Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 10446, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714777

RESUMO

This study evaluates induced allelopathy in a rye-pigweed model driven by rye's (Secale cereale L.) allelopathic potential as a cover crop and pigweed's (Amaranthus retroflexus L.) notoriety as a weed. The response of rye towards pigweed's presence in terms of benzoxazinoids (BXs) provides valuable insight into induced allelopathy for crop improvement. In the 2 week plant stage, pigweed experiences a significant reduction in growth in rye's presence, implying allelopathic effects. Rye exhibits increased seedling length and BXs upsurge in response to pigweed presence. These trends persist in the 4 week plant stage, emphasizing robust allelopathic effects and the importance of different co-culture arrangements. Germination experiments show rye's ability to germinate in the presence of pigweed, while pigweed exhibits reduced germination with rye. High-performance liquid chromatography with diode-array detection (HPLC-DAD) analysis identifies allelopathic compounds (BXs), 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA) and 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) in rye. Rye significantly increases BX production in response to pigweed, age-dependently. Furthermore, pigweed plants are screened for possible BX uptake from the rhizosphere. Results suggest that allelopathy in rye-pigweed co-cultures is influenced by seed timing, and age-dependent dynamics of plants' allelopathic compounds, providing a foundation for further investigations into chemical and ecological processes in crop-weed interactions.


Assuntos
Alelopatia , Benzoxazinas , Secale , Amaranthus/crescimento & desenvolvimento , Germinação , Técnicas de Cocultura/métodos , Plantas Daninhas , Produtos Agrícolas/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento
2.
Curr Microbiol ; 80(12): 386, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875629

RESUMO

Fungal bio-control agents (BCA) can minimize use of agro-chemicals while increasing plant productivity and tolerance to biotic-abiotic stressors. Ideally, BCA should tolerate varying environmental conditions they are introduced into, to successfully dominate and protect plants from stressors. However, BCA are living micro-organisms, their survival and efficacy can be impeded by extreme conditions. The current study aimed at evaluating whether indigenous fungal isolates, viz, Aspergillus flavus, A. terreus, Penicillium sp. AL-38 IRH-2012b, Talaromyces minioluteus, T. purpureogenus, T. sayulitensis, Trichoderma ghanense and T. viride can tolerate different levels of salinity, pH, nutrient and temperature. Certain fungal species are pests with potential of destroying many crops; the pathogenic effects of the aforementioned fungal isolates were further assessed on different crops' seeds. The results showed that, although being indigenous, Aspergillus, T. sayulitensis and T. ghanense failed to thrive in high salinity and pH. While Penicillium sp. AL-38 IRH-2012b failed to thrive under reduced nutrient level and all fungal isolates failed to grow at 10-20 °C. Furthermore, it was noted species within the same genus could affect crops in both favorable and unfavorable ways. The study demonstrated that the selected indigenous fungal isolates can tolerate different abiotic conditions and have potential to improve seed germination and seedling growth.


Assuntos
Germinação , Penicillium , Sementes/microbiologia , Estresse Fisiológico , Plântula , Aspergillus
3.
PLoS One ; 18(1): e0279934, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36595528

RESUMO

The germination rate of rice grain is recognized as one of the most significant indicators of seed quality assessment. Currently, grain germination rate is generally determined manually by experienced researchers, which is time-consuming and labor-intensive. In this paper, a new method is proposed for counting the number of grains and germinated grains. In the coarse segmentation process, the k-means clustering algorithm is applied to obtain rough grain-connected regions. We further refine the segmentation results obtained by the k-means algorithm using a one-dimensional Gaussian filter and a fifth-degree polynomial. Next, the optimal single grain area is determined based on the area distribution curve. Accordingly, the number of grains contained in the connected region is equal to the area of the connected region divided by the optimal single grain area. Finally, a novel algorithm is proposed for counting germinated grains. This algorithm is based on the idea that the length of the intersection between the germ and the grain is less than the circumference of the germ. The experimental results show that the mean absolute error of the proposed method for germination rate is 2.7%. And the performance of the proposed method is robust to changes in grain number, grain varieties, scale, illumination, and rotation.


Assuntos
Oryza , Germinação , Grão Comestível , Sementes
4.
Environ Res ; 218: 114973, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36460076

RESUMO

Enzyme-coupled titanium oxide nanopowder samples were prepared usingdifferent volumes of vermiwash using a cost-effective soft chemical method and their photocatalytic efficiency was studied against Methylene Blue (MB) dye decomposition. The volume of vermiwash used in the starting solution was varied from 50 to 200 mL in steps of 50 mL and the effect of enzymes prevalent in the vermiwash on the photocatalytic activity of titanium oxide (TiO2) was studied. The resultant water obtained after the photocatalytic dye degradation was found to inherit the enzymes from the nanoproduct. This enzyme-activated treated water showed effective seed germination of black gram (Vigna mungo L.). The results suggested that the enzyme-coupled TiO2 can be used as an effective and eco-friendly material for the treatment of contaminated water and consequently the treated water can also be utilized for enhanced seed germination.


Assuntos
Germinação , Sementes , Análise Custo-Benefício , Catálise , Titânio/química , Água/química , Azul de Metileno/química
5.
Environ Pollut ; 316(Pt 2): 120640, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36403881

RESUMO

Di-(2-ethylhexyl) phthalate (DEHP), a plasticizer derived from phthalate ester, is used as an additive in industrial products such as plastics, paints, and medical devices. However, DEHP is known as an endocrine-disrupting chemical, causing cancers and adverse effects on human health. This study evaluated DEHP biodegradation efficiency via food waste composting during 35 days of incubation. At high DEHP concentrations (2167 mg kg-1) in food waste compost mixture, the DEHP biodegradation efficiency was 99% after 35 days. The highest degradation efficiency was recorded at the thermophilic phase (day 3 - day 11) with the biodegradation rate reached 187 mg kg-1 day-1. DEHP was metabolized to dibutyl phthalate (DBP) and dimethyl phthalate (DMP) and would be oxidized to benzyl alcohol (BA) and mineralized into CO2 and water via various metabolisms. Finally, the compost's quality with residual DEHP was evaluated using Brassica chinensis L. seeds via 96 h of germination tests. The compost (at day 35) with a trace amount of DEHP as the end product showed no significant effect on the germination rate of Brassica chinensis L. seeds (88%) compared to that without DEHP (94%), indicating that the compost can be reused as fertilizer in agricultural applications. These results provide an improved understanding of the DEHP biodegradation via food waste composting without bioaugmentation and hence facilitating its green remediation and conversion into value-added products. Nevertheless, further studies are needed on DEHP biodegradation in large-scale food waste composting or industrial applications.


Assuntos
Brassica , Compostagem , Dietilexilftalato , Eliminação de Resíduos , Humanos , Germinação , Dietilexilftalato/toxicidade , Sementes
6.
Int J Mol Sci ; 23(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36499532

RESUMO

To overcome various factors that limit crop production and to meet the growing demand for food by the increasing world population. Seed priming technology has been proposed, and it is considered to be a promising strategy for agricultural sciences and food technology. This technology helps to curtail the germination time, increase the seed vigor, improve the seedling establishment, and enhance the stress tolerance, all of which are conducive to improving the crop yield. Meanwhile, it can be used to reduce seed infection for better physiological or phytosanitary quality. Compared to conventional methods, such as the use of water or chemical-based agents, X-rays, gamma rays, electron beams, proton beams, and heavy ion beams have emerged as promising physics strategies for seed priming as they are time-saving, more effective, environmentally friendly, and there is a greater certainty for yield improvement. Ionizing radiation (IR) has certain biological advantages over other seed priming methods since it generates charged ions while penetrating through the target organisms, and it has enough energy to cause biological effects. However, before the wide utilization of ionizing priming methods in agriculture, extensive research is needed to explore their effects on seed priming and to focus on the underlying mechanism of them. Overall, this review aims to highlight the current understanding of ionizing priming methods and their applicability for promoting agroecological resilience and meeting the challenges of food crises nowadays.


Assuntos
Germinação , Sementes , Sementes/fisiologia , Plântula/fisiologia , Produção Agrícola/métodos , Radiação Ionizante , Estresse Fisiológico
7.
PeerJ ; 10: e13623, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935250

RESUMO

The influence of dry leachates of Acasia saligna was tested on the seedling growth, photosynthesis, biochemical attributes, and gene expression of the economically important crops, including wheat (Triticum aestivum L.), radish (Raphanus sativus L.), barley (Hordeum vulgare L.) and arugula (Eruca sativa L.). Different concentrations (5%, 10%, 15%, 20%, and 25%) of stem extract (SE) and leaf extract (LE) of A. saligna were prepared, and seedlings were allowed to grow in Petri plates for 8 days. The results showed that all plant species exhibited reduced germination rate, plant height, and fresh and dry weight due to leachates extracts of A. saligna. Moreover, the activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX), exhibited differential regulation due to the extract treatment. The SOD was increased with increasing the concentration of extracts, while CAT and APX activities were decreased with increasing the extract concentrations. In addition, leachate extract treatment decrease chlorophyll content, photosynthesis, PSII activity, and water use efficiency, with evident effects at their higher concentrations. Furthermore, the content of proline, sugars, protein, total phenols, and flavonoids were reduced considerably due to leachates extract treatments. Furthermore, seedlings treated with high concentrations of LE increased the expression of genes. The present results lead to the conclusion that A. saligna contains significant allelochemicals that interfere with the growth and development of the tested crop species and reduced the crops biomass and negatively affected other related parameters. However, further studies are suggested to determine the isolation and purification of the active compounds present in A. saligna extracts.


Assuntos
Acacia , Alcaloides , Hordeum , Plântula , Germinação , Acacia/metabolismo , Antioxidantes/farmacologia , Fotossíntese , Alcaloides/metabolismo , Triticum , Superóxido Dismutase/metabolismo , Hordeum/metabolismo , Extratos Vegetais/metabolismo , Expressão Gênica
8.
J Environ Manage ; 319: 115639, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35834854

RESUMO

Spartina alterniflora, a highly invasive plant, has caused a serious threat to ecosystem biodiversity and economic development in coastal areas of many countries. In this study, the allelopathic effect of Ulva prolifera extracts on seed germination and seedling growth of S. alterniflora was studied. The results showed that three different treatments (water, methanol and ethyl acetate extract) could inhibit the seed germination and seedling growth of S. alterniflora by reducing the germination proportion and germination index of seeds, decreasing the seedling length and root length of seedlings, and affecting the lipid peroxidation and enzyme activity. The higher the concentration of the extracts, the higher the inhibition effect. When the aqueous extract concentration reached 0.20 g/mL, the germination proportion of S. alterniflora decreased to 49.53% of the control. RNA-seq analysis showed that the expression of genes related to amino acid metabolism and photosynthesis were both upregulated, and genes related to energy generation and metabolism were both downregulated after adding the extracts. GC-MS analysis indicated that the U. prolifera extract was rich in organic acids, alcohols and esters, among which butanoic acid, butyl ester, Valine and Hexanedioic acid, bis (2-ethylhexyl) ester might be the dominant allelochemicals. In order to facilitate field dosing, prolong action time and control release effect, PVA/SA hydrogel embedded U. prolifera extract was used to obtain a sustained-release agent. In addition, the survival rate of S. alterniflora was significantly reduced, which was only 21.67% at the salinity of 30 ppt. The results of this study provide a feasible method for controlling the invasion of S. alterniflora and achieving the waste utilization of U. prolifera.


Assuntos
Ulva , Ecossistema , Ésteres/farmacologia , Germinação , Poaceae/fisiologia , Plântula
9.
Plant Dis ; 106(8): 2060-2065, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35285255

RESUMO

Calonectria ilicicola is a soilborne fungus responsible for red crown rot (RCR) in soybeans. Recently, this disease has been detected in new areas within the United States and Asia, where it has been reported to cause significant yield losses. To date, no data on the efficacy of fungicide seed treatments for suppressing RCR in soybeans are available. We screened three commercially available soybean seed treatments (Acceleron STANDARD; Acceleron STANDARD + IleVO; Cruiser MAXX + Saltro) for impacts on germination, seedling growth, and disease caused by C. ilicicola under controlled laboratory conditions. The Cruiser MAXX + Saltro treatment improved final plant dry mass to levels similar to noninoculated controls. Both Acceleron STANDARD + IleVO and Cruiser MAXX + Saltro reduced percent root rot. Acceleron STANDARD alone did not impact root rot, indicating that the IleVO component was efficacious on C. ilicicola. These data indicate that IleVO and Cruiser MAXX + Saltro have potential for reducing early season impacts of RCR in soybeans. Future work assessing these seed treatments in field-grown soybeans is needed to better understand the role of seed treatments as components of an integrated management program for RCR.


Assuntos
Glycine max , Doenças das Plantas , Ambiente Controlado , Germinação , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Sementes , Glycine max/microbiologia , Estados Unidos
10.
Chemosphere ; 289: 133132, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34863727

RESUMO

Global production of plastics remains at the high level despite the SARS-Cov-2 pandemic. These are primarily petroleum-derived plastics but the contribution of bio-based plastics estimated at the level of 1% in the plastic market in 2019 is expected to be increasing. Simultaneously, the significant part of plastic waste is still disposed improperly and pollutes the environment making a threat to all living organisms. In this work three plastic materials, two bio-based biodegradable: polylactide (PLA) and polyhydroxybutyrate (PHB), and one petroleum-derived non-biodegradable polypropylene (PP) were studied towards their effects on seed germination and early growth of higher plants. The following plants were used as bioindicators: monocotyledonous plant - Sorghum saccharatum and two dicotyledonous plants: Sinapsis alba and Lepidium sativum. Plastics did not affect seed germination of higher plants even at the highest concentration tested (11.9% w/w) but their presence in soil acted in various ways on growth of the plants. Either no or inhibitive or stimulation effects on growth of roots or stems were noticed. It depended on the concentration and chemical composition of the plastic tested, and plant species. PHB and PLA more often caused to the inhibition of root growth than PP did. This phenomenon was observed in particular with regard to the dicotyledonous plants. Moreover, in the tests with the dicotyledonous plants (S. alba and L. sativum) the dose-response relations were usually determined as statistically relevant. Among these plants cress (L. sativum) occurred to be more sensitive and allowed for obtaining the dose-response dependence for both root and stem length, and, what is important, it took place in the case of each of materials tested. Therefore, cress is recommended to be used as a bioindicator in the assessment of the effect of plastics (petroleum-derived and bio-based plastics) on the early stages of growth of higher plants.


Assuntos
COVID-19 , Germinação , Humanos , Plásticos/toxicidade , SARS-CoV-2 , Sementes
11.
Water Sci Technol ; 84(10-11): 2968-2979, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34850707

RESUMO

The use of reclaimed water as an alternative source is a sustainable way forward for an arid country like The Kingdom of Saudi Arabia. The sewage contains organic and inorganic pollutants from households and industrial sources that may not be removed during treatment. In this study, seeds of Cicer arietinum were germinated using six different concentrations of treated water from the Tabuk wastewater treatment plant and tap water was used as control. The physicochemical properties such as total dissolved solids, electrical conductivity, total suspended solids, and turbidity values of treated water were higher, which gradually decreased on dilution with tap water. The amount of ammonia, nitrite, nitrate, and phosphate was in higher concentration in treated water as compared to control. The use of 40% treated water (T3) improved the germination percentage, speed of germination and germination index of C. arietinum. The phytotoxicity test reveals that undiluted treated water (T6) is not fit for direct use on plants. All the investigated treatments confirmed that the use of more than 40% of treated water decreased the fresh weight and dry weight of the seedlings as compared to control. The results are encouraging and help in attaining water sustainability in the Tabuk region.


Assuntos
Cicer , Purificação da Água , Germinação , Pisum sativum , Sementes , Águas Residuárias , Água
12.
Int J Mol Sci ; 22(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34502164

RESUMO

Plant pathogenic bacteria cause significant economic losses in the global food production sector. To secure an adequate amount of high-quality nutrition for the growing human population, novel approaches need to be undertaken to combat plant disease-causing agents. As the currently available methods to eliminate bacterial phytopathogens are scarce, we evaluated the effectiveness and mechanism of action of a non-thermal atmospheric pressure plasma (NTAPP). It was ignited from a dielectric barrier discharge (DBD) operation in a plasma pencil, and applied for the first time for eradication of Dickeya and Pectobacterium spp., inoculated either on glass spheres or mung bean seeds. Furthermore, the impact of the DBD exposure on mung bean seeds germination and seedlings growth was estimated. The observed bacterial inactivation rates exceeded 3.07 logs. The two-minute DBD exposure stimulated by 3-4% the germination rate of mung bean seeds and by 13.4% subsequent early growth of the seedlings. On the contrary, a detrimental action of the four-minute DBD subjection on seed germination and early growth of the sprouts was noted shortly after the treatment. However, this effect was no longer observed or reduced to 9.7% after the 96 h incubation period. Due to the application of optical emission spectrometry (OES), transmission electron microscopy (TEM), and confocal laser scanning microscopy (CLSM), we found that the generated reactive oxygen and nitrogen species (RONS), i.e., N2, N2+, NO, OH, NH, and O, probably led to the denaturation and aggregation of DNA, proteins, and ribosomes. Furthermore, the cellular membrane disrupted, leading to an outflow of the cytoplasm from the DBD-exposed cells. This study suggests the potential applicability of NTAPPs as eco-friendly and innovative plant protection methods.


Assuntos
Doenças das Plantas/prevenção & controle , Gases em Plasma/farmacologia , Sementes/efeitos dos fármacos , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/ultraestrutura , Germinação/efeitos dos fármacos , Humanos , Doenças das Plantas/microbiologia , Gases em Plasma/administração & dosagem , Plântula/efeitos dos fármacos , Sementes/microbiologia , Vigna/efeitos dos fármacos , Vigna/microbiologia
13.
J Genet ; 1002021.
Artigo em Inglês | MEDLINE | ID: mdl-34282734

RESUMO

Mutants with unique characters have played a key role in discovery of gene, mapping, functional genomics and breeding in many vegetable crops, but information on bitter gourd is lacking. Induction of mutation by gamma rays (Co60 source) at five different doses (50 Gy, 100 Gy, 150 Gy, 200 Gy and 250 Gy) was studied in four widely divergent bitter gourd genotypes BG-1346501, Meghna-2, Special Boulder and Selection-1 in M1 generation. Reduction in seed germination percentage, vine length and pollen fertility occurred in M1 generation with the increasing doses of mutagens. LD50 dose for BG-1346501, Meghna-2, Special Boulder and Selection-1 corresponded to 290.76 Gy, 206.12 Gy, 212.81 Gy and 213.49 Gy ᵞ radiation, respectively suggested low to medium doses (200-250 Gy) of gamma rays would be helpful in producing useful and exploitable mutants for further breeding. No remarkable effect of ᵞ radiation on fruit physicochemical characters in M1 generation were observed. M2 generation, raised from two widely divergent genotypes, BG-1346501 and Meghna-2, were screened critically and observed no significant reduction in seed germination and pollen viability, however little damage occurred particularly in vine length. There is possibility of isolating segregates in M2 generation with enhanced nutrient contents at low radiation dose. Highest mutation frequency resulted by treating Meghna-2 at 200 Gy and BG-1346501 at 100 Gy. Both genotype and mutagenic doses influenced mutagenic effectiveness. Spectrum of mutation was very low; number of putative mutants isolated from M2 generation was five in Meghna-2 and three in BG-1346501. Among six putative macro mutants isolated from M3 generation, we could identify two putative mutants, namely Meghna-2 with gynoecious sex form and BG-1346501 with high charantin, appreciable ß-carotene and high ascorbic acid contents having ample promise for further utilization in bitter gourd breeding after critical testing in subsequent generations for estimation of genetic gain and trait heritability to confirm the mutant stability.


Assuntos
Momordica charantia/genética , Mutagênese/genética , Melhoramento Vegetal/economia , Locos de Características Quantitativas/genética , Frutas/economia , Frutas/genética , Frutas/crescimento & desenvolvimento , Raios gama , Genótipo , Germinação/efeitos da radiação , Humanos , Momordica charantia/crescimento & desenvolvimento , Momordica charantia/efeitos da radiação , Mutagênese/efeitos da radiação , Mutação/efeitos da radiação , Locos de Características Quantitativas/efeitos da radiação
14.
Sci Rep ; 11(1): 15053, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34301980

RESUMO

Urochloa (syn. Brachiaria) is the most popular fodder of livestock farmers in Cameroon for hay and seed productions. Farmers in Cameroon have been producing Brachiaria seeds for decades for own uses and surplus are sold to neighbours, and to traders from Cameroon and neighbouring countries. However, there is no information available about qualities of these seeds. Fifteen Urochloa seeds samples were collected from farmers and/or government stations in five regions (Adamaoua, East, North, North West, and West) and analysed for major seed quality parameters along with seeds of improved Urochloa cultivar Basilisk imported from Brazil as a check. Study showed significant differences among treatments for various seed quality parameters tested (P < 0.0001). The highest thousand grains weight was recorded in Basilisk (5.685 g), followed by W12 (3.555 g), A05 (3.153 g) and N01 (2.655 g). Caryopsis number and caryopsis weight were highest in Basilisk followed by E09, A06, and W12. Of three conditions tested for seed germination, mean germination was the highest in greenhouse (7.39%) where Basilisk had the highest germination (25.5%) followed by N01 (18.50%), A05 (14.50%) and W12 (12.75%). The seed viability ranged from 18% (E09) to 81% (N01), and there were a positive and highly significant relationships between seed germination and viability traits (r = 0.883; P < 0.0001). This study showed a marked difference in seed quality parameters of Urochloa grass seeds produced in Cameroon, and the potential of developing Urochloa grass seed business in the Northern, Adamaoua and Western regions of Cameroon.


Assuntos
Brachiaria/crescimento & desenvolvimento , Germinação , Poaceae/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Camarões , Fenótipo
15.
Bull Entomol Res ; 111(5): 528-543, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33766180

RESUMO

This study was carried out to investigate the efficacy of the non-thermal atmospheric pressure plasma produced with dielectric barrier discharge (APPD) using air as a processing gas and microwave energy to control Tribolium castaneum and Trogoderma granarium adults and larvae in wheat grains. Insects' mortality was found to be power and time-dependent. The results indicated that non-thermal APPD and the microwave have enough insecticidal effect on the target pests. From the bioassay, LT50's and LT90's levels were estimated, T. granarium larvae appeared more tolerant to non-thermal APPD and the microwave energy than adults 7 days post-exposure. The germination percentage of wheat grains increased as the time of exposure to the non-thermal APPD increased. On the contrary, the germination percentage of wheat grains decreased as the time of exposure to the microwave increased. In addition, changes in antioxidant enzyme activities, catalase (CAT), glutathione S-transferase (GST) and peroxidase, in adults and larvae were examined after 24 h post-treatment to non-thermal APPD at 15.9 W power level, which caused 50% mortality. The activity of CAT, GST and lipid peroxide in the treated larvae showed a significant increase post-exposure to the non-thermal APPD at 15.9 W power level. On the other hand, no significant change in GSH-Px activity was observed. Reductions in the level of glutathione (GSH) and protein content occurred in treated larvae in comparison with the control.


Assuntos
Besouros/efeitos da radiação , Micro-Ondas , Gases em Plasma , Tribolium/efeitos da radiação , Animais , Besouros/enzimologia , Besouros/crescimento & desenvolvimento , Germinação , Larva/efeitos da radiação , Sementes/crescimento & desenvolvimento , Sementes/efeitos da radiação , Tribolium/enzimologia , Tribolium/crescimento & desenvolvimento , Triticum/parasitologia , Triticum/efeitos da radiação
16.
Plant Physiol Biochem ; 162: 247-257, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33711718

RESUMO

Salinization is one of the greatest threats in agriculture field limiting the growth and productivity of crops. Soil salinization directly affects the physiological, biochemical, and molecular functions of plants. The Plants adopt various tolerance mechanisms to combat salinity stress by involving complex physiological traits, metabolic pathways, and molecular or gene networks. Various techniques have been used to improve plant growth and productivity through genetic approach, genetic engineering and plant breeding. However, economic feasibility and ease of application can create a huge scope for priming techniques as a "stress reliever" in agricultural crop production. Seed priming is a simple, low-cost technique that enhances germination and seedling establishment by activating various physiological and metabolic processes. Priming regulates molecular mechanisms through increased expression of various stress related genes and proteins, which accelerates stress and cross tolerance. Priming memory and epigenetic changes enables the plants to withstand salinity stress by alterations in key signaling molecules, transcription factors, and change in chromatin states, that will be crucial for the second stress. In this way, priming can both mediate stress tolerance and initiate overarching stress tolerance to a wide range of stresses that further modify gene expression and enhance crop production. This review paper addresses some physiochemical, molecular and trans-generational mechanisms regulating plant adaptation and tolerance/cross tolerance to salinity in primed seeds/seedlings.


Assuntos
Melhoramento Vegetal , Estresse Fisiológico , Análise Custo-Benefício , Germinação , Salinidade , Estresse Salino , Sementes
17.
Int J Biol Macromol ; 171: 480-490, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33428956

RESUMO

In this study, a comparative efficacy of Cananga odorata EO (CoEO) and its nanoencapsulated formulation into chitosan nanoemulsion (CoEO-CsNe) against a toxigenic strain of Aspergillus flavus (AF-M-K5) were investigated for the first time in order to determine its efficacy in preservation of stored food from fungal, aflatoxin B1 (AFB1) contamination and lipid peroxidation. GC and GC-MS analysis of CoEO revealed the presence of linalool (24.56%) and benzyl acetate (22.43%) as the major components. CoEO was encapsulated into chitosan nanoemulsion (CsNe) through ionic-gelation technique and characterized by High Resolution-Scanning Electron Microscopy (HR-SEM), Fourier Transform Infrared spectroscopy (FTIR), and X-Ray Diffraction (XRD) analysis. The CoEO-CsNe during in vitro investigation against A. flavus completely inhibited the growth and AFB1 production at 1.0 µL/mL and 0.75 µL/mL, respectively. Additionally, CoEO-CsNe showed improved antioxidant activity against DPPH• and ABTS•+ with IC50 value 0.93 and 0.72 µL/mL, respectively. Further, CoEO-CsNe suppressed fungal growth, AFB1 secretion and lipid peroxidation in Arachis hypogea L. during in situ investigation without causing any adverse effect on seed germination. Overall results demonstrated that the CoEO-CsNe has potential of being utilized as a suitable plant based antifungal agent to improve the shelf-life of stored food against AFB1 and lipid peroxidation mediated biodeterioration.


Assuntos
Antifúngicos/administração & dosagem , Antioxidantes/administração & dosagem , Arachis/microbiologia , Aspergillus flavus/efeitos dos fármacos , Cananga/química , Conservantes de Alimentos/administração & dosagem , Nanocápsulas/administração & dosagem , Óleos Voláteis/administração & dosagem , Óleos de Plantas/administração & dosagem , Aflatoxina B1/metabolismo , Antifúngicos/farmacologia , Antioxidantes/farmacologia , Aspergillus flavus/metabolismo , Avaliação Pré-Clínica de Medicamentos , Emulsões , Conservantes de Alimentos/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Germinação/efeitos dos fármacos , Química Verde , Concentração Inibidora 50 , Peroxidação de Lipídeos/efeitos dos fármacos , Microscopia Eletrônica de Varredura , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Sementes/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
18.
Sci Rep ; 11(1): 1572, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33452441

RESUMO

Knowledge about the fitness cost imposed by herbicide resistance in weeds is instrumental in devising integrated management methods. The present study investigated the germination response of ACCase-resistant (R) and susceptible (S) winter wild oat under different environmental conditions. The DNA of the plants was sequenced after being extracted and purified. The segregated F2 seeds were subjected to various temperatures, water potentials, NaCl concentrations, different pHs, darkness conditions, and burial depths. The results of the sequencing indicated that Ile-2041-Asn mutation is responsible for the evolution of resistance in the studied winter wild oat plants. The seeds were able to germinate over a wide range of temperatures, osmotic potentials, NaCl concentrations, and pHs. Germination percentage of R and S seeds under dark and light conditions was similar and ranged from 86.3 to 88.3%. The highest emergence percentage for both R and S plants was obtained in 0, 1, and 2 cm depths and ranged from 66.6 to 70.3%. In overall, no differences were observed in the germination response between the R and S winter wild oat plants under all studied conditions. No fitness cost at seed level indicates that control of R winter wild oats is more difficult, and it is essential to adopt crop and herbicide rotation to delay the further evolution of resistance.


Assuntos
Avena/genética , Germinação/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/farmacologia , Avena/efeitos dos fármacos , Avena/metabolismo , Aptidão Genética/efeitos dos fármacos , Germinação/genética , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Plantas Daninhas/genética , Sementes/efeitos dos fármacos , Controle de Plantas Daninhas/métodos
19.
Braz. J. Pharm. Sci. (Online) ; 57: e18104, 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1350241

RESUMO

Malt is the mature fruit of Hordeum vulgare L. after germination and drying and has been applied for treatment female abnormal galactorrhea. Previous studies have showed total alkaloids in malt have anti-HPRL effect. However, total alkaloids of malt change with the growth cycle, and the specified levels of total alkaloids in different bud length of malt have not been decided. To determine the definitive level of total alkaloids in different buds of malt and the most suitable bud length for clinical application by comparing effects on hyperprolactinemia rat. During the budding of malt, the content of total alkaloids first increased and then decreased, and it peaked at a bud length of 0.75 cm. Treated the HPRL model rats with different buds of malt, the PRL level was decreased, the number of PRLpositive cells and the mRNA expression level in the pituitary were significantly declined, and the number of dopamine D1 and D2 receptors in the hypothalamus was increased. The above changes were most significant in 0.75 cm bud. These results suggest that in terms of the content of effective substance and the effects on HPRL model rats, a malt bud length of 0.75 cm is optimal for clinical application.


Assuntos
Animais , Feminino , Ratos , Hordeum/classificação , Benchmarking/métodos , Plântula/efeitos adversos , Hiperprolactinemia/classificação , Dopamina , Germinação , Alcaloides/efeitos adversos , Sistema Endócrino/anormalidades , Frutas
20.
Plant Sci ; 301: 110550, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33218616

RESUMO

Herbicide weed resistance has been a major issue of conventional global row crop agriculture for decades. Still current strategies and novel technologies available to address weed resistance are mainly herbicide-based. Thus, there is a need for innovative means of integrated weed management strategies. Our approach proposed herein integrates cover crops, plant hormones and pre-emergence (PRE) herbicides as part of weed management programs. Plant hormones such as gibberellic acid (GA3) and abscisic acid (ABA) have the potential to induce seed germination and seed dormancy, respectively. Prior to crop emergence, plant hormones are tank mixed with PRE herbicides and sprayed to cover crop residue. Two strategies are proposed (1) PRE herbicides + GA3 and (2) PRE herbicide + ABA. The hormones provide different results; GA3 is likely to stimulate a more uniform weed seed germination, thus enhancing efficacy of PRE herbicides. Conversely, ABA could promote weed seed dormancy, reducing selection pressure and weed infestations until crop canopy closure. Much research is needed to understand the impact of hormones on weed and crop species, optimize products and rates, and compatibility of hormones with herbicides and cover crops. If successful, this approach could open a new opportunity for agricultural business, enhance farming sustainability by reducing dependence on herbicides and minimizing agronomic, economic and environmental issues related to weed resistance.


Assuntos
Resistência a Herbicidas , Herbicidas/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Plantas Daninhas/efeitos dos fármacos , Controle de Plantas Daninhas , Agricultura , Produtos Agrícolas , Germinação/efeitos dos fármacos , Dormência de Plantas/efeitos dos fármacos , Desenvolvimento Sustentável
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA