Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Vis Exp ; (204)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38465947

RESUMO

Caenorhabditis elegans (C. elegans) is a transparent, non-parasitic nematode with a simple biology, which makes it a great tool for biological sciences teaching through the staining of the cells or their molecular content. Lugol dye (iodine-potassium iodide solution) has been widely used in biochemistry to stain glycogen stores. In this context, it is possible to observe differences between fed and starved animals, besides the effects of different conditions, such as different diets and oxygen levels. Erioglaucine is a blue dye that indicates the loss of the intestinal barrier. When the intestinal barrier is intact, the blue dye stains inside the lumen; however, when this integrity is disrupted, the dye leaks into the body cavity. Using a stereomicroscope or a microscope, teachers can demonstrate physiological and biochemical alterations, or they can instigate students to ask a scientific question and hypothesize and test their hypothesis using these assays. The present protocol describes two staining techniques in C. elegans that can be easily carried out by students.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Humanos , Animais , Caenorhabditis elegans/fisiologia , Corantes , Coloração e Rotulagem , Glicogênio
2.
J Comp Physiol B ; 194(2): 131-144, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38441658

RESUMO

Overwintering insects are facing energetic challenges because of food shortage, low temperature, and desiccation stress. Paper wasps of the genus Polistes overwinter as mated adults (gynes) in hibernacula protecting them from predation, snow, and rain but barely from low environmental temperature. In different climates, they face differing overwintering temperature regimes, and therefore they may differ in their energy use. We investigated how much of energy resources built up until autumn is used during diapause dormancy in natural hibernacula by measuring lipid, glycogen, and free carbohydrate content in autumn and early spring in Polistes dominula from temperate European (Austrian) and warm Mediterranean (Italian) climate and Polistes gallicus from Mediterranean climate. Winter energy consumption amounted to ~ 339 and ~ 310 J per wasp in the Austrian and Italian Polistes dominula populations. The smaller Italian Polistes gallicus consumed ~ 247 J. This amounts to 2.62, 2.35, and 1.79 J per day. Of this, the energy demand was mainly fuelled by lipids (84%, 93%, and 90%, respectively), but glycogen stores contributed also considerably (16%, 6%, and 9%). Free carbohydrates decreased only by 0.7%, 1%, and 0.8%. While fat stores seem still sufficient in spring, the wasps depleted most of their carbohydrates. The energy reserves of 396, 400, and 147 J per wasp remaining in spring in the three populations seem sufficient to fuel rest or simple brood care activities for a whole summer but restrict foraging flights to a few hours (~ 3.5-6 h). Results suggest that energy supply might become challenging in expected future climate scenarios.


Assuntos
Metabolismo Energético , Glicogênio , Estações do Ano , Vespas , Animais , Vespas/fisiologia , Glicogênio/metabolismo , Metabolismo dos Lipídeos , Feminino , Metabolismo dos Carboidratos , Diapausa de Inseto/fisiologia
3.
Int J Biol Macromol ; 263(Pt 2): 130332, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401580

RESUMO

Glycogen, a complex branched glucose polymer and a blood-sugar reservoir in animals, comprises small ß particles joined together into composite α particles. In diabetic animals, α particles fragment more easily than those in healthy animals. Finding evidence for or against postulated mechanisms for α-particle formation is thus important for diabetes research. Insight into this is obtained here using Monte-Carlo simulations, including addition and loss of glucose monomer, branching and debranching, based on earlier simulations which were in acceptable agreement with experiment [Zhang et al., Int J Biol Macromolecules 2018, 116, 264]. One postulated mechanism for α-particle formation is "budding": occasionally a glucan chain temporarily protrudes from the particle, and if its growing end is sufficiently far from its parent particle, it propagates to a new linked particle. We tested this by simulations in which an "artificial" bud (a chain extending well outside the average particle radius) is added to a glycogen molecule in a dynamic steady state, and the system allowed to evolve. In some simulations, the particle reached a new steady state having an irregular dumbbell shape: a rudimentary α particle. Thus 'budding' is a possible mechanism for α particles to form. If no simulations had shown this behaviour, it would have refuted the postulate.


Assuntos
Diabetes Mellitus , Glicogênio , Animais , Partículas alfa , Glucose , Glicemia
4.
Artigo em Inglês | MEDLINE | ID: mdl-36767559

RESUMO

Glycogen storage disease (GSD) is a hereditary metabolic disorder caused by enzyme deficiency resulting in glycogen accumulation in the liver, muscle, heart, or kidney. GSD types II, III, IV, and IX are associated with cardiac involvement. However, cardiac manifestation in other GSD types is unclear. This study aimed to describe whether energy deprivation and the toxic effects of accumulated glycogen affect the heart of patients with GSD. We evaluated the left ventricle (LV) wall mass, LV systolic and diastolic function and myocardial strain with conventional echocardiography and two-dimensional speckle-tracking echocardiography (2D STE) in 62 patients with GSD type I, III, VI and IX who visited the Wonju Severance Hospital in 2021. Among the GSD patients, the echocardiographic parameters of 55 pediatrics were converted into z-scores and analyzed. Of the patients, 43 (62.3%), 7 (11.3%) and 12 (19.4%) patients were diagnosed with GSD type I, type III, and type IX, respectively. The median age was 9 years (range, 1-36 years), with 55 children under 18 years old and seven adults over 18 years. For the 55 pediatric patients, the echocardiographic parameters were converted into a z-score and analyzed. Multiple linear regression analysis showed that the BMI z-score (p = 0.022) and CK (p = 0.020) predicted increased LV mass z-score, regardless of GSD type. There was no difference in the diastolic and systolic functions according to myocardial thickness; however, 2D STE showed a negative correlation with the LV mass (r = -0.28, p = 0.041). Given that patients with GSD tend to be overweight, serial evaluation with echocardiography might be required for all types of GSD.


Assuntos
Doença de Depósito de Glicogênio , Adulto , Humanos , Criança , Adolescente , Lactente , Pré-Escolar , Adulto Jovem , Doença de Depósito de Glicogênio/diagnóstico por imagem , Ecocardiografia , Fígado , Glicogênio , Ventrículos do Coração/diagnóstico por imagem
5.
Life Sci ; 315: 121357, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36634864

RESUMO

AIMS: Although the benefits of exercise can be potentiated by fasting in healthy subjects, few studies evaluated the effects of this intervention on the metabolism of obese subjects. This study investigated the immediate effects of a single moderate-intensity exercise bout performed in fast or fed states on the metabolism of gastrocnemius and soleus of lean and obese rats. MAIN METHODS: Male rats received a high-fat diet (HFD) for twelve weeks to induce obesity or were fed standard diet (SD). After this period, the animals were subdivided in groups: fed and rest (FER), fed and exercise (30 min treadmill, FEE), 8 h fasted and rest (FAR) and fasted and exercise (FAE). Muscle samples were used to investigate the oxidative capacity and gene expression of AMPK, PGC1α, SIRT1, HSF1 and HSP70. KEY FINDINGS: In relation to lean animals, obese animals' gastrocnemius glycogen decreased 60 %, triglycerides increased 31 %; glucose and alanine oxidation decreased 26 % and 38 %, respectively; in soleus, triglycerides reduced 46 % and glucose oxidation decreased 37 %. Exercise and fasting induced different effects in glycolytic and oxidative muscles of obese rats. In soleus, fasting exercise spared glycogen and increased palmitate oxidation, while in gastrocnemius, glucose oxidation increased. In obese animals' gastrocnemius, AMPK expression decreased 29 % and SIRT1 increased 28 % in relation to lean. The AMPK response was more sensitive to exercise and fasting in lean than obese rats. SIGNIFICANCE: Exercise and fasting induced different effects on the metabolism of glycolytic and oxidative muscles of obese rats that can promote health benefits in these animals.


Assuntos
Proteínas Quinases Ativadas por AMP , Sirtuína 1 , Animais , Masculino , Ratos , Proteínas Quinases Ativadas por AMP/metabolismo , Glucose/metabolismo , Glicogênio/metabolismo , Promoção da Saúde , Insulina/metabolismo , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Sirtuína 1/metabolismo , Triglicerídeos/metabolismo
6.
Eur J Sport Sci ; 23(9): 1961-1971, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36168815

RESUMO

Completing selected training sessions with reduced glycogen availability is associated with greater signalling and improved muscle oxidative capacity, although it may impact the overall quality of the session. We examined the effects of low carbohydrate availability on high intensity exercise performance, running economy, critical speed, and substrate metabolism. On two occasions, nine male runners (V̇O2peak 60.3 ± 3.3 mL.kg-1.min-1) completed a glycogen depletion protocol involving 90-min at 75%vV̇O2peak followed by 10 × 1-min at 110% vV̇O2peak. This was followed either by high (HIGH) or low (LOW) carbohydrate intake (>6 g.kg-1.day-1 and <50 g.day-1, respectively) until completion of a performance protocol on day 2 consisting of a series of time-trials (TT) (50m to 3000m) and physiological assessments. There were no differences between LOW and HIGH for any TT distance (mean TT performance times for LOW and HIGH were: 3000m TT 651.7 ± 52.8s and 646.4 ± 52.5s, 1500 m TT 304.0 ± 20.2s and 304.2 ± 22.1s, 400 m TT 67.64 ± 4.2s and 67.3 ± 3.8s, 50 m TT 7.27 ± 0.44s and 7.25 ± 0.45s, respectively, P > 0.05), though some athletes performed better in LOW (n = 5). While fat oxidation in LOW was significantly greater than HIGH (Δ0.32 ± 0.14 g.min-1; P < 0.001 at 14 km.h-1 and Δ0.34 ± 0.12 g.min-1 at 16 km.h-1; P < 0.01), running economy did not differ between trials (P > 0.05). Acute manipulation of carbohydrate availability showed immediate effects on substrate metabolism evidenced by greater fat oxidation without changes in RE. Acute low carbohydrate availability did not affect high intensity running performance across a range of distances.Highlights Acute manipulation of muscle glycogen availability using an exercise and dietary manipulation protocol did not affect subsequent high intensity running performance across a range of running distances.Reduced muscle glycogen resulted in a marked increase in fat oxidation in low glycogen condition but no changes in running economy or critical speed.Individual factors should be considered when prescribing high intensity sessions with restricted carbohydrate availability.


Assuntos
Músculo Esquelético , Corrida , Humanos , Masculino , Músculo Esquelético/fisiologia , Corrida/fisiologia , Exercício Físico/fisiologia , Glicogênio/metabolismo , Oxirredução , Carboidratos da Dieta , Consumo de Oxigênio
7.
Biosensors (Basel) ; 12(10)2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36290976

RESUMO

Astrocytes represent one of the main cell types in the brain and play a crucial role in brain functions, including supplying the energy demand for neurons. Moreover, they are important regulators of metabolite levels. Glucose uptake and lactate production are some of the main observable metabolic actions of astrocytes. To gain insight into these processes, it is essential to establish scalable and functional sources for in vitro studies of astrocytes. In this study, we compared the metabolic turnover of glucose and lactate in astrocytes derived from human induced pluripotent stem cell (hiPSC)-derived Astrocytes (hiAstrocytes) as a scalable astrocyte source to human fetal astrocytes (HFAs). Using a user-friendly, commercial flow-based biosensor, we could verify that hiAstrocytes are as glycogenic as their fetal counterparts, but their normalized metabolic turnover is lower. Specifically, under identical culture conditions in a defined media, HFAs have 2.3 times higher levels of lactate production compared to hiAstrocytes. In terms of glucose, HFAs have 2.1 times higher consumption levels than hiAstrocytes at 24 h. Still, as we describe their glycogenic phenotype, our study demonstrates the use of hiAstrocytes and flow-based biosensors for metabolic studies of astrocyte function.


Assuntos
Astrócitos , Células-Tronco Pluripotentes Induzidas , Humanos , Astrócitos/metabolismo , Ácido Láctico/metabolismo , Glucose/metabolismo , Neurônios/metabolismo , Glicogênio/metabolismo , Células Cultivadas
8.
PLoS One ; 17(4): e0264989, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35472091

RESUMO

The usage of cladocerans as non-model organisms in ecotoxicological and risk assessment studies has intensified in recent years due to their ecological importance in aquatic ecosystems. The molecular assessment such as gene expression analysis has been introduced in ecotoxicological and risk assessment to link the expression of specific genes to a biological process in the cladocerans. The validity and accuracy of gene expression analysis depends on the quantity, quality and integrity of extracted ribonucleic acid (RNA) of the sample. However, the standard methods of RNA extraction from the cladocerans are still lacking. This study evaluates the extraction of RNA from tropical freshwater cladocerans Moina micrura using two methods: the phenol-chloroform extraction method (QIAzol) and a column-based kit (Qiagen Micro Kit). Glycogen was introduced in both approaches to enhance the recovery of extracted RNA and the extracted RNA was characterised using spectrophotometric analysis (NanoDrop), capillary electrophoresis (Bioanalyzer). Then, the extracted RNA was analysed with reverse transcription polymerase chain reaction (RT-PCR) to validate the RNA extraction method towards downstream gene expression analysis. The results indicate that the column-based kit is most suitable for the extraction of RNA from M. micrura, with the quantity (RNA concentration = 26.90 ± 6.89 ng/µl), quality (A260:230 = 1.95 ± 0.15, A280:230 = 1.85 ± 0.09) and integrity (RNA integrity number, RIN = 7.20 ± 0.16). The RT-PCR analysis shows that the method successfully amplified both alpha tubulin and actin gene at 33-35 cycles (i.e. Ct = 32.64 to 33.48). The results demonstrate that the addition of glycogen is only suitable for the phenol-chloroform extraction method. RNA extraction with high and comprehensive quality control assessment will increase the accuracy and reliability of downstream gene expression, thus providing more ecotoxicological data at the molecular biological level on other freshwater zooplankton species.


Assuntos
Clorofórmio , RNA , Ecossistema , Glicogênio , Fenóis , RNA/genética , Reprodutibilidade dos Testes
9.
J Exp Zool A Ecol Integr Physiol ; 337(5): 457-466, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35189046

RESUMO

Drosophila melanogaster has been used as the most successful invertebrate model for studying metabolic diseases such as type 2 diabetes (T2D). We induced T2D by feeding Drosophila larvae on a high-sugar diet (HSD). The glucose and trehalose, glycogen, lipid, triglyceride, and protein levels were determined in HSD-fed larvae. Moreover, larval food intake, water content, size, and weight in addition to the development until pupation were observed. Levels of Drosophila insulin-like peptides (DILPs 2, 3, and 5), as well as adipokinetic hormone (AKH), were also determined in HSD-fed larvae by quantitative real-time polymerase chain reaction. The results demonstrated that HSD could induce elevated levels of glucose, trehalose, glycogen, and proteins in larvae. The larvae consumed less food intake and were smaller, lighter, and less developed on HSD than those on the control diet. Moreover, the water content of larvae fed HSD was similar to that fed the control diet. HSD induced higher expression of DILP3 and AKH, confirming hyperglycemia with insulin resistance. In sum, Drosophila offers an appropriate model for quick and inexpensive in vivo experimentation on human metabolic diseases.


Assuntos
Diabetes Mellitus Tipo 2 , Drosophila melanogaster , Animais , Diabetes Mellitus Tipo 2/metabolismo , Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Glucose/metabolismo , Glicogênio/metabolismo , Larva , Trealose/metabolismo , Água/metabolismo
10.
Nutrients ; 15(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36615811

RESUMO

Muscle glycogen is a crucial energy source for exercise, and assessment of muscle glycogen storage contributes to the adequate manipulation of muscle glycogen levels in athletes before and after training and competition. Muscle biopsy is the traditional and gold standard method for measuring muscle glycogen; alternatively, 13C magnetic resonance spectroscopy (MRS) has been developed as a reliable and non-invasive method. Furthermore, outcomes of ultrasound and bioimpedance methods have been reported to change in association with muscle glycogen conditions. The physiological mechanisms underlying this activity are assumed to involve a change in water content bound to glycogen; however, the relationship between body water and stored muscle glycogen is inconclusive. In this review, we discuss currently available muscle glycogen assessment methods, focusing on 13C MRS. In addition, we consider the involvement of muscle glycogen in changes in body water content and discuss the feasibility of ultrasound and bioimpedance outcomes as indicators of muscle glycogen levels. In relation to changes in body water content associated with muscle glycogen, this review broadens the discussion on changes in body weight and body components other than body water, including fat, during carbohydrate loading. From these discussions, we highlight practical issues regarding muscle glycogen assessment and manipulation in the sports field.


Assuntos
Glicogênio , Esportes , Humanos , Glicogênio/metabolismo , Músculo Esquelético/metabolismo , Esportes/fisiologia , Exercício Físico/fisiologia , Água Corporal/metabolismo , Carboidratos da Dieta/metabolismo
11.
Life Sci ; 285: 119988, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34592238

RESUMO

Strategies capable of attenuating TLR4 can attenuate metabolic processes such as inflammation, endoplasmic reticulum (ER) stress, and apoptosis in the body. Physical exercise has been a cornerstone in suppressing inflammation and dysmetabolic outcomes caused by TRL4 activation. Thus, the present study aimed to evaluate the effects of a chronic physical exercise protocol on the TLR4 expression and its repercussion in the inflammation, ER stress, and apoptosis pathways in mice hearts. Echocardiogram, RT-qPCR, immunoblotting, and histological techniques were used to evaluate the left ventricle of wild-type (WT) and Tlr4 knockout (TLR4 KO) mice submitted to a 4-week physical exercise protocol. Moreover, we performed a bioinformatics analysis to expand the relationship of Tlr4 mRNA in the heart with inflammation, ER stress, and apoptosis-related genes of several isogenic strains of BXD mice. The TLR4 KO mice had higher energy expenditure and heart rate in the control state but lower activation of apoptosis and ER stress pathways. The bioinformatics analysis reinforced these data. In the exercised state, the WT mice improved performance and cardiac function. However, these responses were blunted in the KO group. In conclusion, TLR4 has an essential role in the inhibition of apoptosis and ER stress pathways, as well as in the training-induced beneficial adaptations.


Assuntos
Apoptose/genética , Estresse do Retículo Endoplasmático/genética , Metabolismo Energético/genética , Ventrículos do Coração , Condicionamento Físico Animal , Receptor 4 Toll-Like/genética , Função Ventricular , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Ecocardiografia , Deleção de Genes , Glicogênio/metabolismo , Frequência Cardíaca , Inflamação/genética , Inflamação/patologia , Camundongos , Camundongos Knockout , RNA Mensageiro/metabolismo
12.
Mol Biol Rep ; 48(8): 5857-5872, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34302266

RESUMO

BACKGROUND: Plant-derived phytochemicals such as flavonoids have been explored to be powerful antioxidants that protect against oxidative stress-related diseases. In the present study, Morin, a flavonoid compound was studied for its antioxidant and antidiabetic properties in relation to oxidative stress in insulin resistant models conducted in rat skeletal muscle L6 cell line model. METHODS: Evaluation of antioxidant property of morin was assayed using in vitro methods such as cell viability by MTT assay, estimation of SOD and CAT activity and NO scavenging activity. The anti-oxidative nature of morin on L6 cell line was conducted by the DCF-DA fluorescent activity. Glucose uptake in morin treated L6 myotubes are accessed by 2-NBDG assay in the presence or absence of IRTK and PI3K inhibitors. Further glycogen content estimation due to the morin treatment in L6 myotubes was performed. Antioxidant and insulin signaling pathway gene expression was examined over RT-PCR analysis. RESULTS: Morin has a negligible cytotoxic effect at doses of 20, 40, 60, 80, and 100 µM concentration according to cell viability assay. Morin revealed that the levels of the antioxidant enzymes SOD and CAT in L6 myotubes had increased. When the cells were subjected to the nitro blue tetrazolium assay, morin lowered reactive oxygen species (ROS) formation at 60 µM concentration displaying 39% ROS generation in oxidative stress condition. Lesser NO activity and a drop in green fluorescence emission in the DCFDA assay, demonstrating its anti-oxidative nature by reducing ROS formation in vitro. Glucose uptake by the L6 myotube cells using 2-NBDG, and with IRTK and PI3K inhibitors (genistein and wortmannin) showed a significant increase in glucose uptake by the cells which shows the up regulated GLUT-4 movement from intracellular pool to the plasma membrane. Morin (60 µM) significantly enhanced the expression of antioxidant genes GPx, GST and GCS as well as insulin signalling genes IRTK, IRS-1, PI3K, GLUT-4, GSK-3ß and GS in L6 myotubes treated cells. CONCLUSION: Morin has the ability to act as an anti-oxidant by lowering ROS levels and demonstrating insulin mimetic activity by reversing insulin resistance associated with oxidative stress.


Assuntos
Flavonoides/farmacologia , Insulina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Animais , Antioxidantes/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Flavonoides/metabolismo , Glucose/metabolismo , Glicogênio/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Hipoglicemiantes/farmacologia , Resistência à Insulina/fisiologia , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
13.
Parasitology ; 147(11): 1196-1205, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32498733

RESUMO

Parasites cause harm to their hosts and represent pervasive causal agents of natural selection. Understanding host proximate responses during interactions with parasites can help predict which genes and molecular pathways are targets of this selection. In the current study, we examined transcriptional changes arising from interactions between Drosophila melanogaster and their naturally occurring ectoparasitic mite, Gamasodes queenslandicus. Shifts in host transcript levels associated with behavioural avoidance revealed the involvement of genes underlying nutrient metabolism. These genetic responses were reflected in altered body lipid and glycogen levels in the flies. Mite infestation triggered a striking immune response, while male accessory gland protein transcript levels were simultaneously reduced, suggesting a trade-off between host immune responses to parasite challenge and reproduction. Comparison of transcriptional analyses during mite infestation to those during nematode and parasitoid attack identified host genes similarly expressed in flies during these interactions. Validation of the involvement of specific genes with RNA interference lines revealed candidates that may directly mediate fly-ectoparasite interactions. Our physiological and molecular characterization of the Drosophila-Gamasodes interface reveals new proximate mechanisms underlying host-parasite interactions, specifically host transcriptional shifts associated with behavioural avoidance and infestation. The results identify potential general mechanisms underlying host resistance and evolutionarily relevant trade-offs.


Assuntos
Drosophila melanogaster , Interações Hospedeiro-Parasita , Ácaros , Animais , Evolução Biológica , Drosophila melanogaster/imunologia , Drosophila melanogaster/metabolismo , Drosophila melanogaster/parasitologia , Glicogênio/metabolismo , Imunidade , Metabolismo dos Lipídeos , Infestações por Ácaros , Parasitos , Reprodução , Transcriptoma
14.
Nan Fang Yi Ke Da Xue Xue Bao ; 40(1): 67-72, 2020 Jan 30.
Artigo em Chinês | MEDLINE | ID: mdl-32376560

RESUMO

OBJECTIVE: The obtain purified recombinant asprosin and test its functions. METHODS: The recombinant plasmid of pET-22b-asprosin was constructed and transformed into competent E.coli BL (DE3) strain. After IPTG-induced expression, asprosin inclusion body was renatured by gradient urea and purified by Ni-NTA affinity chromatography column followed by removal of endotoxin to obtain recombinant asprosin for use in cells and animals experiments. C57 mice were injected intraperitoneally with the recombinant asprosin and blood glucose was detected using a blood glucose meter. Alamar Blue assay was used to evaluate of the effect of the recombinant asprosin on the viability of MIHA cells, and cellular glycogen content was detected using the anthrone method. RESULTS: At the absorbance at 600 nm of 0.8, induction of the recombinant host bacteria with 1 mmol/L IPTG at 37 ℃ for 4 h optimally induced the expression of asprosin inclusion body. After purification and endotoxin removal, the purity of the recombinant asprosin exceeded 95% with the content of endotoxin below 1 EU/mg. In C57 mice, intraperitoneal injection with recombinant asprosin significantly increased blood glucose level, which reached the peak level at 60 min following the injection (P=0.021) and recovered the normal level at 120 min (P=0.03). Treatment with the recombinant asprosin for 24 h did not cause obvious adverse effect on the viability of MIHA cells but significantly lowered glycogen content in the cells (P < 0.05). CONCLUSIONS: We successfully obtained recombinant asprosin using a prokaryotic expression system. The recombinant asprosin can decrease glycogen content in MIHA cells and increase blood glucose level in mice.


Assuntos
Corpos de Inclusão , Proteínas dos Microfilamentos/biossíntese , Fragmentos de Peptídeos/biossíntese , Hormônios Peptídicos/biossíntese , Animais , Glicemia/análise , Linhagem Celular , Escherichia coli , Fibrilina-1 , Glicogênio/análise , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Plasmídeos , Proteínas Recombinantes/biossíntese
15.
Nutrients ; 12(4)2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32244614

RESUMO

Skeletal muscle glycogen (SMG) stores in highly glycolytic activities regulate muscle contraction by controlling calcium release and uptake from sarcoplasmic reticulum, which could affect muscle contraction. Historically, the assessment of SMG was performed through invasive and non-practical muscle biopsies. In this study we have utilized a novel methodology to assess SMG through a non-invasive high-frequency ultrasound. Nine MLS professional soccer players (180.4 ± 5.9 cm; 72.4 ± 9.3 kg; 10.4% ± 0.7% body fat) participated. All followed the nutritional protocol 24 h before the official match as well as performing the same practice program the entire week leading to the match. The SMG decreased from 80 ± 8.6 to 63.9 ± 10.2; p = 0.005 on MuscleSound® score (0-100) representing a 20% ± 10.4% decrease in muscle glycogen after match. Inter-individual differences in both starting glycogen content (65-90) and in percentage decrease in glycogen after the match (between 6.2% and 44.5%). Some players may not start the match with adequate SMG while others' SMG decreased significantly throughout the game. Adequate pre-match SMG should be achieved during half-time and game-play in order to mitigate the decrease in glycogen. Further and more ample studies are needed before the application of this technology.


Assuntos
Atletas , Glicogênio/metabolismo , Músculo Esquelético/metabolismo , Fenômenos Fisiológicos da Nutrição/fisiologia , Futebol/fisiologia , Ultrassonografia/métodos , Glicogênio/fisiologia , Glicólise , Humanos , Masculino , Contração Muscular/fisiologia , Músculo Esquelético/diagnóstico por imagem
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 228: 117719, 2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-31753646

RESUMO

Mad honey (MH) is obtained from Rhododendron plants, which are extensively grown in some regions of the world such as Europe, North America, Tropical Asia and Turkey. Although it has been known that MH induces adverse effects in the body due to grayanotoxin (GTX) in it, it is widely used for some medical purposes by the public. In this study, the effects of MH (25, 50 and 75 mg/kg) and GTX-III (0.01 mg/kg), which is the pure form of the most toxic type of the GTXs in MH, were investigated on the mouse liver at molecular level via Attenuated Total Reflection-Fourier Transform Infrared (ATR-FTIR) spectroscopy. The results showed that 25 and 50 mg/kg of MH didn't cause any significant alterations in the liver tissue except a decrease in the glycogen amount. However, significant differences were observed between 75 mg/kg MH and GTX-III treated groups and control group. For example, the amounts of saturated lipids, nucleic acids and proteins increased in the 75 mg/kg MH and GTX-III treated groups. A decrease in the ratios of unsaturated/saturated lipid, CH2/lipid and carbonyl/lipid and an increase in the ratio of CH3/lipid were observed after the administration of 75 mg/kg MH and GTX-III, all of which may be a consequence of lipid peroxidation. Moreover, 75 mg/kg MH and GTX-III caused a decrease in the membrane order, an increase in the membrane fluidity and some important changes on the secondary structure of proteins indicating protein denaturation. In addition, Hierarchical Cluster Analysis (HCA) and Principal Component Analysis (PCA) confirmed these findings. These results revealed that MH induces significant dose-dependent toxic effects in the structure and function of the liver tissue. This study also showed that ATR-FTIR spectroscopy provides a rapid and sensitive monitoring of the changes induced by a toxic compound on biological tissues at molecular level.


Assuntos
Mel/toxicidade , Fígado/química , Fígado/efeitos dos fármacos , Animais , Abelhas , Glicogênio/análise , Mel/análise , Lipídeos/análise , Masculino , Camundongos , Ácidos Nucleicos/análise , Desnaturação Proteica/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier
17.
J Physiol ; 597(17): 4615-4625, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31246276

RESUMO

KEY POINTS: Skeletal muscle fatigue limits performance in various physical activities, with exercise intolerance being a key symptom in a broad spectrum of diseases. We investigated whether a small molecule fast skeletal troponin activator (FSTA), CK-2066260, can mitigate muscle fatigue by reducing the cytosolic free [Ca2+ ] required to produce a given submaximal force and hence decreasing the energy requirement. Isolated intact single mouse muscle fibres and rat muscles in-situ treated with CK-2066260 showed improved muscle endurance., which was accompanied by decreased ATP demand and reduced glycogen usage. CK-2066260 treatment improved in-vivo exercise capacity in healthy rats and in a rat model of peripheral artery insufficiency. In conclusion, we show that the FSTA CK-2066260 effectively counteracts muscle fatigue in rodent skeletal muscle in vitro, in situ, and in vivo. This may translate to humans and provide a promising pharmacological treatment to patients suffering from severe muscle weakness and exercise intolerance. ABSTRACT: Skeletal muscle fatigue limits performance during physical exercise and exacerbated muscle fatigue is a prominent symptom among a broad spectrum of diseases. The present study investigated whether skeletal muscle fatigue is affected by the fast skeletal muscle troponin activator (FSTA) CK-2066260, which increases myofibrillar Ca2+ sensitivity and amplifies the submaximal force response. Because more force is produced for a given Ca2+ , we hypothesized that CK-2066260 could mitigate muscle fatigue by reducing the energetic cost of muscle activation. Isolated single mouse muscle fibres were fatigued by 100 repeated 350 ms contractions while measuring force and the cytosolic free [Ca2+ ] or [Mg2+ ] ([Mg2+ ]i ). When starting fatiguing stimulation at matching forces (i.e. lower stimulation frequency with CK-2066260): force was decreased by ∼50% with and by ∼75% without CK-2066260; [Mg2+ ]i was increased by ∼10% with and ∼32% without CK-2066260, reflecting a larger decrease in [ATP] in the latter. The glycogen content in in situ stimulated rat muscles fatigued by repeated contractions at matching forces was about two times higher with than without CK-2066260. Voluntary exercise capacity, assessed by rats performing rotarod exercise and treadmill running, was improved in the presence of CK-2066260. CK-2066260 treatment also increased skeletal muscle fatigue resistance and exercise performance in a rat model of peripheral artery insufficiency. In conclusion, we demonstrate that the FSTA CK-2066260 mitigates skeletal muscle fatigue by reducing the metabolic cost of force generation.


Assuntos
Contração Muscular/fisiologia , Fadiga Muscular/fisiologia , Fibras Musculares de Contração Rápida/metabolismo , Troponina/metabolismo , Animais , Cálcio/metabolismo , Feminino , Glicogênio/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miofibrilas/metabolismo , Condicionamento Físico Animal/fisiologia , Ratos , Ratos Sprague-Dawley
18.
Antonie Van Leeuwenhoek ; 112(8): 1231-1243, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30859498

RESUMO

The daily use of the planctomycete Rhodopirellula rubra as an alternative or supplementary food source for Daphnia magna and its feasibility in the nutrition of transgenerational populations were studied. The life history parameters, fatty acids (saturated, mono- and polyunsaturated; SFAs, MUFAs and PUFAs), glycogen and protein contents of organisms during feeding assays and of the first generation were analysed. An increase in the yields of D. magna with the increase of the cell concentration of R. rubra was evident, but overall, bacteria supplied as the only food source was nutritionally insufficient as observed for all the parameters analysed. However, when R. rubra was added as supplement to the microalgae Raphidocelis subcapitata a significant improvement in the life history parameters was observed namely in the reproductive output and the somatic growth rate. The identified SFAs, MUFAs and PUFAs were the fatty acids more abundant in daphniids, and the feed regimens influenced daphniids fatty acid profiles. Additionally, the mixed diet resulted in a larger number and size of offspring in the different F1 broods as also observed with the results of F0 generation. The pink colouration present in D. magna body and eggs confirmed that bacteria were absorbed, the pigment(s) retained and passed on to the next generation. Our results showed that R. rubra can play an essential role in D. magna diet as a nutritional supplement showing potential biotechnological applications.


Assuntos
Ração Animal , Daphnia/crescimento & desenvolvimento , Planctomycetales/crescimento & desenvolvimento , Animais , Proteínas de Artrópodes/análise , Daphnia/química , Ácidos Graxos/análise , Glicogênio/análise
19.
Analyst ; 144(7): 2367-2374, 2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30793720

RESUMO

Caenorhabditis elegans is an animal model frequently used in research on the effects of metabolism on organismal aging. This comes with a requirement for methods to investigate metabolite content, turnover, and distribution. The aim of our study was to assess the use of a label-free approach to determine both content and distribution of glycogen, the storage form of glucose, in C. elegans. To this end, we grew C. elegans worms under three different dietary conditions for 24-48 h, representing starvation, regular diet and a high glucose diet, followed by analysis of glycogen content. Glycogen analysis was performed on fixed individual whole worms using Raman micro-spectroscopy (RMS). Results were confirmed by comparison with two conventional assays, i.e. iodine staining of worms and enzymatic determination of glycogen. RMS was further used to assess overall lipid and protein content and distribution in the same samples used for glycogen analysis. Expectedly, both glycogen and lipid content were highest in worms grown on a high glucose diet, lower in regularly fed, and lowest in starved nematodes. In summary, RMS is a method suitable for analysis of glycogen content in C. elegans that has the advantage over established methods that (i) individual worms (rather than hundreds per sample) can be analyzed, (ii) glycogen distribution can be assessed at subcellular resolution and (iii) the distribution patterns of other macromolecules can be assessed from the same worms. Thus, RMS has the potential to be used as a sensitive, accurate, cost-effective and high throughput method to evaluate glycogen stores in C. elegans.


Assuntos
Caenorhabditis elegans/metabolismo , Glicogênio/metabolismo , Análise Espectral Raman , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Iodetos/metabolismo , Iodo/metabolismo , Metabolismo dos Lipídeos
20.
Anim Sci J ; 89(11): 1556-1560, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30159959

RESUMO

The use of residues as substitutes for conventional ingredients in animal feed is a promising alternative able to reduce both costs and environmental pollution. This study aimed to evaluate the viability of using sweet potato vines (SPV) as a replacement for alfalfa hay in diets for growing rabbits. The performance, carcass characteristics, meat composition and metabolic parameters of the liver were evaluated in 30 New Zealand rabbits weaned at 35 days old and an average weight of 900 g. The animals were allotted into three dietary groups: 0SPV, control diet without SPV; 50SPV, diet with 50% replacement of alfalfa hay by SPV; 100SPV, diet with 100% replacement of alfalfa hay by SPV. The animals were slaughtered at 77 days of age. The liver was collected for analysis of glucose and hepatic glycogen and meat samples were collected for analysis of the chemical composition. The data obtained were statistically compared by analysis of variance followed by the Tukey test (0.05). None of the analyzed variables presented differences. It can be concluded, therefore, that SPV may be used as a substitute for alfalfa hay up to 100% in diets for rabbits without impairing the performance and meat composition.


Assuntos
Ração Animal , Fenômenos Fisiológicos da Nutrição Animal/fisiologia , Dieta/veterinária , Qualidade dos Alimentos , Ipomoea batatas , Carne , Coelhos/crescimento & desenvolvimento , Coelhos/metabolismo , Ração Animal/economia , Animais , Feminino , Glucose/metabolismo , Glicogênio/metabolismo , Humanos , Fígado/metabolismo , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA