Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Am Chem Soc ; 142(11): 5194-5203, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32066233

RESUMO

Extracellular electron transfer (EET) in microorganisms is prevalent in nature and has been utilized in functional bioelectrochemical systems. EET of Geobacter sulfurreducens has been extensively studied and has been revealed to be facilitated through c-type cytochromes, which mediate charge between the electrode and G. sulfurreducens in anodic mode. However, the EET pathway of cathodic conversion of fumarate to succinate is still under debate. Here, we apply a variety of analytical methods, including electrochemistry, UV-vis absorption and resonance Raman spectroscopy, quartz crystal microbalance with dissipation, and electron microscopy, to understand the involvement of cytochromes and other possible electron-mediating species in the switching between anodic and cathodic reaction modes. By switching the applied bias for a G. sulfurreducens biofilm coupled to investigating the quantity and function of cytochromes, as well as the emergence of Fe-containing particles on the cell membrane, we provide evidence of a diminished role of cytochromes in cathodic EET. This work sheds light on the mechanisms of G. sulfurreducens biofilm growth and suggests the possible existence of a nonheme, iron-involving EET process in cathodic mode.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes , Grupo dos Citocromos c/metabolismo , Elétrons , Geobacter/fisiologia , Acetatos/metabolismo , Técnicas Eletroquímicas , Eletrodos , Ferro/metabolismo , Oxirredução , Ácido Succínico/metabolismo
2.
Biosens Bioelectron ; 122: 217-223, 2018 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-30265972

RESUMO

Microbial fuel cells (MFCs) are a promising clean energy source to directly convert waste chemicals to available electric power. However, the practical application of MFCs needs the increased power density, enhanced energy conversion efficiency and reduced electrode material cost. In this study, three-dimensional (3D) macroporous N, P and S co-doped carbon foams (NPS-CFs) were prepared by direct pyrolysis of the commercial bread and employed as free-standing anodes in MFCs. As-obtained NPS-CFs have a large specific surface area (295.07 m2 g-1), high N, P and S doping level, and excellent electrical conductivity. A maximum areal power density of 3134 mW m-2 and current density of 7.56 A m-2 are generated by the MFCs equipped with as-obtained NPS-CF anodes, which is 2.57- and 2.63-fold that of the plain carbon cloth anodes (areal power density of 1218 mW m-2 and current density of 2.87 A m-2), respectively. Such improvement is explored to mainly originate from two respects: the good biocompatibility of NPS-CFs favors the bacterial adhesion and enrichment of electroactive Geobacter species on the electrode surface, while the high conductivity and improved bacteria-electrode interaction efficiently promote the extracellular electron transfer (EET) between the bacteria and the anode. This study provides a low-cost and sustainable way to fabricate high power MFCs for practical applications.


Assuntos
Fontes de Energia Bioelétrica , Pão , Carbono/química , Pirólise , Aderência Bacteriana , Fontes de Energia Bioelétrica/economia , Fontes de Energia Bioelétrica/microbiologia , Pão/análise , Pão/economia , Condutividade Elétrica , Eletricidade , Eletrodos/economia , Geobacter/fisiologia , Nitrogênio/química , Fósforo/química , Porosidade , Enxofre/química
3.
Curr Protoc Microbiol ; 43: A.4K.1-A.4K.27, 2016 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-27858972

RESUMO

Anaerobic microorganisms play a central role in several environmental processes and regulate global biogeochemical cycling of nutrients and minerals. Many anaerobic microorganisms are important for the production of bioenergy and biofuels. However, the major hurdle in studying anaerobic microorganisms in the laboratory is the requirement for sophisticated and expensive gassing stations and glove boxes to create and maintain the anaerobic environment. This appendix presents a simple design for a gassing station that can be used readily by an inexperienced investigator for cultivation of anaerobic microorganisms. In addition, this appendix also details the low-cost assembly of bioelectrochemical systems and outlines a simplified procedure for cultivating and analyzing bacterial cell cultures and biofilms that produce electric current, using Geobacter sulfurreducens as a model organism. © 2016 by John Wiley & Sons, Inc.


Assuntos
Biofilmes , Técnicas de Cultura de Células/métodos , Técnicas Eletroquímicas/métodos , Geobacter/crescimento & desenvolvimento , Anaerobiose , Técnicas de Cultura de Células/economia , Eletricidade , Técnicas Eletroquímicas/economia , Geobacter/química , Geobacter/fisiologia
4.
Biosens Bioelectron ; 24(4): 586-90, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-18621521

RESUMO

Microbial fuel cell (MFC)-based sensing was explored to provide useful information for the development of an approach to in situ monitoring of substrate concentration and microbial respiration rate. The ability of a MFC to provide meaningful information about in situ microbial respiration and analyte concentration was examined in column systems, where Geobacter sulfurreducens used an external electron acceptor (an electrode) to metabolize acetate. Column systems inoculated with G. sulfurreducens were operated with influent media at varying concentrations of acetate and monitored for current generation. Current generation was mirrored by bulk phase acetate concentration, and a correlation (R(2)=0.92) was developed between current values (0-0.30 mA) and acetate concentrations (0-2.3 mM). The MFC-system was also exposed to shock loading (pulses of oxygen), after which electricity production resumed immediately after media flow recommenced, underlining the resilience of the system and allowing for additional sensing capacity. Thus, the electrical signal produced by the MFC-system provided real-time data for electron donor availability and biological activity. These results have practical implications for development of a biosensor for inexpensive real-time monitoring of in situ bioremediation processes, where MFC technology provides information on the rate and nature of biodegradation processes.


Assuntos
Técnicas Biossensoriais/instrumentação , Contagem de Colônia Microbiana/instrumentação , Fontes de Energia Elétrica , Eletroquímica/instrumentação , Eletrodos , Geobacter/isolamento & purificação , Geobacter/fisiologia , Bioensaio/instrumentação , Técnicas Biossensoriais/métodos , Contagem de Colônia Microbiana/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
5.
J Microbiol Methods ; 74(1): 26-32, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17720265

RESUMO

Although the genome sequences of many microorganisms are now known, whole-genome DNA microarray platforms consisting of PCR amplicon, or oligonucleotide elements printed onto glass slides have been readily available for only a relatively few, highly studied microorganisms. For those microorganisms more recently cultured or studied by fewer investigators it has been difficult to justify the initial time and expense of developing such array platforms especially if only a limited number of gene expression studies are envisioned. However, in-situ synthesized oligonucleotide (ISO) arrays can be inexpensively fabricated on an 'as needed' basis with a reduced initial investment in time, personnel, resources, and costs. To evaluate the performance of one ISO array platform, gene expression patterns in Geobacter sulfurreducens under nitrogen-fixing conditions were compared with results from quantitative reverse transcriptase PCR (qRT-PCR) and previously published data from a similar experiment using spotted PCR amplicon arrays. There were strong correlations between the results of the ISO arrays and the results from qRT-PCR (r(2)=0.762) and spotted array (r(2)=0.744) analyses. After initial use the ISO arrays could be successfully stripped and reused. The increased flexibility in array design and reusability coupled with a lower initial investment in terms of fabrication time and cost for the ISO arrays suggest that they may be the preferred approach when investigating gene expression in microorganisms, especially when only a few expression studies are required.


Assuntos
Expressão Gênica , Geobacter/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Proteínas de Bactérias/genética , Biologia Computacional , Geobacter/fisiologia , Fixação de Nitrogênio , Análise de Sequência com Séries de Oligonucleotídeos/economia , Oligonucleotídeos/genética , Reação em Cadeia da Polimerase/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA