Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Mass Spectrom ; 59(4): e5015, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38501738

RESUMO

Opioid use disorder (OUD) is a chronic neurobehavioral ailment and is prevalent in pregnancy. OUD is commonly treated with methadone or buprenorphine (BUP). Pregnancy is known to alter the pharmacokinetics of drugs and may lead to changes in drug exposure and response. A simple, specific, and sensitive analytical method for measuring the parent drug and its metabolites is valuable for assessing the impact of pregnancy on drug exposure. A new liquid chromatography-tandem mass spectrometric method that utilized a simple protein precipitation procedure for sample preparation and four deuterated internal standards for quantification was developed and validated for BUP and its major metabolites (norbuprenorphine [NBUP], buprenorphine-glucuronide [BUP-G], and norbuprenorphine-glucuronide [NBUP-G]) in human plasma. The standard curve was linear over the concentration range of 0.05-100 ng/mL for BUP and NBUP, and 0.1-200 ng/mL for BUP-G and NBUP-G. Intra- and inter-day bias and precision were within ±15% of nominal values for all the analytes. Quality controls assessed at four levels showed high recovery consistently for all the analytes with minimal matrix effect. Adequate analyte stability was observed at various laboratory conditions tested. Overall, the developed method is simple, sensitive, accurate and reproducible, and was successfully applied for the quantification of BUP and its metabolites in plasma samples collected from pregnant women in a clinical study assessing BUP exposure during OUD treatment.


Assuntos
Buprenorfina , Buprenorfina/análogos & derivados , Transtornos Relacionados ao Uso de Opioides , Humanos , Feminino , Gravidez , Antagonistas de Entorpecentes/farmacocinética , Antagonistas de Entorpecentes/uso terapêutico , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massa com Cromatografia Líquida , Glucuronídeos , Buprenorfina/análise , Buprenorfina/uso terapêutico , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico
2.
Food Funct ; 14(23): 10387-10400, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37933196

RESUMO

Purpose: This study aimed to assess the inter-individual variation in phloretin absorption and metabolism and to seek possible phloretin metabotypes following apple snack consumption. Methods: The excreted phloretin metabolites in 24 h urine samples were determined by UPLC-MS/MS in 62 volunteers after acute and sustained (6 weeks) interventions in a randomized and parallel study with a daily supplementation of 80 g of a low-phloretin (39.5 µmol) or a high-phloretin (103 µmol) freeze-dried apple snacks. Results: absorption estimated as phloridzin equivalents for 62 volunteers varied almost 70-fold ranging from 0.1% to 6.94% of phloretin glycoside intake. Volunteers were stratified into low, medium and high producers and by the balance between glucuronidation and sulphation. For 74% of the volunteers phloretin-O-glucuronide was the dominant urinary metabolite, especially at the higher phloretin glycoside intake and for higher producers. Sulphate conjugation assumed greater significance for the remaining volunteers especially for low producers. Females dominated glucuronide profile (64.1%) and males dominated the low excretion group. Analysis of plasma glucose and insulin at the start and end of the sustained study showed a trend towards modest reductions for high producers. Furthermore, plausible factors contributing to the inter-individual variation in phloretin uptake are discussed. Conclusions: extensive inter-individual variability exists in the excretion of phloretin phase-II conjugates following consumption of apple snacks, which could be related to oral microbiota phloridzin-hydrolysing activity, lactase non-persistence trait or the metabotype to which the subject belongs. There were inconsistent effects on post-prandial serum glucose concentrations but there was a tendency for decreases to be associated with higher excretion of phloretin phase-II conjugates. Trial registration: The acute and sustained studies were registered at ClinicalTrials.gov Identifier: NCT03795324.


Assuntos
Malus , Floretina , Masculino , Feminino , Humanos , Malus/metabolismo , Cromatografia Líquida , Glucuronídeos , Florizina , Espectrometria de Massas em Tandem
3.
Clin Pharmacol Drug Dev ; 11(7): 786-794, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35231159

RESUMO

Belumosudil is a selective Rho-associated coiled-coil containing protein kinase 2 (ROCK2) inhibitor. ROCK2 has been shown to drive proinflammatory response and fibrosis that occurs with chronic graft-versus-host disease; therefore, inhibition of ROCK2 has emerged as a therapeutic target for chronic graft-versus-host disease. In this phase 1 two-part study, the pharmacokinetics, mass balance, and metabolic profile of belumosudil were evaluated after single doses of unlabeled belumosudil oral tablets (200 mg), radiolabeled belumosudil intravenous (IV) microtracer infusions (100 µg), and radiolabeled oral capsules (200 mg). Absolute bioavailability based on area under the plasma concentration-time curve from time 0 to infinity for the oral dose/area under the plasma concentration-time curve from time 0 to infinity for the IV dose was calculated as 63.7%. Radiolabeled IV microtracer dosing demonstrated a low extraction ratio and distribution of belumosudil into tissues. The majority of total radioactivity was recovered in feces, with minimal amounts recovered in urine, suggesting minimal renal elimination of belumosudil. In addition to parent and main metabolite KD025m2, metabolites identified in plasma included the phase 2 metabolites O-dealkylated belumosudil sulfate and belumosudil glucuronide. These metabolites (with the exception of the glucuronide) in addition to monohydroxy-belumosudil, and belumosudil diol were identified in feces. No metabolites in urine accounted for >10% of the radioactive dose.


Assuntos
Glucuronídeos , Doença Enxerto-Hospedeiro , Acetamidas , Administração Oral , Disponibilidade Biológica , Humanos , Masculino
4.
BMC Pharmacol Toxicol ; 22(1): 9, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33509280

RESUMO

BACKGROUND: Emodin, a natural anthraquinone, has shown potential as an effective therapeutic agent in the treatment of many diseases including cancer. However, its clinical development is hindered by uncertainties surrounding its potential toxicity. The primary purpose of this study was to uncover any potential toxic properties of emodin in mice at doses that have been shown to have efficacy in our cancer studies. In addition, we sought to assess the time course of emodin clearance when administered both intraperitoneally (I.P.) and orally (P.O.) in order to begin to establish effective dosing intervals. METHODS: We performed a subchronic (12 week) toxicity study using 3 different doses of emodin (~ 20 mg/kg, 40 mg/kg, and 80 mg/kg) infused into the AIN-76A diet of male and female C57BL/6 mice (n = 5/group/sex). Body weight and composition were assessed following the 12-week feeding regime. Tissues were harvested and assessed for gross pathological changes and blood was collected for a complete blood count and evaluation of alanine transaminase (ALT), aspartate transaminase (AST) and creatinine. For the pharmacokinetic study, emodin was delivered intraperitoneally I.P. or P.O. at 20 mg/kg or 40 mg/kg doses to male and female mice (n = 4/group/sex/time-point) and circulating levels of emodin were determined at 1, 4 and 12 h following administration via liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis. RESULTS: We found that 12 weeks of low (20 mg/kg), medium (40 mg/kg), or high (80 mg/kg) emodin feeding did not cause pathophysiological perturbations in major organs. We also found that glucuronidated emodin peaks at 1 h for both I.P. and P.O. administered emodin and is eliminated by 12 h. Interestingly, female mice appear to metabolize emodin at a faster rate than male mice as evidenced by greater levels of glucuronidated emodin at the 1 h time-point (40 mg/kg for both I.P. and P.O. and 20 mg/kg I.P.) and the 4-h time-point (20 mg/kg I.P.). CONCLUSIONS: In summary, our studies establish that 1) emodin is safe for use in both male and female mice when given at 20, 40, and 80 mg/kg doses for 12 weeks and 2) sex differences should be considered when establishing dosing intervals for emodin treatment.


Assuntos
Antineoplásicos/toxicidade , Emodina/toxicidade , Inibidores de Proteínas Quinases/toxicidade , Animais , Antineoplásicos/sangue , Antineoplásicos/farmacocinética , Colo/anatomia & histologia , Colo/efeitos dos fármacos , Emodina/sangue , Emodina/farmacocinética , Feminino , Glucuronídeos/metabolismo , Coração/anatomia & histologia , Coração/efeitos dos fármacos , Intestino Delgado/anatomia & histologia , Intestino Delgado/efeitos dos fármacos , Rim/anatomia & histologia , Rim/efeitos dos fármacos , Fígado/anatomia & histologia , Fígado/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Inibidores de Proteínas Quinases/sangue , Inibidores de Proteínas Quinases/farmacocinética , Caracteres Sexuais , Baço/anatomia & histologia , Baço/efeitos dos fármacos , Testes de Toxicidade Subcrônica
5.
Acta Biochim Pol ; 67(3): 409-415, 2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32730702

RESUMO

Bisphenol A (BPA) is classified as an endocrine disruptor (ED) and it can interact with variety of hormone receptors leading to hormonal disruption and increased risk of various adverse health effects. Reducing human exposure to BPA is one of the main challenges of public health, as it is constantly present in daily life. A low-cost and commonly applied method to enable determination of BPA in the patient's body has yet to be developed. Currently available techniques are expensive, time-consuming, and require access to highly equipped analytical chemistry laboratories. Here we describe a fast and cheap engineered lateral flow assay of our design, to detect of BPA in urine samples. The technology not only provides an opportunity to perform rapid medical diagnostics without the need for an access to the central laboratory but also a means for self-diagnosis by the patient. The addition of ß-glucuronidase improves the sensitivity of detection as it releases the free BPA from glucuronide complexes in urine. This invention may become a demonstrated analytical means for lowering human exposure to BPA and probably also to other EDs and consequently, may be useful in decrease of the risk for several lifestyle diseases.


Assuntos
Anticorpos/química , Compostos Benzidrílicos/química , Compostos Benzidrílicos/urina , Disruptores Endócrinos/química , Disruptores Endócrinos/urina , Fenóis/química , Fenóis/urina , Adolescente , Adsorção , Adulto , Anticorpos/imunologia , Compostos Benzidrílicos/imunologia , Criança , Pré-Escolar , Cromatografia Líquida , Colódio/química , Disruptores Endócrinos/imunologia , Ensaio de Imunoadsorção Enzimática/economia , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Glucuronidase/química , Glucuronídeos/química , Voluntários Saudáveis , Humanos , Masculino , Membranas Artificiais , Fenóis/imunologia , Saúde Pública/métodos , Sensibilidade e Especificidade , Espectrometria de Massas em Tandem , Adulto Jovem
6.
Biomed Pharmacother ; 130: 110530, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32712531

RESUMO

Sorafenib (SR) is one of the most potent UGT (1A1, 1A9) inhibitors (in in vitro tests). The inhibition of UGT1A1 may cause hyperbilirubinaemia, whereas the inhibition of UGT1A9 and 1A1 may result in drug-drug interactions (DDIs). Tapentadol (TAP) is a synthetic µ-opioid agonist and is used to treat moderate to severe acute pain. Tapentadol is highly glucuronidated by the UGT1A9 and UGT2B7 isoenzymes. The aim of the study was to assess the DDI between SR and TAP. Wistar rats were divided into three groups, with eight animals in each. The rats were orally treated with SR (100 mg/kg) or TAP (4.64 mg/kg) or in combination with 100 mg/kg SOR and 4.64 TAP mg/kg. The concentrations of SR and sorafenib N-oxide, TAP and tapentadol glucuronide were respectively measured by means of high-performance liquid chromatography (HPLC) with ultraviolet detection and by means of ultra-performance liquid chromatography-tandem mass spectrometry. The co-administration of TAP with SR caused TAP maximum plasma concentration (Cmax) to increase 5.3-fold whereas its area under the plasma concentration-time curve (AUC0-∞) increased 1.5-fold. The tapentadol glucuronide Cmax increased 5.3-fold and whereas its AUC0-∞ increased 2.0-fold. The tapentadol glucuronide/TAP AUC0-∞ ratio increased 1.4-fold (p = 0.0118). TAP also increased SR Cmax 1.9-fold, whereas its AUC0-∞ increased 1.3-fold. The sorafenib N-oxide Cmax increased 1.9-fold whereas its AUC0-∞ increased 1.3-fold. The sorafenib N-oxide/SR AUC0-t ratio increased 1.4-fold (p = 0.0127). The results show that the co-administration of sorafenib and tapentadol increases the exposure to both drugs and changes their metabolism. In consequence, the pharmacological effect may be intensified, but the toxicity may increases, too.


Assuntos
Inibidores da Captação Adrenérgica/farmacologia , Antineoplásicos/farmacocinética , Glucuronosiltransferase/antagonistas & inibidores , Sorafenibe/farmacocinética , Tapentadol/farmacologia , Animais , Antineoplásicos/sangue , Área Sob a Curva , Cromatografia Líquida de Alta Pressão , Interações Medicamentosas , Glucuronídeos/metabolismo , Masculino , Ratos , Ratos Wistar , Reprodutibilidade dos Testes , Sorafenibe/sangue , Espectrofotometria Ultravioleta , Espectrometria de Massas em Tandem
7.
Chem Res Toxicol ; 33(7): 1551-1560, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32525307

RESUMO

Drug-induced liver injury (DILI) remains one of the key challenges in drug development due to the mechanisms of action being multifactorial in nature. This is particularly the case for idiosyncratic DILI which occurs in a very low frequency in humans (e.g., 1:10,000). Despite perceptions that acyl glucuronide metabolites are defacto risks for DILI, scientific evidence suggests that acyl glucuronide formation alone does not pose an increased risk compared to other drug metabolites. This applies in particular to those acyl glucuronides which are not reactive and do not form covalent adducts with proteins. The goal of this paper is to provide guidance on preclinical and clinical strategies to evaluate the potential for acyl glucuronide formation to contribute to DILI. A key element of our proposed safety assessment is to investigate whether a particular acyl glucuronide is reactive or not and whether systemic exposure in humans can be demonstrated in animal toxicology studies following administration of the parent drug. While standard animal toxicology studies can identify overtly hepatotoxic compounds, these studies are not predictive for drugs that produce idiosyncratic forms of DILI. In addition, we do not recommend conducting toxicology studies of administered individual acyl glucuronides due to differences in pharmacokinetic and dispositional properties from the endogenously produced metabolites. Once a drug candidate has entered clinical trials, the focus should be on clinical safety data and emerging risk-benefit analysis.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Glucuronídeos/metabolismo , Animais , Glucuronídeos/efeitos adversos , Humanos , Medição de Risco
8.
Xenobiotica ; 50(11): 1285-1300, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32394778

RESUMO

Viloxazine is currently being developed as a treatment for attention deficit/hyperactivity disorder (ADHD). The aim of these studies is to update the understanding of the rat and human metabolism and the in vitro drug-drug interaction profile of viloxazine to a degree where it meets current regulatory standards for such investigations. In vivo absorption-distribution-metabolism-excretion (ADME) studies demonstrated that in humans 5-hydroxylation followed by glucuronidation is the major metabolic route. This route was also seen as a minor route in rats where the major route is O-deethylation with subsequent sulfation. In humans, the 5-hydoxylation pathway is mediated by CYP2D6. An estimate for the fraction of the metabolism via this pathway suggests a PM/EM difference of <2-fold, making it highly unlikely that this will be an issue of clinical significance. Viloxazine forms a unique N-carbamoyl glucuronide in humans. The chemical reactivity characteristics of this metabolite are similar to stable glucuronide conjugates and dissimilar from acyl glucuronides; therefore, it is regarded as a stable Phase II conjugate. In vitro drug-drug interaction (DDI) testing indicates that viloxazine is not a significant inhibitor or inducer of CYPs and transporters with the exception of CYP1A2.


Assuntos
Antidepressivos de Segunda Geração/farmacologia , Interações Medicamentosas , Viloxazina/farmacologia , Citocromo P-450 CYP1A2 , Citocromo P-450 CYP2D6/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Glucuronídeos/metabolismo , Humanos , Microssomos Hepáticos/metabolismo
9.
Drug Test Anal ; 12(6): 731-742, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32052913

RESUMO

Animal sport doping control laboratories are constantly reviewing ways in which they can improve their service offering whilst ensuring that they remain economically viable. This paper describes the development and assessment of a rapid and economical method for the detection of intact glucuronide conjugates of three anabolic steroids and their metabolites along with three corticosteroids in canine urine. The analysis of intact drug conjugates for animal sport doping control is generally not performed routinely as it presents a number of analytical challenges, not least of which is the lack of availability of appropriate reference standards. Here, we report the development of a UHPLC-MS/MS method using APCI in the negative ion mode for the detection of intact phase II conjugates, including the importance of in vitro incubations in order to provide appropriate reference materials. Cross-validation of the developed method demonstrated that the detection capability of the intact phase II conjugates of stanozolol, boldenone, nandrolone, and their metabolites along with the corticosteroids dexamethasone and methylprednisolone was equivalent to that achieved in routine race-day screens. The new process has been in operation for approximately 2 years and has been used to analyze in excess of 13500 canine urine samples, resulting in a number of positive screening findings. To the best of our knowledge, this is the first reported use of a routine screen for intact drug conjugates within animal sport doping control.


Assuntos
Cães , Dopagem Esportivo/métodos , Detecção do Abuso de Substâncias/métodos , Corticosteroides/urina , Anabolizantes/urina , Animais , Cromatografia Líquida de Alta Pressão , Glucuronídeos/urina , Noretindrona/urina , Padrões de Referência , Reprodutibilidade dos Testes , Esportes , Esteroides/urina , Espectrometria de Massas em Tandem , Congêneres da Testosterona
10.
Drug Metab Lett ; 12(2): 84-92, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29886840

RESUMO

BACKGROUND: Acyl glucuronides of xenobiotics have been a subject of wide interest from the pharmaceutical industry with respect to biochemical reactivity, hepatic disposition, and enterohepatic circulation. The reactivity and lack of stability of an acyl glucuronide for a clinical candidate could pose major developability concerns. To date, multiple in vitro assays have been published to assess the risk associated with acyl glucuronides. Despite this fact, the translation of these findings to predicting clinical safety remains poor. METHODS: In the present investigation, we aimed to provide simplified in vitro strategy to understand the bioactivation potential of acyl glucuronides of 10 commercial, carboxylic acid containing drugs that have been categorized as "safe," "warning," or "withdrawn" with respect to their marketed use. Acyl migration was measured as a function of the number of peaks observed in LC-MSn analysis. In addition, we carried out reactive intermediate trapping studies with glutathione and methoxylamine to identify the key intermediates in the transacylation bioactivation and glycation pathways, respectively. We also conducted reaction phenotyping with recombinant UDP-glucuronosyltransferase (UGT) Supersomes® to investigate if the formation of acyl glucuronides could be linked to specific UGT isoform(s). RESULTS: Our results were in line with reported values in the literature. Our assay could be used in discovery research where half-life calculation completely eliminated the need to chemically synthesize the acyl glucuronide standard for risk assessment. We captured our results for risk assessment in a flow chart to simplify the various complex in vitro techniques historically presented. CONCLUSION: While the compounds tested from "withdrawn" and "warning category" all formed the glutathione adduct in buffer, none from "safe" category formed the glutathione adduct. In contrast, none of the compounds tested from any category formed methoxylamine conjugate, a reaction with putative aldehyde moiety formed via acyl migration. These results, highly favor the nucleophilic displacement as a cause of the reactivity rather than the acyl migration via aldehyde formation. The workflow presented could also be applied in the discovery setting to triage new chemical entities of interest.


Assuntos
Descoberta de Drogas/métodos , Glucuronídeos/metabolismo , Glucuronosiltransferase/metabolismo , Xenobióticos/metabolismo , Ativação Metabólica , Acilação , Estabilidade de Medicamentos , Glucuronídeos/toxicidade , Meia-Vida , Medição de Risco , Fluxo de Trabalho , Xenobióticos/toxicidade
11.
Drug Metab Dispos ; 46(6): 908-912, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29559442

RESUMO

While simple O- (ether-linked) and N-glucuronide drug conjugates generally are unreactive and considered benign from a safety perspective, the acyl glucuronides that derive from metabolism of carboxylic acid-containing xenobiotics can exhibit a degree of chemical reactivity that is dependent upon their molecular structure. As a result, concerns have arisen over the safety of acyl glucuronides as a class, several members of which have been implicated in the toxicity of their respective parent drugs. However, direct evidence in support of these claims remains sparse, and due to frequently encountered species differences in the systemic exposure to acyl glucuronides (both of the parent drug and oxidized derivatives thereof), coupled with their instability in aqueous media and potential to undergo chemical rearrangement (acyl migration), qualification of these conjugates by traditional safety assessment methods can be very challenging. In this Commentary, we discuss alternative (non-acyl glucuronide) mechanisms by which carboxylic acids may cause serious adverse reactions, and propose a novel, practical approach to compare systemic exposure to acyl glucuronide metabolites in humans to that in animal species used in preclinical safety assessment based on relative estimates of the total body burden of these circulating conjugates.


Assuntos
Glucuronídeos/metabolismo , Acilação/fisiologia , Animais , Ácidos Carboxílicos/metabolismo , Humanos , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Oxirredução , Xenobióticos/metabolismo
12.
J Pediatr Endocrinol Metab ; 30(10): 1083-1093, 2017 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-28949930

RESUMO

BACKGROUND: The objectives of this study were to assess the feasibility of and compliance to collecting urine samples in pre- and postmenarcheal girls and to determine if a less than daily collection frequency was sufficient for assessing ovarian function. METHODS: Twenty-five postmenarcheal girls (11-17 years) collected samples using either a two or a three samples/week protocol during one menstrual cycle. Exposure and mean estrone-1-glucuronide (E1G) and pregnanediol glucuronide concentrations were calculated, and evidence of luteal activity (ELA) was evaluated. Sixteen premenarcheal girls (8-11 years) collected one sample/month for six consecutive months. Samples were analyzed for E1G concentration. Participant compliance was calculated using dates on the urine samples and paper calendars. RESULTS: Participants collecting three samples/week were more compliant to the protocol than those collecting two samples/week (83.6%±2.6% vs. 66.8%±6.6%; p=0.034). There were no differences (p>0.10) regarding paper calendar return (81.8%±12.2% vs. 92.9%±7.1%), recording menses (55.6%±17.6% vs. 92.3%±7.7%) or sample collection (88.9%±11.1% vs. 84.6%±10.4%) between the two protocols. The average cycle length was 30.5±1.3 days and 32% of cycles had ELA. The premenarcheal girls were 100% compliant to the protocol. Only 68.8% of participants returned the paper calendar and 81.8% of those participants recorded sample collection. The average E1G concentration was 15.9±3.8 ng/mL. CONCLUSIONS: Use of a less than daily collection frequency during one menstrual cycle in postmenarcheal, adolescent girls is feasible and provides informative data about ovarian function. Collection of one sample/month in premenarcheal girls is feasible and detects the expected low E1G concentrations. Alternate strategies to the use of a paper calendar should be considered.


Assuntos
Estrona/urina , Glucuronídeos/urina , Ciclo Menstrual/urina , Pregnanodiol/análogos & derivados , Coleta de Urina/métodos , Adolescente , Criança , Feminino , Humanos , Projetos Piloto , Pregnanodiol/urina , Urinálise
13.
Nutrients ; 9(3)2017 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-28287476

RESUMO

The beneficial health effects of cranberries have been attributed to their (poly)phenol content. Recent studies have investigated the absorption, metabolism and excretion of cranberry (poly)phenols; however, little is known about whether they follow a dose response in vivo at different levels of intake. An acute double-blind randomized controlled trial in 10 healthy men with cranberry juices containing 409, 787, 1238, 1534 and 1910 mg total (poly)phenols was performed. Blood and urine were analyzed by UPLC-Q-TOF-MS. Sixty metabolites were identified in plasma and urine including cinnamic acids, dihydrocinnamic, flavonols, benzoic acids, phenylacetic acids, benzaldehydes, valerolactones, hippuric acids, catechols, and pyrogallols. Total plasma, but not excreted urinary (poly)phenol metabolites, exhibited a linear dose response (r² = 0.74, p < 0.05), driven by caffeic acid 4-O-ß-d-glucuronide, quercetin-3-O-ß-d-glucuronide, ferulic acid 4-O-ß-d-glucuronide, 2,5-dihydroxybenzoic acid, 2,4-dihydroxybenzoic acid, ferulic acid, caffeic acid 3-O-ß-d-glucuronide, sinapic acid, ferulic acid 4-O-sulfate, 3-hydroxybenzoic acid, syringic acid, vanillic acid-4-O-sulfate, (4R)-5-(3'-hydroxyphenyl)-γ-valerolactone-4'-O-sulfate, 4-methylgallic acid-3-O-sulfate, and isoferulic acid 3-O-sulfate (all r² ≥ 0.89, p < 0.05). Inter-individual variability of the plasma metabolite concentration was broad and dependent on the metabolite. Herein, we show that specific plasma (poly)phenol metabolites are linearly related to the amount of (poly)phenols consumed in cranberry juice. The large inter-individual variation in metabolite profile may be due to variations in the gut microbiome.


Assuntos
Sucos de Frutas e Vegetais , Frutas/química , Absorção Intestinal , Fenóis/metabolismo , Vaccinium macrocarpon/química , Adolescente , Adulto , Cromatografia Líquida de Alta Pressão , Cinamatos/administração & dosagem , Cinamatos/sangue , Cinamatos/metabolismo , Cinamatos/urina , Estudos Cross-Over , Método Duplo-Cego , Feminino , Flavonoides/administração & dosagem , Flavonoides/sangue , Flavonoides/metabolismo , Flavonoides/urina , Glucuronídeos/metabolismo , Glucuronídeos/urina , Humanos , Cinética , Masculino , Fenóis/administração & dosagem , Fenóis/sangue , Fenóis/urina , Polifenóis/administração & dosagem , Polifenóis/sangue , Polifenóis/metabolismo , Polifenóis/urina , Eliminação Renal , Reprodutibilidade dos Testes , Adulto Jovem
14.
Toxicol Lett ; 272: 1-7, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-28286018

RESUMO

Acyl glucuronides are important metabolites of compounds with carboxylic acid moieties and have unique properties that distinguish them from other phase 2 metabolites. In particular, in addition to being often unstable, acyl glucuronide metabolites can be chemically reactive leading to covalent binding with macromolecules and toxicity. While there is circumstantial evidence that drugs forming acyl glucuronide metabolites can be associated with rare, but severe idiosyncratic toxic reactions, many widely prescribed drugs with good safety records are also metabolized through acyl glucuronidation. Therefore, there is a need to understand the various factors that can affect the safety of acyl glucuronide-producing drugs including the rate of acyl glucuronide formation, the relative reactivity of the acyl glucuronide metabolite formed, the rate of elimination, potential proteins being targeted, and the rate of aglucuronidation. In this review, these factors are discussed and various approaches to de-risk the safety liabilities of acyl glucuronide metabolites are evaluated.


Assuntos
Glucuronídeos/metabolismo , Preparações Farmacêuticas/metabolismo , Acilação , Humanos , Microssomos Hepáticos/metabolismo , Modelos Biológicos , Segurança
15.
Acta Pharmacol Sin ; 38(3): 351-361, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28042874

RESUMO

Berberrubine (BRB) is the primary metabolite of berberine (BBR) that has shown a stronger glucose-lowering effect than BBR in vivo. On the other hand, BRB is quickly and extensively metabolized into berberrubine-9-O-ß-D-glucuronide (BRBG) in rats after oral administration. In this study we compared the pharmacokinetic properties of BRB and BRBG in rats, and explored the mechanisms underlying their glucose-lowering activities. C57BL/6 mice with HFD-induced hyperglycemia were administered BRB (50 mg·kg-1·d-1, ig) for 6 weeks, which caused greater reduction in the plasma glucose levels than those caused by BBR (120 mg·kg-1·d-1) or BRB (25 mg·kg-1·d-1). In addition, BRB dose-dependently decreased the activity of α-glucosidase in gut of the mice. After oral administration of BRB in rats, the exposures of BRBG in plasma at 3 different dosages (10, 40, 80 mg/kg) and in urine at different time intervals (0-4, 4-10, 10-24 h) were dramatically greater than those of BRB. In order to determine the effectiveness of BRBG in reducing glucose levels, we prepared BRBG from the urine pool of rats, and identified and confirmed it through LC-MS-IT-TOF and NMR spectra. In human normal liver cell line L-O2 in vitro, treatment with BRB or BRBG (5, 20, 50 µmol/L) increased glucose consumption, enhanced glycogenesis, stimulated the uptake of the glucose analog 2-NBDG, and modulated the mRNA levels of glucose-6-phosphatase and hexokinase. However, both BBR and BRB improved 2-NBDG uptake in insulin-resistant L-O2 cells, while BRBG has no effect. In conclusion, BRB exerts a stronger glucose-lowering effect than BBR in HFD-induced hyperglycemia mice. Although BRB significantly stimulated the insulin sensitivity and glycolysis in vitro, BRBG may have a greater contribution to the glucose-lowering effect because it has much greater system exposure than BRB after oral administration of BRB. The results suggest that BRBG is a potential agent for reducing glucose levels.


Assuntos
Berberina/análogos & derivados , Glucuronídeos/uso terapêutico , Hiperglicemia/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Animais , Berberina/administração & dosagem , Berberina/sangue , Berberina/metabolismo , Berberina/farmacocinética , Berberina/uso terapêutico , Berberina/urina , Glucuronídeos/sangue , Glucuronídeos/urina , Humanos , Hipoglicemiantes/metabolismo , Hipoglicemiantes/farmacocinética , Masculino , Camundongos Endogâmicos C57BL , Ratos Sprague-Dawley
16.
Drug Metab Pharmacokinet ; 32(1): 2-11, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28017536

RESUMO

Idiosyncratic drug toxicity (IDT) is a serious problem in drug development. Reactive metabolites are postulated to be one of the causes for IDT. Conjugated metabolites are generally non-reactive except for acyl glucuronides (AGs), which are sufficiently reactive to covalently bind to endogenous proteins. Thus, it has been suggested that AGs would contribute to IDT caused by carboxylic acid-containing drugs. Glucuronidation of a carboxylate residue is catalyzed by UDP-glucuronosyltransferase 1A and 2B isoforms. Unstable AGs undergo intramolecular rearrangements as well as non-enzymatic and enzymatic hydrolysis. The instability and reactivity toward proteins have been well studied for a large number of AGs. Moreover, the half-life of AGs in neutral buffer is becoming a common marker for the prediction of toxicity caused by carboxylic acid-containing drugs in the screening of new chemical entities; however, the underlying mechanisms of the toxicity are not elucidated. Recently, an immunostimulation assay has been proposed for the assessment of the toxicological potential of AGs, which may have a better predictability compared with half-life and peptide adduct assays. In addition to in vitro studies, studies in model animals indicate the in vivo toxicological potential of AGs and help understand the mechanisms of the AG toxicity.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Glucuronídeos/toxicidade , Animais , Humanos
17.
Anal Bioanal Chem ; 408(7): 1953-62, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26781107

RESUMO

The concentration of 11-nor-9-carboxy-Δ(9)-tetrahydrocannabinol (THCCOOH) in whole blood is used as a parameter for assessing the consumption behavior of cannabis consumers. The blood level of THCCOOH-glucuronide might provide additional information about the frequency of cannabis use. To verify this assumption, a column-switching liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the rapid and direct quantification of free and glucuronidated THCCOOH in human whole blood was newly developed. The method comprised protein precipitation, followed by injection of the processed sample onto a trapping column and subsequent gradient elution to an analytical column for separation and detection. The total LC run time was 4.5 min. Detection of the analytes was accomplished by electrospray ionization in positive ion mode and selected reaction monitoring using a triple-stage quadrupole mass spectrometer. The method was fully validated by evaluating the following parameters: linearity, lower limit of quantification, accuracy and imprecision, selectivity, extraction efficiency, matrix effect, carry-over, dilution integrity, analyte stability, and re-injection reproducibility. All acceptance criteria were analyzed and the predefined criteria met. Linearity ranged from 5.0 to 500 µg/L for both analytes. The method was successfully applied to whole blood samples from a large collective of cannabis consumers, demonstrating its applicability in the forensic field.


Assuntos
Cromatografia Líquida de Alta Pressão/instrumentação , Dronabinol/análogos & derivados , Glucuronídeos/sangue , Fumar Maconha/sangue , Espectrometria de Massas em Tandem/instrumentação , Cannabis/química , Cromatografia Líquida de Alta Pressão/economia , Cromatografia Líquida de Alta Pressão/métodos , Dronabinol/sangue , Desenho de Equipamento , Humanos , Limite de Detecção , Reprodutibilidade dos Testes , Detecção do Abuso de Substâncias/economia , Detecção do Abuso de Substâncias/instrumentação , Detecção do Abuso de Substâncias/métodos , Espectrometria de Massas em Tandem/economia , Espectrometria de Massas em Tandem/métodos
18.
J Mass Spectrom ; 50(5): 740-8, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26259657

RESUMO

Methenolone (17ß-hydroxy-1-methyl-5α-androst-1-en-3-one) misuse in doping control is commonly detected by monitoring the parent molecule and its metabolite (1-methylene-5α-androstan-3α-ol-17-one) excreted conjugated with glucuronic acid using gas chromatography-mass spectrometry (GC-MS) and liquid chromatography mass spectrometry (LC-MS) for the parent molecule, after hydrolysis with ß-glucuronidase. The aim of the present study was the evaluation of the sulfate fraction of methenolone metabolism by LC-high resolution (HR)MS and the estimation of the long-term detectability of its sulfate metabolites analyzed by liquid chromatography tandem mass spectrometry (LC-HRMSMS) compared with the current practice for the detection of methenolone misuse used by the anti-doping laboratories. Methenolone was administered to two healthy male volunteers, and urine samples were collected up to 12 and 26 days, respectively. Ethyl acetate extraction at weak alkaline pH was performed and then the sulfate conjugates were analyzed by LC-HRMS using electrospray ionization in negative mode searching for [M-H](-) ions corresponding to potential sulfate structures (comprising structure alterations such as hydroxylations, oxidations, reductions and combinations of them). Eight sulfate metabolites were finally detected, but four of them were considered important as the most abundant and long term detectable. LC clean up followed by solvolysis and GC/MS analysis of trimethylsilylated (TMS) derivatives reveal that the sulfate analogs of methenolone as well as of 1-methylene-5α-androstan-3α-ol-17-one, 3z-hydroxy-1ß-methyl-5α-androstan-17-one and 16ß-hydroxy-1-methyl-5α-androst-1-ene-3,17-dione were the major metabolites in the sulfate fraction. The results of the present study also document for the first time the methenolone sulfate as well as the 3z-hydroxy-1ß-methyl-5α-androstan-17-one sulfate as metabolites of methenolone in human urine. The time window for the detectability of methenolone sulfate metabolites by LC-HRMS is comparable with that of their hydrolyzed glucuronide analogs analyzed by GC-MS. The results of the study demonstrate the importance of sulfation as a phase II metabolic pathway for methenolone metabolism, proposing four metabolites as significant components of the sulfate fraction.


Assuntos
Dopagem Esportivo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Glucuronídeos/urina , Metenolona/urina , Sulfatos/urina , Adulto , Cromatografia Líquida/métodos , Glucuronídeos/química , Glucuronídeos/metabolismo , Humanos , Masculino , Metenolona/química , Metenolona/metabolismo , Pessoa de Meia-Idade , Sulfatos/química , Sulfatos/metabolismo
19.
Food Funct ; 6(6): 1841-6, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25927398

RESUMO

Artemisia selengensis (AS) has been traditionally used as both food and medicine for thousands of years in China. In our studies, l-tryptophan was first isolated from the haulm of AS together with luteolin, rutin, and kaempferol-3-O-glucuronide. Their structures were elucidated by spectroscopic methods including HRMS, 1D and 2D NMR. Three flavonoid compounds showed satisfactory suppression effects on the formation of advanced glycation end products (AGEs) in ß-lactoglobulin-lactose/MGO/GO model systems, and their anti-glycation activities exhibited a dose-dependent manner. Among these compounds, kaempferol-3-O-glucuronide was demonstrated to be the strongest inhibitor against the formation of AGEs.


Assuntos
Artemisia/química , Produtos Agrícolas/química , Flavonoides/isolamento & purificação , Conservantes de Alimentos/isolamento & purificação , Produtos Finais de Glicação Avançada/antagonistas & inibidores , Lactoglobulinas/química , Caules de Planta/química , Animais , Artemisia/crescimento & desenvolvimento , China , Produtos Agrícolas/crescimento & desenvolvimento , Etnobotânica , Etnofarmacologia , Flavonoides/análise , Flavonoides/química , Flavonoides/economia , Conservantes de Alimentos/análise , Conservantes de Alimentos/química , Conservantes de Alimentos/economia , Indústria de Processamento de Alimentos/economia , Glucuronídeos/análise , Glucuronídeos/química , Glucuronídeos/economia , Glucuronídeos/isolamento & purificação , Produtos Finais de Glicação Avançada/química , Glicosilação , Temperatura Alta/efeitos adversos , Humanos , Resíduos Industriais/análise , Resíduos Industriais/economia , Quempferóis/análise , Quempferóis/química , Quempferóis/economia , Quempferóis/isolamento & purificação , Lactose/química , Medicina Tradicional Chinesa , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/economia , Extratos Vegetais/isolamento & purificação , Caules de Planta/crescimento & desenvolvimento
20.
J Chromatogr A ; 1389: 65-75, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25746760

RESUMO

In order to improve the detection capabilities of anabolic androgenic steroids (AAS) in sports, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) screening method for the simultaneous detection of AAS phase I and phase II intact urinary metabolites (glucuronides and sulfates) was developed. A total of 36 metabolites (7 unconjugated; 19 glucuronides and 10 sulfates) corresponding to 15 of the most reported AAS were included. Analytes were extracted from urine using C18 cartridges. LC and MS conditions were studied in-depth to determine the most sensitive and selective conditions for each analyte. A selected reaction monitoring method was set up. The optimization of the experimental parameters for 13 metabolites not available as standards was performed using excretion study urines. Extraction recoveries were above 77% for all 23 validated analytes. Intra-day precision was lower than 21%, and LODs were in the range 0.25-4ng/mL for 18 of the 23 analytes. Matrix effect was evaluated using post column infusion and ranged from 92 to 147%. The method was successfully applied to excretion study urines of different exogenous AAS. The suitability of the strategy was demonstrated with methyltestosterone and stanozolol excretion study urines by achieving detection times of 22 and 21 days, respectively. The method is compliant with the World Antidoping Agency requirements for most of the studied compounds. It represents a cost-effective approach that improves the detection capabilities of AAS by increasing the sensitivity for some metabolites and by including recently described phase II long-term metabolites not detectable using the current screening strategy.


Assuntos
Anabolizantes/urina , Cromatografia Líquida de Alta Pressão , Dopagem Esportivo/prevenção & controle , Espectrometria de Massas em Tandem , Urinálise/métodos , Glucuronídeos/urina , Limite de Detecção , Sulfatos/urina , Congêneres da Testosterona/urina , Urinálise/economia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA