Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Anticancer Agents Med Chem ; 12(9): 1143-55, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22931411

RESUMO

Structure-based modeling combined with rational drug design, and high throughput screening approaches offer significant potential for identifying and developing lead compounds with therapeutic potential. The present review focuses on these two approaches using explicit examples based on specific derivatives of Gossypol generated through rational design and applications of a cancer-specificpromoter derived from Progression Elevated Gene-3. The Gossypol derivative Sabutoclax (BI-97C1) displays potent anti-tumor activity against a diverse spectrum of human tumors. The model of the docked structure of Gossypol bound to Bcl-XL provided a virtual structure-activity-relationship where appropriate modifications were predicted on a rational basis. These structure-based studies led to the isolation of Sabutoclax, an optically pure isomer of Apogossypol displaying superior efficacy and reduced toxicity. These studies illustrate the power of combining structure-based modeling with rational design to predict appropriate derivatives of lead compounds to be empirically tested and evaluated for bioactivity. Another approach to cancer drug discovery utilizes a cancer-specific promoter as readouts of the transformed state. The promoter region of Progression Elevated Gene-3 is such a promoter with cancer-specific activity. The specificity of this promoter has been exploited as a means of constructing cancer terminator viruses that selectively kill cancer cells and as a systemic imaging modality that specifically visualizes in vivo cancer growth with no background from normal tissues. Screening of small molecule inhibitors that suppress the Progression Elevated Gene-3-promoter may provide relevant lead compounds for cancer therapy that can be combined with further structure-based approaches leading to the development of novel compounds for cancer therapy.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Gossipol/análogos & derivados , Gossipol/farmacologia , Neoplasias/tratamento farmacológico , Animais , Ensaios de Seleção de Medicamentos Antitumorais/economia , Ensaios de Triagem em Larga Escala , Humanos , Neoplasias/genética , Regiões Promotoras Genéticas/efeitos dos fármacos
2.
J Agric Food Chem ; 60(10): 2740-5, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-22324794

RESUMO

Racemic gossypol and its related derivatives gossypolone and apogossypolone demonstrated significant growth inhibition against a diverse collection of filamentous fungi that included Aspergillus flavus, Aspergillus parasiticus, Aspergillus alliaceus, Aspergillus fumigatus, Fusarium graminearum, Fusarium moniliforme, Penicillium chrysogenum, Penicillium corylophilum, and Stachybotrys atra. The compounds were tested in a Czapek agar medium at a concentration of 100 µg/mL. Racemic gossypol and apogossypolone inhibited growth by up to 95%, whereas gossypolone effected 100% growth inhibition in all fungal isolates tested except A. flavus. Growth inhibition was variable during the observed time period for all tested fungi capable of growth in these treatment conditions. Gossypolone demonstrated significant aflatoxin biosynthesis inhibition in A. flavus AF13 (B(1), 76% inhibition). Apogossypolone was the most potent aflatoxin inhibitor, showing greater than 90% inhibition against A. flavus and greater than 65% inhibition against A. parasiticus (B(1), 67%; G(1), 68%). Gossypol was an ineffectual inhibitor of aflatoxin biosynthesis in both A. flavus and A. parasiticus. Both gossypol and apogossypolone demonstrated significant inhibition of ochratoxin A production (47%; 91%, respectively) in cultures of A. alliaceus.


Assuntos
Antifúngicos/farmacologia , Aspergillus/efeitos dos fármacos , Fusarium/efeitos dos fármacos , Gossipol/farmacologia , Penicillium/efeitos dos fármacos , Extratos Vegetais/farmacologia , Aflatoxinas/biossíntese , Antifúngicos/metabolismo , Aspergillus/crescimento & desenvolvimento , Aspergillus/metabolismo , Fusarium/crescimento & desenvolvimento , Fusarium/metabolismo , Gossypium/química , Gossipol/análogos & derivados , Penicillium/crescimento & desenvolvimento , Penicillium/metabolismo
3.
Toxicol Mech Methods ; 20(8): 482-6, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20843265

RESUMO

This study compared the two different commercially available in vitro viability assays: XTT and Alamar blue (AB), to detect anti-proliferative effects of AT-101, a cotton plant extract, on six different human carcinoma cell lines including: prostate (PC-3 and DU-145), breast (MCF-7 and MDA-MB-231), and ovary (OVCAR-3 and MDAH 2774) in a time- and dose-dependent manner. Cells were exposed to AT-101 in the concentration range of 2.5-40 µM for 24, 48, and 72 h. The AB assay was slightly more sensitive than the XTT assay in the evaluation of AT-101 at 24 h, suggesting that the AB assay might be used for detecting early changes in cell viability as compared to the XTT assay. Moreover, the AB assay showed less intra-assay variability as compared to the XTT. The non-toxic, non-radioactive AB metabolism assay allows rapid assessment of large numbers of samples, with simple equipment and at reduced cost for continuous monitoring of cancer cell viability, and, thus, should be accepted as a suitable alternative viability method.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Gossipol/análogos & derivados , Indicadores e Reagentes/metabolismo , Neoplasias/tratamento farmacológico , Oxazinas/metabolismo , Sais de Tetrazólio/metabolismo , Xantenos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Gossipol/farmacologia , Humanos , Masculino , Neoplasias/metabolismo , Reprodutibilidade dos Testes , Ensaio Tumoral de Célula-Tronco
4.
J Econ Entomol ; 97(5): 1710-8, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15568363

RESUMO

Fitness costs associated with insect resistance to Bacillus thuringiensis (Bt) crops may help to delay or prevent the spread of resistance alleles, especially when refuges of non-Bt host plants are present. The potential for such delays increases as the magnitude and dominance of fitness costs increase. Here, we examined the idea that plant secondary chemicals affect expression of fitness costs associated with resistance to Bt cotton in Pectinophora gossypiella (Saunders). Specifically, we tested the hypotheses that gossypol affects the magnitude or dominance of fitness costs, by measuring performance of three independent sets of pink bollworm populations fed artificial diet with and without gossypol. Each set had an unselected susceptible population, a resistant population derived by selection from the susceptible population, and the F1 progeny of the susceptible and resistant populations. No individuals completed development on diets with gossypol in one set, suggesting that these individuals partially lost the ability to detoxify this chemical. In the other two sets, costs affecting survival did not support the hypotheses, but costs affecting pupal weight did. Adding gossypol to diet increased the magnitude and dominance of costs affecting pupal weight. In one of the two sets with survivors on diet with gossypol, costs affecting development time were less recessive when gossypol was present in diet. These results indicate that gossypol increased the magnitude and dominance of some fitness costs. Better understanding of the effects of natural plant defenses on fitness costs could improve our ability to design refuges for managing insect resistance to Bt crops.


Assuntos
Gossypium/genética , Gossipol/farmacologia , Lepidópteros/efeitos dos fármacos , Plantas Geneticamente Modificadas , Animais , Bacillus thuringiensis , Resistência a Inseticidas/genética , Lepidópteros/genética , Controle Biológico de Vetores/métodos , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA