves , Cardiidae , Genoma Mitocondrial , Animais , Bivalves/genética , Cardiidae/genética , Genoma Mitocondrial/genética , Genômica , Sequências Repetitivas de Ácido Nucleico
3.
Nature ; 591(7849): 265-269, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33597750

RESUMO

Temporal genomic data hold great potential for studying evolutionary processes such as speciation. However, sampling across speciation events would, in many cases, require genomic time series that stretch well back into the Early Pleistocene subepoch. Although theoretical models suggest that DNA should survive on this timescale1, the oldest genomic data recovered so far are from a horse specimen dated to 780-560 thousand years ago2. Here we report the recovery of genome-wide data from three mammoth specimens dating to the Early and Middle Pleistocene subepochs, two of which are more than one million years old. We find that two distinct mammoth lineages were present in eastern Siberia during the Early Pleistocene. One of these lineages gave rise to the woolly mammoth and the other represents a previously unrecognized lineage that was ancestral to the first mammoths to colonize North America. Our analyses reveal that the Columbian mammoth of North America traces its ancestry to a Middle Pleistocene hybridization between these two lineages, with roughly equal admixture proportions. Finally, we show that the majority of protein-coding changes associated with cold adaptation in woolly mammoths were already present one million years ago. These findings highlight the potential of deep-time palaeogenomics to expand our understanding of speciation and long-term adaptive evolution.


Assuntos
DNA Antigo/análise , Evolução Molecular , Genoma Mitocondrial/genética , Genômica , Mamutes/genética , Filogenia , Aclimatação/genética , Alelos , Animais , Teorema de Bayes , DNA Antigo/isolamento & purificação , Elefantes/genética , Europa (Continente) , Feminino , Fósseis , Variação Genética/genética , Cadeias de Markov , Dente Molar , América do Norte , Datação Radiométrica , Sibéria , Fatores de Tempo
4.
J Mol Evol ; 89(1-2): 95-102, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33486551

RESUMO

Due to their integral roles in oxidative phosphorylation, mitochondrially encoded proteins represent common targets of selection in response to altitudinal hypoxia across high-altitude taxa. While previous studies revealed evidence of positive selection on mitochondrial genomes of high-altitude Phrynocephalus lizards, their conclusions were restricted by out-of-date phylogenies and limited taxonomic sampling. Using topologies derived from both nuclear and mitochondrial DNA phylogenies, we re-assessed the evidence of positive selection on the mitochondrial genomes of high-altitude Phrynocephalus. We sampled representative species from all four main lineages and sequenced the mitochondrial genome of P. maculatus, a putative sister taxon to the high-altitude group. Positive selection was assessed through two widely used branch-site tests: the branch-site model in PAML and BUSTED in HyPhy. No evidence of positive selection on mitochondrial genes was detected on branches leading to two most recent common ancestors of high-altitude species; however, we recovered evidence of positive selection on COX1 on the P. forsythii branch, which represents a reversal from high- to low-elevation environments. A positively selected site therein marked a threonine to valine substitution at position 419. We suggest this bout of selection occurred as the ancestors of P. forsythii re-colonized lower altitude environments north of the Tibetan Plateau. Despite their role in oxidative phosphorylation, we posit that mitochondrial genes are unlikely to have represented historical targets of selection for high-altitude adaptation in Phrynocephalus. Consequently, future studies should address the roles of nuclear genes and differential gene expression.


Assuntos
Genoma Mitocondrial , Lagartos , Altitude , Animais , DNA Mitocondrial/genética , Genoma Mitocondrial/genética , Lagartos/genética , Filogenia
5.
PLoS Comput Biol ; 17(1): e1008597, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33434206

RESUMO

Plant mitochondrial genomes have distinctive features compared to those of animals; namely, they are large and divergent, with sizes ranging from hundreds of thousands of to a few million bases. Recombination among repetitive regions is thought to produce similar structures that differ slightly, known as "multipartite structures," which contribute to different phenotypes. Although many reference plant mitochondrial genomes represent almost all the genes in mitochondria, the full spectrum of their structures remains largely unknown. The emergence of long-read sequencing technology is expected to yield this landscape; however, many studies aimed to assemble only one representative circular genome, because properly understanding multipartite structures using existing assemblers is not feasible. To elucidate multipartite structures, we leveraged the information in existing reference genomes and classified long reads according to their corresponding structures. We developed a method that exploits two classic algorithms, partial order alignment (POA) and the hidden Markov model (HMM) to construct a sensitive read classifier. This method enables us to represent a set of reads as a POA graph and analyze it using the HMM. We can then calculate the likelihood of a read occurring in a given cluster, resulting in an iterative clustering algorithm. For synthetic data, our proposed method reliably detected one variation site out of 9,000-bp synthetic long reads with a 15% sequencing-error rate and produced accurate clustering. It was also capable of clustering long reads from six very similar sequences containing only slight differences. For real data, we assembled putative multipartite structures of mitochondrial genomes of Arabidopsis thaliana from nine accessions sequenced using PacBio Sequel. The results indicated that there are recurrent and strain-specific structures in A. thaliana mitochondrial genomes.


Assuntos
Arabidopsis/genética , Genoma Mitocondrial/genética , Genoma de Planta/genética , Análise de Sequência de DNA/métodos , Algoritmos , Cadeias de Markov
6.
BMC Ecol Evol ; 21(1): 6, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33514315

RESUMO

BACKGROUND: Heterobranchia is a diverse clade of marine, freshwater, and terrestrial gastropod molluscs. It includes such disparate taxa as nudibranchs, sea hares, bubble snails, pulmonate land snails and slugs, and a number of (mostly small-bodied) poorly known snails and slugs collectively referred to as the "lower heterobranchs". Evolutionary relationships within Heterobranchia have been challenging to resolve and the group has been subject to frequent and significant taxonomic revision. Mitochondrial (mt) genomes can be a useful molecular marker for phylogenetics but, to date, sequences have been available for only a relatively small subset of Heterobranchia. RESULTS: To assess the utility of mitochondrial genomes for resolving evolutionary relationships within this clade, eleven new mt genomes were sequenced including representatives of several groups of "lower heterobranchs". Maximum likelihood analyses of concatenated matrices of the thirteen protein coding genes found weak support for most higher-level relationships even after several taxa with extremely high rates of evolution were excluded. Bayesian inference with the CAT + GTR model resulted in a reconstruction that is much more consistent with the current understanding of heterobranch phylogeny. Notably, this analysis recovered Valvatoidea and Orbitestelloidea in a polytomy with a clade including all other heterobranchs, highlighting these taxa as important to understanding early heterobranch evolution. Also, dramatic gene rearrangements were detected within and between multiple clades. However, a single gene order is conserved across the majority of heterobranch clades. CONCLUSIONS: Analysis of mitochondrial genomes in a Bayesian framework with the site heterogeneous CAT + GTR model resulted in a topology largely consistent with the current understanding of heterobranch phylogeny. However, mitochondrial genomes appear to be too variable to serve as good phylogenetic markers for robustly resolving a number of deeper splits within this clade.


Assuntos
Genoma Mitocondrial , Animais , Sequência de Bases , Teorema de Bayes , Ordem dos Genes , Genoma Mitocondrial/genética , Filogenia
7.
PLoS One ; 14(1): e0210528, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30650155

RESUMO

Genetic analyses provide a powerful tool with which to identify the biological components of historical objects. Te Tiriti o Waitangi | The Treaty of Waitangi is New Zealand's founding document, intended to be a partnership between the indigenous Maori and the British Crown. Here we focus on an archived piece of blank parchment that has been proposed to be the missing portion of the lower parchment of the Waitangi Sheet of the Treaty. However, its physical dimensions and characteristics are not consistent with this hypothesis. We perform genetic analyses on the parchment membranes of the Treaty, plus the blank piece of parchment. We find that all three parchments were made from ewes and that the blank parchment is highly likely to be a portion cut from the lower membrane of the Waitangi Sheet because they share identical whole mitochondrial genomes, including an unusual heteroplasmic site. We suggest that the differences in size and characteristics between the two pieces of parchment may have resulted from the Treaty's exposure to water in the early 20th century and the subsequent repair work, light exposure during exhibition or the later conservation treatments in the 1970s and 80s. The blank piece of parchment will be valuable for comparison tests to study the effects of earlier treatments and to monitor the effects of long-term display on the Treaty.


Assuntos
Equidade em Saúde/legislação & jurisprudência , Política de Saúde/legislação & jurisprudência , Serviços de Saúde do Indígena/legislação & jurisprudência , Cooperação Internacional , Animais , Identificação Biométrica/métodos , DNA Mitocondrial/classificação , DNA Mitocondrial/isolamento & purificação , Feminino , Testes Genéticos/métodos , Genoma Mitocondrial/genética , Humanos , Nova Zelândia , Filogenia , Ovinos/genética , Reino Unido
8.
Mitochondrial DNA A DNA Mapp Seq Anal ; 29(5): 714-726, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-28745560

RESUMO

To investigate the uniparental genetic structure of the Punjabi population from mtDNA aspect and to set up an appropriate mtDNA forensic database, we studied maternally unrelated Punjabi (N = 100) subjects from two caste groups (i.e. Arain and Gujar) belonging to territory of Punjab. The complete control region was elucidated by Sanger sequencing and the subsequent 58 different haplotypes were designated into appropriate haplogroups according to the most recently updated mtDNA phylogeny. We found a homogenous dispersal of Eurasian haplogroup uniformity among the Punjab Province and exhibited a strong connotation with the European populations. Punjabi castes are primarily a composite of substantial South Asian, East Asian and West Eurasian lineages. Moreover, for the first time we have defined the newly sub-haplogroup M52b1 characterized by 16223 T, 16275 G and 16438 A in Gujar caste. The vast array of mtDNA variants displayed in this study suggested that the haplogroup composition radiates signals of extensive genetic conglomeration, population admixture and demographic expansion that was equipped with diverse origin, whereas matrilineal gene pool was phylogeographically homogenous across the Punjab. This context was further fully acquainted with the facts supported by PCA scatterplot that Punjabi population clustered with South Asian populations. Finally, the high power of discrimination (0.8819) and low random match probability (0.0085%) proposed a worthy contribution of mtDNA control region dataset as a forensic database that considered a gold standard of today to get deeper insight into the genetic ancestry of contemporary matrilineal phylogeny.


Assuntos
DNA Mitocondrial/genética , Adulto , Povo Asiático/genética , Etnicidade/genética , Pool Gênico , Variação Genética , Genética Populacional/métodos , Genoma Mitocondrial/genética , Haplótipos , Humanos , Masculino , Mitocôndrias/genética , Paquistão , Filogenia , Filogeografia , Classe Social , População Branca/genética
9.
PLoS Comput Biol ; 13(6): e1005628, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28640805

RESUMO

24,189 are all the possible non-synonymous amino acid changes potentially affecting the human mitochondrial DNA. Only a tiny subset was functionally evaluated with certainty so far, while the pathogenicity of the vast majority was only assessed in-silico by software predictors. Since these tools proved to be rather incongruent, we have designed and implemented APOGEE, a machine-learning algorithm that outperforms all existing prediction methods in estimating the harmfulness of mitochondrial non-synonymous genome variations. We provide a detailed description of the underlying algorithm, of the selected and manually curated training and test sets of variants, as well as of its classification ability.


Assuntos
Algoritmos , Mapeamento Cromossômico/métodos , Análise Mutacional de DNA/métodos , Variação Genética/genética , Genoma Mitocondrial/genética , Genoma Humano/genética , Humanos , Aprendizado de Máquina , Reconhecimento Automatizado de Padrão , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Software
10.
PLoS One ; 11(8): e0160958, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27505419

RESUMO

We present a cost-effective approach to sequence whole mitochondrial genomes for hundreds of individuals. Our approach uses small reaction volumes and unmodified (non-phosphorylated) barcoded adaptors to minimize reagent costs. We demonstrate our approach by sequencing 383 Fundulus sp. mitochondrial genomes (192 F. heteroclitus and 191 F. majalis). Prior to sequencing, we amplified the mitochondrial genomes using 4-5 custom-made, overlapping primer pairs, and sequencing was performed on an Illumina HiSeq 2500 platform. After removing low quality and short sequences, 2.9 million and 2.8 million reads were generated for F. heteroclitus and F. majalis respectively. Individual genomes were assembled for each species by mapping barcoded reads to a reference genome. For F. majalis, the reference genome was built de novo. On average, individual consensus sequences had high coverage: 61-fold for F. heteroclitus and 57-fold for F. majalis. The approach discussed in this paper is optimized for sequencing mitochondrial genomes on an Illumina platform. However, with the proper modifications, this approach could be easily applied to other small genomes and sequencing platforms.


Assuntos
Análise Custo-Benefício , Genoma Mitocondrial/genética , Análise de Sequência de DNA/economia , Animais , Mapeamento Cromossômico , Fundulidae/genética , Padrões de Referência , Alinhamento de Sequência , Análise de Sequência de DNA/normas
11.
Mol Phylogenet Evol ; 98: 74-83, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26868331

RESUMO

Mitochondrial (mt) genes, such as cytochrome C oxidase genes (cox), have been widely used for barcoding in many groups of organisms, although this approach has been less powerful in the fungal kingdom due to the rapid evolution of their mt genomes. The use of mt genes in phylogenetic studies of Dikarya has been met with success, while early diverging fungal lineages remain less studied, particularly the arbuscular mycorrhizal fungi (AMF). Advances in next-generation sequencing have substantially increased the number of publically available mtDNA sequences for the Glomeromycota. As a result, comparison of mtDNA across key AMF taxa can now be applied to assess the phylogenetic signal of individual mt coding genes, as well as concatenated subsets of coding genes. Here we show comparative analyses of publically available mt genomes of Glomeromycota, augmented with two mtDNA genomes that were newly sequenced for this study (Rhizophagus irregularis DAOM240159 and Glomus aggregatum DAOM240163), resulting in 16 complete mtDNA datasets. R. irregularis isolate DAOM240159 and G. aggregatum isolate DAOM240163 showed mt genomes measuring 72,293bp and 69,505bp with G+C contents of 37.1% and 37.3%, respectively. We assessed the phylogenies inferred from single mt genes and complete sets of coding genes, which are referred to as "supergenes" (16 concatenated coding genes), using Shimodaira-Hasegawa tests, in order to identify genes that best described AMF phylogeny. We found that rnl, nad5, cox1, and nad2 genes, as well as concatenated subset of these genes, provided phylogenies that were similar to the supergene set. This mitochondrial genomic analysis was also combined with principal coordinate and partitioning analyses, which helped to unravel certain evolutionary relationships in the Rhizophagus genus and for G. aggregatum within the Glomeromycota. We showed evidence to support the position of G. aggregatum within the R. irregularis 'species complex'.


Assuntos
DNA Mitocondrial/genética , Genoma Mitocondrial/genética , Genômica , Glomeromycota/genética , Mitocôndrias/genética , Micorrizas/genética , Filogenia , Evolução Molecular , Genes Mitocondriais/genética , Glomeromycota/classificação , Sequenciamento de Nucleotídeos em Larga Escala , Micorrizas/classificação
12.
Mitochondrial DNA A DNA Mapp Seq Anal ; 27(4): 2852-3, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26171874

RESUMO

Prochilodus spp. are important Brazilian freshwater migratory fishes with substantial economic and ecological importance. Prochilodus argenteus and Prochilodus costatus are morphologically similar and a molecular species delimitation is impaired due to high degree of sequence identity among the available genetic markers. Here, the complete mitochondrial genome of P. argenteus and P. costatus and their comparison to the mitogenome of P. lineatus are described. The three species displayed a similar mtDNA annotation. A phylogenetic analysis was performed with other Characiformes species. The genus Prochilodus was recovered as a monophyletic group, as well as the family Prochilodontidae, both with high bootstrap probability.


Assuntos
Caraciformes/genética , DNA Mitocondrial/genética , Genoma Mitocondrial/genética , Animais , Caraciformes/classificação , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia
13.
PLoS One ; 10(9): e0138446, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26379155

RESUMO

Sequence capture of ultraconserved elements (UCEs) associated with massively parallel sequencing has become a common source of nuclear data for studies of animal systematics and phylogeography. However, mitochondrial and microsatellite variation are still commonly used in various kinds of molecular studies, and probably will complement genomic data in years to come. Here we show that besides providing abundant genomic data, UCE sequencing is an excellent source of both sequences for microsatellite loci design and complete mitochondrial genomes with high sequencing depth. Identification of dozens of microsatellite loci and assembly of complete mitogenomes is exemplified here using three species of Poospiza warbling finches from southern and southeastern Brazil. This strategy opens exciting opportunities to simultaneously analyze genome-wide nuclear datasets and traditionally used mtDNA and microsatellite markers in non-model amniotes at no additional cost.


Assuntos
Tentilhões/genética , Marcadores Genéticos/genética , Genoma Mitocondrial/genética , Repetições de Microssatélites/genética , Animais , Brasil , DNA Mitocondrial/genética , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA/métodos
14.
Plant Physiol ; 166(3): 1241-54, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25209985

RESUMO

Horseweed (Conyza canadensis), a member of the Compositae (Asteraceae) family, was the first broadleaf weed to evolve resistance to glyphosate. Horseweed, one of the most problematic weeds in the world, is a true diploid (2n = 2x = 18), with the smallest genome of any known agricultural weed (335 Mb). Thus, it is an appropriate candidate to help us understand the genetic and genomic bases of weediness. We undertook a draft de novo genome assembly of horseweed by combining data from multiple sequencing platforms (454 GS-FLX, Illumina HiSeq 2000, and PacBio RS) using various libraries with different insertion sizes (approximately 350 bp, 600 bp, 3 kb, and 10 kb) of a Tennessee-accessed, glyphosate-resistant horseweed biotype. From 116.3 Gb (approximately 350× coverage) of data, the genome was assembled into 13,966 scaffolds with 50% of the assembly = 33,561 bp. The assembly covered 92.3% of the genome, including the complete chloroplast genome (approximately 153 kb) and a nearly complete mitochondrial genome (approximately 450 kb in 120 scaffolds). The nuclear genome is composed of 44,592 protein-coding genes. Genome resequencing of seven additional horseweed biotypes was performed. These sequence data were assembled and used to analyze genome variation. Simple sequence repeat and single-nucleotide polymorphisms were surveyed. Genomic patterns were detected that associated with glyphosate-resistant or -susceptible biotypes. The draft genome will be useful to better understand weediness and the evolution of herbicide resistance and to devise new management strategies. The genome will also be useful as another reference genome in the Compositae. To our knowledge, this article represents the first published draft genome of an agricultural weed.


Assuntos
Conyza/genética , Genoma de Cloroplastos/genética , Genoma Mitocondrial/genética , Glicina/análogos & derivados , Resistência a Herbicidas , Herbicidas/farmacologia , Evolução Biológica , Conyza/efeitos dos fármacos , Genômica , Glicina/farmacologia , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Filogenia , Análise de Sequência de DNA , Glifosato
15.
Biomed Res Int ; 2014: 927546, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25019088

RESUMO

Bees are manufacturers of relevant economical products and have a pollinator role fundamental to ecosystems. Traditionally, studies focused on the genus Melipona have been mostly based on behavioral, and social organization and ecological aspects. Only recently the evolutionary history of this genus has been assessed using molecular markers, including mitochondrial genes. Even though these studies have shed light on the evolutionary history of the Melipona genus, a more accurate picture may emerge when full nuclear and mitochondrial genomes of Melipona species become available. Here we present the assembly, annotation, and characterization of a draft mitochondrial genome of the Brazilian stingless bee Melipona scutellaris using Melipona bicolor as a reference organism. Using Illumina MiSeq data, we achieved the annotation of all protein coding genes, as well as the genes for the two ribosomal subunits (16S and 12S) and transfer RNA genes as well. Using the COI sequence as a DNA barcode, we found that M. cramptoni is the closest species to M. scutellaris.


Assuntos
Abelhas/classificação , Abelhas/genética , Mapeamento Cromossômico/métodos , Genoma Mitocondrial/genética , Proteínas Mitocondriais/genética , Fases de Leitura Aberta/genética , Animais , Evolução Biológica , Brasil , Projetos Piloto , Especificidade da Espécie
16.
Philos Trans R Soc Lond B Biol Sci ; 369(1646): 20130440, 2014 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-24864311

RESUMO

Eukaryotic cells typically contain numerous mitochondria, each with multiple copies of their own genome, the mtDNA. Uniparental transmission of mitochondria, usually via the mother, prevents the mixing of mtDNA from different individuals. While on the one hand, this should resolve the potential for selection for fast-replicating mtDNA variants that reduce organismal fitness, maternal inheritance will, in theory, come with another set of problems that are specifically relevant to males. Maternal inheritance implies that the mitochondrial genome is never transmitted through males, and thus selection can target only the mtDNA sequence when carried by females. A consequence is that mtDNA mutations that confer male-biased phenotypic expression will be prone to evade selection, and accumulate. Here, we review the evidence from the ecological, evolutionary and medical literature for male specificity of mtDNA mutations affecting fertility, health and ageing. While such effects have been discovered experimentally in the laboratory, their relevance to natural populations--including the human population--remains unclear. We suggest that the existence of male expression-biased mtDNA mutations is likely to be a broad phenomenon, but that these mutations remain cryptic owing to the presence of counter-adapted nuclear compensatory modifier mutations, which offset their deleterious effects.


Assuntos
Evolução Biológica , DNA Mitocondrial/metabolismo , Variação Genética/fisiologia , Genoma Mitocondrial/fisiologia , Mitocôndrias/metabolismo , Seleção Genética/fisiologia , Alelos , Animais , DNA Mitocondrial/genética , Feminino , Duplicação Gênica/genética , Duplicação Gênica/fisiologia , Variação Genética/genética , Genoma Mitocondrial/genética , Humanos , Masculino , Mitocôndrias/genética , Fosforilação Oxidativa , Seleção Genética/genética
17.
Biomed Res Int ; 2014: 292017, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24818137

RESUMO

The role of alterations of mitochondrial DNA (mtDNA) in the development of human pathologies is not understood well. Most of mitochondrial mutations are characterized by the phenomenon of heteroplasmy which is defined as the presence of a mixture of more than one type of an organellar genome within a cell or tissue. The level of heteroplasmy varies in wide range, and the expression of disease is dependent on the percent of alleles bearing mutations, thus allowing consumption that an upper threshold level may exist beyond which the mitochondrial function collapses. Recent findings have demonstrated that some mtDNA heteroplasmic mutations are associated with widely spread chronic diseases, including atherosclerosis and cancer. Actually, each etiological mtDNA mutation has its own heteroplasmy threshold that needs to be measured. Therefore, quantitative evaluation of a mutant allele of mitochondrial genome is an obvious methodological challenge, since it may be a keystone for diagnostics of individual genetic predisposition to the disease. This review provides a comprehensive comparison of methods applicable to the measurement of heteroplasmy level of mitochondrial mutations associated with the development of pathology, in particular, in atherosclerosis and its clinical manifestations.


Assuntos
Análise Mutacional de DNA/métodos , DNA Mitocondrial/genética , Genoma Mitocondrial/genética , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Animais , Humanos , Mutação/genética
18.
J Genet Genomics ; 39(3): 131-7, 2012 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-22464472

RESUMO

Tree shrew (Tupaia belangeri) is currently placed in Order Scandentia and has a wide distribution in Southeast Asia and Southwest China. Due to its unique characteristics, such as small body size, high brain-to-body mass ratio, short reproductive cycle and life span, and low-cost of maintenance, tree shrew has been proposed to be an alternative experimental animal to primates in biomedical research. However, there are some debates regarding the exact phylogenetic affinity of tree shrew to primates. In this study, we determined the mtDNA entire genomes of three Chinese tree shrews (T. belangeri chinensis) and one Malayan flying lemur (Galeopterus variegatus). Combined with the published data for species in Euarchonta, we intended to discern the phylogenetic relationship among representative species of Dermoptera, Scandentia and Primates. The mtDNA genomes of Chinese tree shrews and Malayan flying lemur shared similar gene organization and structure with those of other mammals. Phylogenetic analysis based on 12 concatenated mitochondrial protein-encoding genes revealed a closer relationship between species of Scandentia and Glires, whereas species of Dermoptera were clustered with Primates. This pattern was consistent with previously reported phylogeny based on mtDNA data, but differed from the one reconstructed on the basis of nuclear genes. Our result suggested that the matrilineal affinity of tree shrew to primates may not be as close as we had thought. The ongoing project for sequencing the entire genome of Chinese tree shrew will provide more information to clarify this important issue.


Assuntos
DNA Mitocondrial/genética , Genoma Mitocondrial/genética , Filogenia , Tupaia/genética , Alternativas ao Uso de Animais , Animais , Sequência de Bases , Teorema de Bayes , Pesquisa Biomédica/métodos , China , DNA Mitocondrial/química , Genes Mitocondriais/genética , Cadeias de Markov , Dados de Sequência Molecular , Método de Monte Carlo , Primatas/genética , Análise de Sequência de DNA , Especificidade da Espécie , Tupaia/classificação
19.
Mar Biotechnol (NY) ; 14(2): 155-66, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21748342

RESUMO

Sea lice are common parasites of both farmed and wild salmon. Salmon farming constitutes an important economic market in North America, South America, and Northern Europe. Infections with sea lice can result in significant production losses. A compilation of genomic information on different genera of sea lice is an important resource for understanding their biology as well as for the study of population genetics and control strategies. We report on over 150,000 expressed sequence tags (ESTs) from five different species (Pacific Lepeophtheirus salmonis (49,672 new ESTs in addition to 14,994 previously reported ESTs), Atlantic L. salmonis (57,349 ESTs), Caligus clemensi (14,821 ESTs), Caligus rogercresseyi (32,135 ESTs), and Lernaeocera branchialis (16,441 ESTs)). For each species, ESTs were assembled into complete or partial genes and annotated by comparisons to known proteins in public databases. In addition, whole mitochondrial (mt) genome sequences of C. clemensi (13,440 bp) and C. rogercresseyi (13,468 bp) were determined and compared to L. salmonis. Both nuclear and mtDNA genes show very high levels of sequence divergence between these ectoparastic copepods suggesting that the different species of sea lice have been in existence for 37-113 million years and that parasitic association with salmonids is also quite ancient. Our ESTs and mtDNA data provide a novel resource for the study of sea louse biology, population genetics, and control strategies. This genomic information provides the material basis for the development of a 38K sea louse microarray that can be used in conjunction with our existing 44K salmon microarray to study host-parasite interactions at the molecular level. This report represents the largest genomic resource for any copepod species to date.


Assuntos
Copépodes/genética , Evolução Molecular , Etiquetas de Sequências Expressas , Variação Genética , Genoma Mitocondrial/genética , Salmão/parasitologia , Animais , Bases de Dados Genéticas , Genética Populacional , Especificidade da Espécie
20.
Malar J ; 9: 127, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20470395

RESUMO

BACKGROUND: The complete sequences of the mitochondrial genomes (mtDNA) of members of the northern and southern genotypes of Anopheles (Nyssorhynchus) darlingi were used for comparative studies to estimate the time to the most recent common ancestor for modern anophelines, to evaluate differentiation within this taxon, and to seek evidence of incipient speciation. METHODS: The mtDNAs were sequenced from mosquitoes from Belize and Brazil and comparative analyses of structure and base composition, among others, were performed. A maximum likelihood approach linked with phylogenetic information was employed to detect evidence of selection and a Bayesian approach was used to date the split between the subgenus Nyssorhynchus and other Anopheles subgenera. RESULTS: The comparison of mtDNA sequences within the Anopheles darlingi taxon does not provide sufficient resolution to establish different units of speciation within the species. In addition, no evidence of positive selection in any protein-coding gene of the mtDNA was detected, and purifying selection likely is the basis for this lack of diversity. Bayesian analysis supports the conclusion that the most recent ancestor of Nyssorhynchus and Anopheles+Cellia was extant ~94 million years ago. CONCLUSION: Analyses of mtDNA genomes of Anopheles darlingi do not provide support for speciation in the taxon. The dates estimated for divergence among the anopheline groups tested is in agreement with the geological split of western Gondwana (95 mya), and provides additional support for explaining the absence of Cellia in the New World, and Nyssorhynchus in the Afro-Eurasian continents.


Assuntos
Anopheles/genética , Composição de Bases/genética , DNA Mitocondrial/genética , Genoma Mitocondrial/genética , Filogenia , Animais , Anopheles/classificação , Teorema de Bayes , Belize , Brasil , DNA Mitocondrial/classificação , Feminino , Genes de Insetos , Especiação Genética , Genótipo , Cadeias de Markov , Método de Monte Carlo , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Análise de Sequência de DNA , Especificidade da Espécie , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA