Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Appl Biochem Biotechnol ; 195(5): 2863-2881, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36435897

RESUMO

The competitiveness of bacterial cellulose (BC) production with plant cellulose can be achieved by production on cost-effective media. It was found that the bacterial cell number ratio of BC to culture medium increases over time so that from the fourth day, the entrapped cell number in the cellulose network exceeds the suspended cells. Optimization based on 23-full factorial showed that inoculum development at 50 rpm and the main culture process under static conditions significantly increases BC production. A cost-effective culture medium containing molasses (ML) and corn steep liquor (CSL) was developed based on the same C/N ratio to HS medium, with 7.24 g/l cellulose at C/N ratio 12.6 is competitive with maximum production 8.7 g/L in HS medium. The BC production cost was reduced about 94% using the proposed cheap and locally available medium containing ML and CSL, while BC mechanical properties increased by about 50%.


Assuntos
Celulose , Gluconacetobacter xylinus , Meios de Cultura , Bactérias , Melaço , Zea mays
2.
Mater Sci Eng C Mater Biol Appl ; 97: 302-312, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30678915

RESUMO

Bionanocellulose (BNC) is a clear polymer produced by the bacterium Gluconacetobacter xylinus. In our current study, "Research on the use of bacterial nanocellulose (BNC) in regenerative medicine as a function of the biological implants in cardiac and vascular surgery", we carried out material analysis, biochemical analysis, in vitro tests and in vivo animal model testing. In stage 1 of the project, we carried out physical and biological tests of BNC. This allowed us to modify subsequent samples of bacterial bionanocellulose. Finally, we obtained a sample that was accepted for testing on an animal model. That sample we define BNC1. Patches of BNC1 were then implanted into pigs' vessel walls. During the surgical procedures, we evaluated the technical aspects of sewing in the bioimplant, paying special attention to bleeding control and tightness of the suture line and the BNC1 bioimplant itself. We carried out studies evaluating the reaction of an animal body to an implantation of BNC1 into the circulatory system, including the general and local inflammatory reaction to the bioimplant. These studies allowed us to document the potential usefulness of BNC as a biological implant of the circulatory system and allowed for additional modifications of the BNC to improve the properties of this new implantable biological material.


Assuntos
Celulose/biossíntese , Celulose/química , Gluconacetobacter xylinus/metabolismo , Implantes Experimentais , Animais , Candida albicans/crescimento & desenvolvimento , Candida albicans/metabolismo , Procedimentos Cirúrgicos Cardíacos/instrumentação , Celulose/farmacologia , Hemólise/efeitos dos fármacos , Ácido Hialurônico/metabolismo , Implantes Experimentais/efeitos adversos , Inflamação/etiologia , Teste de Materiais , Suínos , Resistência à Tração
3.
ACS Appl Mater Interfaces ; 9(22): 19048-19056, 2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28520408

RESUMO

Some bacterial strains such as Komagataeibacter xylinus are able to produce cellulose as an extracellular matrix. In comparison to wood-based cellulose, bacterial cellulose (BC) holds interesting properties such as biodegradability, high purity, water-holding capacity, and superior mechanical and structural properties. Aiming toward improvement in BC production titer and tailored alterations to the BC film, we engineered K. xylinus to overexpress partial and complete bacterial cellulose synthase operon that encodes activities for BC production. The changes in cell growth, end metabolite, and BC production titers from the engineered strains were compared with the wild-type K. xylinus. Although there were no significant differences between the growth of wild-type and engineered strains, the engineered K. xylinus strains demonstrated faster BC production, generating 2-4-fold higher production titer (the highest observed titer was obtained with K. xylinus-bcsABCD strain producing 4.3 ± 0.46 g/L BC in 4 days). The mechanical and structural characteristics of cellulose produced from the wild-type and engineered K. xylinus strains were analyzed with a stylus profilometer, in-house built tensile strength measurement system, a scanning electron microscope, and an X-ray diffractometer. Results from the profilometer indicated that the engineered K. xylinus strains produced thicker BC films (wild type, 5.1 µm, and engineered K. xylinus strains, 6.2-10.2 µm). Scanning electron microscope revealed no principal differences in the structure of the different type BC films. The crystallinity index of all films was high (from 88.6 to 97.5%). All BC films showed significant piezoelectric response (5.0-20 pC/N), indicating BC as a promising sensor material.


Assuntos
Celulose/química , Gluconacetobacter xylinus
4.
J Biomed Mater Res A ; 104(11): 2801-9, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27376695

RESUMO

Bacterial cellulose (BC) has been used as a scaffold for tissue regeneration (TR). Improving functional TR requires highly selective strategies for specific cell attraction. Embedding iron oxide nanoparticles into a BC matrix can drive magnetically labeled cells to specific tissues where they may begin to heal injured tissue. This article focuses on characterization and in vitro toxicity assessment of magnetic BC (MBC). We proposed to detect the production of radical oxygen species (ROS), esterase activity, and apoptosis to study cytotoxic interactions of MBC within its bioenvironment. Morphological characterization was performed using scanning electron microscopy where evidence shows that the diameter of MBC fibers compared to BC fibers was 33% smaller, and the pore areas were 25% bigger. Cytotoxicity assays in porcine aortic smooth muscle cells exposed for 24 hours to BC, MBC, and poly(ethylene glycol)-coated MBC (MBC-PEG) reveals 96% viability and 9% ROS production for MBC-PEG. In contrast, 25% of cells exposed to MBC were apoptotic, suggesting that even when the cells were metabolically active, MBC can induce damage. These outcomes support the need for more integral assessment in the hopes of assessing the potential biosafety and uses of nanocomposites for TR. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2801-2809, 2016.


Assuntos
Materiais Biocompatíveis/química , Celulose/química , Gluconacetobacter xylinus/química , Nanopartículas de Magnetita/química , Miócitos de Músculo Liso/citologia , Animais , Apoptose/efeitos dos fármacos , Materiais Biocompatíveis/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Celulose/síntese química , Celulose/toxicidade , Compostos Férricos/química , Compostos Férricos/toxicidade , Nanopartículas de Magnetita/toxicidade , Polietilenoglicóis/síntese química , Polietilenoglicóis/química , Polietilenoglicóis/toxicidade , Suínos
5.
Carbohydr Polym ; 120: 115-9, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25662694

RESUMO

The work is aimed to investigate the suitability of waste water of candied jujube-processing industry for the production of bacterial cellulose (BC) by Gluconacetobacter xylinum CGMCC No.2955 and to study the structure properties of bacterial cellulose membranes. After acid pretreatment, the glucose of hydrolysate was higher than that of waste water of candied jujube. The volumetric yield of bacterial cellulose in hydrolysate was 2.25 g/L, which was 1.5-folds of that in waste water of candied jujube. The structures indicated that the fiber size distribution was 3-14 nm in those media with an average diameter being around 5.9 nm. The crystallinity index of BC from pretreatment medium was lower than that of without pretreatment medium and BCs from various media had similar chemical binding. Ammonium citrate was a key factor for improving production yield and the crystallinity index of BC.


Assuntos
Celulose/química , Gluconacetobacter xylinus/metabolismo , Membranas/química , Celulose/economia , Águas Residuárias/química , Ziziphus/química
6.
ACS Nano ; 9(1): 206-19, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25525956

RESUMO

A powerful replica molding methodology to transfer on-demand functional topographies to the surface of bacterial cellulose nanofiber textures is presented. With this method, termed guided assembly-based biolithography (GAB), a surface-structured polydimethylsiloxane (PDMS) mold is introduced at the gas-liquid interface of an Acetobacter xylinum culture. Upon bacterial fermentation, the generated bacterial cellulose nanofibers are assembled in a three-dimensional network reproducing the geometric shape imposed by the mold. Additionally, GAB yields directional alignment of individual nanofibers and memory of the transferred geometrical features upon dehydration and rehydration of the substrates. Scanning electron and atomic force microscopy are used to establish the good fidelity of this facile and affordable method. Interaction of surface-structured bacterial cellulose substrates with human fibroblasts and keratinocytes illustrates the efficient control of cellular activities which are fundamental in skin wound healing and tissue regeneration. The deployment of surface-structured bacterial cellulose substrates in model animals as skin wound dressing or body implant further proves the high durability and low inflammatory response to the material over a period of 21 days, demonstrating beneficial effects of surface structure on skin regeneration.


Assuntos
Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Celulose/química , Gluconacetobacter xylinus/metabolismo , Nanofibras/química , Nanotecnologia/métodos , Animais , Celulose/farmacologia , Análise Custo-Benefício , Dimetilpolisiloxanos/química , Fermentação , Fibroblastos/efeitos dos fármacos , Humanos , Queratinócitos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nanotecnologia/economia , Pele/efeitos dos fármacos , Propriedades de Superfície , Alicerces Teciduais/química , Cicatrização/efeitos dos fármacos
7.
Appl Biochem Biotechnol ; 172(8): 3748-60, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24569910

RESUMO

Search for efficient low-cost substrate/additives are gaining significant impetus in bacterial cellulose (BC) production. Makgeolli sludge (a traditional Korean wine distillery waste) is enriched with organic acid, alcohol, and sugar. Using makgeolli sludge filtrate (MSF) and Hestrin-Schramm (HS) medium (g/l of distilled water: glucose, 10.0; peptone, 5.0; yeast extract, 5.0; disodium phosphate, 2.7; citric acid, 1.15; pH 5.0), two different media-namely the modified HS media (ingredients of HS media except glucose dissolved in MSF) and mixed modified HS media (equal volume mixture of original and modified HS media)-were formulated. BC production with Gluconacetobacter xylinus was studied using the two above referred medium. Keeping HS medium as reference, effect of initial pH, glucose, ethanol, and organic acid concentration on BC production was also studied. It suggests that increasing initial glucose (up to 25 g/l) though improves BC production but results in poor BC yield above 15 g/l of glucose. However, addition of alcohol (up to 1%v/v) or citric acid (up to 20 mM) escalate productivity up to four and two times, respectively. In both modified HS media and mixed modified HS medium, BC production was four to five times higher than that of original HS medium. Even MSF alone surpassed HS medium in BC production. Scanning electron microscopy showed that BC microfibrils from MSF based media were several micrometers long and about 25-60 nm widths. X-ray diffraction patterns suggested the produced BC were of cellulose I polymorph.


Assuntos
Biotecnologia/economia , Biotecnologia/métodos , Celulose/biossíntese , Gluconacetobacter xylinus/metabolismo , Resíduos Industriais , Esgotos , Carbono/metabolismo , Ácido Cítrico/metabolismo , Meios de Cultura/química , Etanol/metabolismo , Gluconacetobacter xylinus/crescimento & desenvolvimento , Glucose/metabolismo , Concentração de Íons de Hidrogênio
8.
J Biosci Bioeng ; 115(3): 284-90, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23102658

RESUMO

Thin stillage (TS), wastewater from rice wine distillery, was used as a cost-free feedstock to replace the costly traditional Hestrin and Schramm (HS) medium for BC production by Gluconacetobacter xylinus. Due to the rich organic acids and amino acids content in TS, BC production was significantly enhanced as 50 (v/v) % of HS medium was replaced with TS. In the 50/50 TS-HS medium, BC concentration of 6.26 g/l could be obtained after 7 days static cultivation which is approximately 50% higher than that could be produced in HS-only medium. The BC produced by TS containing medium had slightly denser reticulated structures and higher crystallinity index values but with lower water holding capacities than that obtained from HS medium. Based on the 50% cost-free TS, the 50/50 TS-HS medium had a BC production feedstock cost about 67% lower than that of traditional HS medium. The employment of cost-free TS to replace a portion of HS medium to achieve a higher BC production not only can reduce the BC production cost but also solve the wastewater disposal problem of winery industry.


Assuntos
Celulose/biossíntese , Gluconacetobacter xylinus/metabolismo , Águas Residuárias/economia , Celulose/economia , Celulose/ultraestrutura , Análise Custo-Benefício , Vinho/economia
9.
Biotechnol Bioeng ; 105(4): 740-7, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19816981

RESUMO

A variety of approaches are available for generation of bacteria-produced nanocellulose (BNC) in different forms. BNC production under static cultivation conditions usually results in fleeces or foils, characterized by a homogeneous, three-dimensional network of nanofibers and a uniform surface. However, under static cultivation conditions in batch vessels, the widths and the lengths of the BNC sheets cultured are determined by the dimensions of the culture vessel. In this contribution, a novel, efficient process for a (semi-)continuous cultivation of planar BNC fleeces and foils with a freely selectable length and an adjustable height is presented. By means of comprehensive investigations, the comparability of the BNC harvested to that gained from static cultivation under batch conditions is demonstrated. A first estimation of the production costs further shows that this type of processing allows for significant cost reductions compared to static cultivation of BNC in Erlenmeyer flasks.


Assuntos
Biotecnologia/métodos , Celulose/análise , Celulose/biossíntese , Gluconacetobacter xylinus/metabolismo , Reatores Biológicos , Biotecnologia/economia , Biotecnologia/instrumentação , Celulose/ultraestrutura , Desenho de Equipamento , Nanoestruturas/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA