Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Biomolecules ; 10(10)2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076409

RESUMO

An elevated concentration of fibrinogen in blood is a significant risk factor during many pathological diseases, as it leads to an increase in red blood cells (RBC) aggregation, resulting in hemorheological disorders. Despite the biomedical importance, the mechanisms of fibrinogen-induced RBC aggregation are still debatable. One of the discussed models is the non-specific adsorption of fibrinogen macromolecules onto the RBC membrane, leading to the cells bridging in aggregates. However, recent works point to the specific character of the interaction between fibrinogen and the RBC membrane. Fibrinogen is the major physiological ligand of glycoproteins receptors IIbIIIa (GPIIbIIIa or αIIßß3 or CD41/CD61). Inhibitors of GPIIbIIIa are widely used in clinics for the treatment of various cardiovascular diseases as antiplatelets agents preventing the platelets' aggregation. However, the effects of GPIIbIIIa inhibition on RBC aggregation are not sufficiently well studied. The objective of the present work was the complex multimodal in vitro study of the interaction between fibrinogen and the RBC membrane, revealing the role of GPIIbIIIa in the specificity of binding of fibrinogen by the RBC membrane and its involvement in the cells' aggregation process. We demonstrate that GPIIbIIIa inhibition leads to a significant decrease in the adsorption of fibrinogen macromolecules onto the membrane, resulting in the reduction of RBC aggregation. We show that the mechanisms underlying these effects are governed by a decrease in the bridging components of RBC aggregation forces.


Assuntos
Eritrócitos/patologia , Fibrinogênio/isolamento & purificação , Glicoproteínas/isolamento & purificação , Substâncias Macromoleculares/isolamento & purificação , Agregação Eritrocítica/genética , Eritrócitos/química , Eritrócitos/metabolismo , Fibrinogênio/genética , Citometria de Fluxo , Glicoforinas , Glicoproteínas/química , Glicoproteínas/ultraestrutura , Humanos , Lasers , Substâncias Macromoleculares/química , Substâncias Macromoleculares/ultraestrutura , Microfluídica/métodos , Pinças Ópticas , Inibidores da Agregação Plaquetária/química , Inibidores da Agregação Plaquetária/farmacologia
2.
Biophys J ; 99(1): 284-92, 2010 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-20655857

RESUMO

Protein association in lipid membranes is a complex process with thermodynamics directed by a multitude of different factors. Amino-acid sequence is a molecular parameter that affects dimerization as shown by limited directed mutations along the transmembrane domains. Membrane-mediated interactions are also important although details of such contributions remain largely unclear. In this study, we probe directly the free energy of association of Glycophorin A by means of extensive parallel Monte Carlo simulations with recently developed methods and a model that accounts for sequence-specificity while representing lipid membranes faithfully. We find that lipid-induced interactions are significant both at short and intermediate separations. The ability of molecules to tilt in a specific hydrophobic environment extends their accessible interfaces, leading to intermittent contacts during protein recognition. The dimer with the lowest free energy is largely determined by the favorable lipid-induced attractive interactions at the closest distance. Finally, the coarse-grained model employed herein, together with the extensive sampling performed, provides estimates of the free energy of association that are in excellent agreement with existing data.


Assuntos
Membrana Celular/metabolismo , Glicoforinas/química , Glicoforinas/metabolismo , Lipídeos de Membrana/metabolismo , Multimerização Proteica , Sequência de Aminoácidos , Bicamadas Lipídicas/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Método de Monte Carlo , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Termodinâmica
3.
Cell Transplant ; 19(11): 1465-73, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21214970

RESUMO

The third-generation NOD/LtSz-scid/IL2Rγ(null) (NOD/SCID IL2Rγ(null)) mouse represents a significantly improved xenograft model allowing high levels of human leukocyte engraftment over extended follow up. One remaining limitation of this mouse model, however, is the low level of circulating human erythrocytes. We established a practical ex vivo erythroid culture system of xenograft marrow progenitors to enrich for human erythroid progeny. At various time points after transplant, erythroid cells were easily assayed after 17 days of ex vivo culture of xenograft marrow, with nearly all nucleated cells of human origin and approximately 60% human GPA or CD71 positive. We then transplanted cord blood CD34(+) cells marked with a lentiviral vector encoding green fluorescent protein (GFP). Three months later, ex vivo culture of xenograft marrow progenitors showed 41.3% of the cultured erythroid cells were positive for GFP and human CD71, and 56.2% were positive for GFP and human GPA, similar to that of circulating leukocytes at the same time point. Next, G-CSF mobilized peripheral blood CD34(+) cells from a sickle cell trait subject were infused in this mouse model to determine if the hemoglobin pattern could be modeled. CD34(+) cells from the sickle cell trait subject engrafted equally compared to CD34(+) cells from normal subjects, establishing the sickle cell trait phenotype. Lastly, a comparison of adult-derived peripheral blood CD34(+) cells and cord blood-derived CD34(+) cells xenografted mice was made, and long term follow-up demonstrated a recapitulation of the fetal to adult hemoglobin switch. This approach should prove a useful tool for testing strategies for genetic manipulation of erythroid progeny and the study of hemoglobin switching.


Assuntos
Eritrócitos/citologia , Células-Tronco Hematopoéticas/citologia , Animais , Antígenos CD/metabolismo , Antígenos CD34/genética , Antígenos CD34/metabolismo , Técnicas de Cultura de Células , Transfusão de Eritrócitos , Glicoforinas/metabolismo , Hemoglobinas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Receptores da Transferrina/metabolismo , Traço Falciforme/metabolismo
4.
J Chem Phys ; 130(21): 215106, 2009 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-19508105

RESUMO

A two-step Monte Carlo procedure is developed to investigate the dimerization process of the homodimer glycophorin A. In the first step, the energy density of states of the system is estimated by the Wang-Landau algorithm. In the second step, a production run is performed during which various energetical and structural observables are sampled to provide insight into the thermodynamics of the system. All seven residues LIxxGVxxGVxxT constituting the contact interface play a dominating role in the dimerization, however at different stages of the process. The leucine motif and to some extent the GxxxG motif are involved at the very beginning of the dimerization when the two helices come into contact, ensuring an interface already similar to the native one. At a lower temperature, the threonine motif stabilizes by hydrogen bonding the dimer, which finally converges toward its native state at around 300 K. The power and flexibility of the procedure employed here makes it an interesting alternative to other Monte Carlo methods for the study of similar protein systems.


Assuntos
Algoritmos , Glicoforinas/química , Multimerização Proteica , Motivos de Aminoácidos , Sequência de Aminoácidos , Glicoforinas/metabolismo , Método de Monte Carlo , Estrutura Quaternária de Proteína , Temperatura , Termodinâmica
5.
Radiat Res ; 166(1 Pt 2): 287-302, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16808614

RESUMO

Biological monitoring of dose can contribute important, independent estimates of cumulative radiation exposure in epidemiological studies, especially in studies in which the physical dosimetry is lacking. Three biodosimeters that have been used in epidemiological studies to estimate past radiation exposure from external sources will be highlighted: chromosome painting or FISH (fluorescence in situ hybridization), the glycophorin A somatic mutation assay (GPA), and electron paramagnetic resonance (EPR) with teeth. All three biodosimeters have been applied to A-bomb survivors, Chernobyl clean-up workers, and radiation workers. Each biodosimeter has unique advantages and limitations depending upon the level and type of radiation exposure. Chromosome painting has been the most widely applied biodosimeter in epidemiological studies of past radiation exposure, and results of these studies provide evidence that dose-related translocations persist for decades. EPR tooth dosimetry has been used to validate dose models of acute and chronic radiation exposure, although the present requirement of extracted teeth has been a disadvantage. GPA has been correlated with physically based radiation dose after high-dose, acute exposures but not after low-dose, chronic exposures. Interindividual variability appears to be a limitation for both chromosome painting and GPA. Both of these techniques can be used to estimate the level of past radiation exposure to a population, whereas EPR can provide individual dose estimates of past exposure. This paper will review each of these three biodosimeters and compare their application in selected epidemiological studies.


Assuntos
Bioensaio/métodos , Coloração Cromossômica/métodos , Análise Mutacional de DNA/métodos , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Glicoforinas/genética , Monitoramento de Radiação/métodos , Radioisótopos/análise , Carga Corporal (Radioterapia) , Exposição Ambiental/análise , Humanos , Doses de Radiação , Eficiência Biológica Relativa , Estudos Retrospectivos , Medição de Risco/métodos , Fatores de Risco
6.
J Mol Biol ; 329(4): 831-40, 2003 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-12787681

RESUMO

We describe an effective procedure for modeling the structures of simple transmembrane helix homo-oligomers. The method differs from many previous approaches in that the only structural constraint we use to help select the correct model is the oligomerization state of the protein. The method involves the following steps: (1) perform 100-250 independent Monte Carlo energy minimizations of helix pairs to produce a large collection of well-packed structures; (2) filter the minimized structures to find those that are consistent with the expected symmetry of the oligomer; (3) cluster the structures that pass the symmetry filter; and (4) select a representative of the most populous cluster as the final prediction. We applied the method to the transmembrane helices of five proteins and compare our results to the available experimental data. Our predictions of glycophorin A, neu, the M2 channel and phospholamban resulted in a single model for each protein that agreed with the experimental results. In the case of erbB-2, however, we obtained three structurally distinct clusters of approximately equal sizes, so it was not possible to identify a clearly favored structure. This may reflect a real heterogeneity of packing modes for erbB-2, which is known to interact with different receptor subunits. Our method should be useful for obtaining structural models of transmembrane domains, improving our understanding of structure/function relationships for particular membrane proteins.


Assuntos
Proteínas de Ligação ao Cálcio/química , Genes erbB-2 , Glicoforinas/química , Canais Iônicos/química , Modelos Moleculares , Humanos , Método de Monte Carlo , Fragmentos de Peptídeos/química , Conformação Proteica , Dobramento de Proteína , Termodinâmica
7.
Proteins ; 49(3): 342-9, 2002 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-12360524

RESUMO

A set of pairwise contact potentials between amino acid residues in transmembrane helices was determined from the known native structure of the transmembrane protein (TMP) bacteriorhodopsin by the method of perceptron learning, using Monte Carlo dynamics to generate suitable "decoy" structures. The procedure of finding these decoys is simpler than for globular proteins, since it is reasonable to assume that helices behave as independent, stable objects and, therefore, the search in the conformational space is greatly reduced. With the learnt potentials, the association of the helices in bacteriorhodopsin was successfully simulated. The folding of a second TMP (the helix-dimer glycophorin A) was then accomplished with only a refinement of the potentials from a small number of decoys.


Assuntos
Proteínas de Membrana/química , Redes Neurais de Computação , Aminoácidos/química , Bacteriorodopsinas/química , Glicoforinas/química , Modelos Moleculares , Modelos Teóricos , Método de Monte Carlo , Dobramento de Proteína , Estrutura Secundária de Proteína
8.
Biochemistry ; 26(7): 1909-17, 1987 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-3593700

RESUMO

We have developed a model of glycophorin in a phospholipid bilayer membrane in order to study the thermodynamics of this system and to understand the detailed behavior of recent calorimetric data. We assume that the larger glycophorin polar group can be considered as either adopting a pancakelike conformation at the bilayer interface (D state) or be directed generally away from the interface (U state) [Ruppel, D., Kapitza, H.G., Galla, H.J., Sixl, F., & Sackmann, E. (1982) Biochim. Biophys. Acta 692, 1-17]. Lipid hydrocarbon chains are described either as excited (e state) with high energy and relatively many gauche conformers or as generally extended (g state) with low energy. We performed a Monte-Carlo simulation using the Glauber and Kawasaki procedures on a triangular lattice which represents the plane of half of the bilayer. Lattice sites can be occupied either by lipid hydrocarbon chains or by model glycophorin alpha-helical hydrophobic cores. The states D and U are represented by hexagons of different sizes in the plane of the lattice, and the hard core repulsion between two such polar groups is accounted for by forbidding hexagon-hexagon overlap. We have studied the effect of having the glycophorin polar group interact in various ways with the lipid bilayer. We find that the protein polar group in its D state interacts, either directly or indirectly, with the lipid bilayer so as to reduce the effective lateral pressure acting on the lipid hydrocarbon chains by about 3 dyn/cm. Polar groups in their U states do not reduce this lateral pressure.(ABSTRACT TRUNCATED AT 250 WORDS)


Assuntos
Glicoforinas , Bicamadas Lipídicas , Modelos Moleculares , Sialoglicoproteínas , Simulação por Computador , Conformação Molecular , Método de Monte Carlo , Conformação Proteica , Termodinâmica
9.
Biochim Biophys Acta ; 817(2): 238-48, 1985 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-3893545

RESUMO

The two major membrane glycoproteins of human red cells, glycophorin and band 3, the anion exchange protein, were isolated from cells exofacially labeled with fluorescein and reconstituted into vesicles with defined transmembrane disposition. Uniform orientation of polypeptides was accomplished by two procedures: Vesicles with single protein units were obtained by a one-step dilution of a protein/detergent suspension with a vast excess of phospholipid. Vesicles with uniform orientation of protein were selected by affinity chromatography on derivatized Sepharoses (organomercurial, wheat germ agglutinin, aminoethyl or diethylaminoethyl). Vesicles with multiple protein units with uniform orientation were generated by vectorial immobilization of detergent solubilized proteins on the above affinity matrices and in situ formation of proteoliposomes by detergent substitution for phospholipid. The proteoliposomes were released from the column by addition of excess free ligand. The orientation of band 3 and glycophorin in the reconstituted vesicles was first assessed by immunofluorescence quenching, using anti-fluorescein antibodies, to quantitatively quench fluorescein residues exposed on the outer surface of vesicles. Further assessment was achieved by chromatographing the vesicles through various affinity and ionic matrices. Vesicle populations of higher than 90% homogeneity in protein orientation (right-side-out or inside-out) were obtained with both procedures. The above methods provide a convenient experimental tool for the oriented reconstitution of proteins and the evaluation of their transmembrane disposition.


Assuntos
Membrana Eritrocítica/análise , Proteínas de Membrana/análise , Ácido 4,4'-Di-Isotiocianoestilbeno-2,2'-Dissulfônico , Ácido 4-Acetamido-4'-isotiocianatostilbeno-2,2'-dissulfônico/análogos & derivados , Ácido 4-Acetamido-4'-isotiocianatostilbeno-2,2'-dissulfônico/metabolismo , Proteína 1 de Troca de Ânion do Eritrócito/análise , Fluoresceína , Fluoresceínas , Glicoforinas/análise , Humanos , Técnicas Imunológicas , Métodos , Microscopia Eletrônica , Modelos Moleculares , Soluções , Espectrometria de Fluorescência
10.
Biochim Biophys Acta ; 687(1): 42-56, 1982 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-6176272

RESUMO

We have developed a general model that relates the lateral diffusion coefficient of one isolated large intrinsic molecule (mol. wt. greater than or approximately 1000) in a phosphatidylcholine bilayer to the static lipid hydrocarbon chain order. We have studied how protein lateral diffusion can depend upon protein-lipid interactions but have not investigated possible non-specific contributions from gel-state lattice defects. The model has been used in Monte Carlo simulations or in mean-field approximations to study the lateral diffusion coefficients of Gramicidin S, the M-13 coat protein and glycophorin in dimyristoyl- and dipalmitoylphosphatidylcholine (DMPC and DPPC) bilayers as functions of temperature. Our calculated lateral diffusion coefficients for Gramicidin S and the M-13 coat protein are in good agreement with what has been observed and suggest that Gramicidin S is in a dimeric form in DMPC bilayers. In the case of glycophorin we find that the 'ice breaker' effect can be understood as a consequence of perturbation of the lipid polar region around the protein. In order to understand this effect is necessary that the protein hydrophilic section perturb the polar regions of at least approx. 24 lipid molecules, in good agreement with the numbers of 29-30 measured using 31P-NMR. Because of lipid-lipid interactions this effect extends itself out to four or five lipid layers away from the protein so that the hydrocarbon chains of between approx. 74 and approx. 108 lipid molecules are more disordered in the gel phase, so contributing less to the transition enthalpy, in agreement with the numbers of 80-100 deduced from differential scanning calorimetry (DSC). An understanding of the abrupt change in the diffusion coefficient at a temperature below the main bilayer transition temperature requires an additional mechanism. We propose that this change may be a consequence of a 'coupling-uncoupling' transition involving the protein hydrophilic section and the lipid polar regions, which may be triggered by the lipid bilayer pretransition. Our calculation of the average number of gauche bonds per lipid chain as a function of temperature and distance away from an isolated polypeptide or integral protein shows the extent of statically disordered lipid around such molecules. The range of this disorder depends upon temperature, particularly near the main transition.


Assuntos
Proteínas do Capsídeo , Capsídeo , Glicoforinas , Gramicidina , Bicamadas Lipídicas , Proteínas de Membrana , Fosfatidilcolinas , Sialoglicoproteínas , Proteínas Virais , Difusão , Matemática , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA