Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 192
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Crit Rev Toxicol ; 54(3): 194-213, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38470098

RESUMO

Neonicotinoid pesticides are utilized against an extensive range of insects. A growing body of evidence supports that these neuro-active insecticides are classified as toxicants in invertebrates. However, there is limited published data regarding their toxicity in vertebrates and mammals. the current systematic review is focused on the up-to-date knowledge available for several neonicotinoid pesticides and their non-acute toxicity on rodents and human physiology. Oral lethal dose 50 (LD50) of seven neonicotinoids (i.e. imidacloprid, acetamiprid, clothianidin, dinotefuran, thiamethoxam, thiacloprid, and nitenpyram) was initially identified. Subsequently, a screening of the literature was conducted to collect information about non-acute exposure to these insecticides. 99 studies were included and assessed for their risk of bias and level of evidence according to the Office of Health and Translation (OHAT) framework. All the 99 included papers indicate evidence of reproductive toxicity, hepatotoxicity, nephrotoxicity, neurotoxicity, immunotoxicity, and oxidative stress induction with a high level of evidence in the health effect of rodents and a moderate level of evidence for human health. The most studied type of these insecticides among 99 papers was imidacloprid (55 papers), followed by acetamiprid (22 papers), clothianidin (21 papers), and thiacloprid (11 papers). While 10 of 99 papers assessed the relationship between clothianidin, thiamethoxam, dinotefuran, and nitenpyram, showing evidence of liver injury, dysfunctions of oxidative stress markers in the reproductive system, and intestinal toxicity. This systematic review provides a comprehensive overview of the potential risks caused by neonicotinoid insecticides to humans and rodents with salient health effects. However, further research is needed to better emphasize and understand the patho-physiological mechanisms of these insecticides, taking into account various factors that can influence their toxicity.


Assuntos
Guanidinas , Inseticidas , Tiazinas , Tiazóis , Animais , Humanos , Tiametoxam , Inseticidas/toxicidade , Oxazinas/toxicidade , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Medição de Risco , Mamíferos
2.
Viruses ; 16(2)2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38399982

RESUMO

The Eastern Equine Encephalitis Virus (EEEV) is an emerging public health threat, with the number of reported cases in the US increasing in recent years. EEEV is a BSL3 pathogen, and the North American strain is a US Federal Select Agent (SA). These restrictions make experiments with EEEV difficult to perform, as high-tech equipment is often unavailable in BSL3 spaces and due to concerns about generating aerosols during manipulations. Therefore, a range of inactivation methods suitable for different downstream analysis methods are essential for advancing research on EEEV. We used heat, chemical, and ultraviolet (UV)-based methods for the inactivation of infected cells and supernatants infected with the non-select agent Madariaga virus (MADV). Although the MADV and EEEV strains are genetically distinct, differing by 8-11% at the amino acid level, they are expected to be similarly susceptible to various inactivation methods. We determined the following to be effective methods of inactivation: heat, TRIzol LS, 4% PFA, 10% formalin, and UV radiation for infected supernatants; TRIzol, 2.5% SDS with BME, 0.2% NP40, 4% PFA, and 10% formalin for infected cells. Our results have the potential to expand the types and complexity of experiments and analyses performed by EEEV researchers.


Assuntos
Alphavirus , Vírus da Encefalite Equina do Leste , Encefalomielite Equina , Fenóis , Cavalos , Animais , Vírus da Encefalite Equina do Leste/fisiologia , Guanidinas , Formaldeído
3.
Sci Total Environ ; 919: 170937, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38360305

RESUMO

Neonicotinoids are broad-spectrum and highly effective insecticides that work by affecting neural activity in insects. Neonicotinoids are systemic pesticides that are absorbed by plants, transported, and accumulated in plant tissues, including nectar and pollen. Currently, there is a lack of a comprehensive assessment of the level of neonicotinoid contamination and the associated health risks to non-targeted organisms in commercial honey and pollen produced in China. This study collected 160 batches of honey and 26 batches of pollen from different regions and plant sources in China, analyzed the residue patterns of neonicotinoid pesticides, and comprehensively evaluated the exposure risks to non-targeted organisms including bees (adults and larvae) and humans. Furthermore, this study addresses this imperative by establishing a high-throughput, rapid, and ultra-sensitive indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) based on broad-spectrum monoclonal antibodies to detect and quantify neonicotinoids, with validation conducted using the LC-MS/MS method. The findings indicated that 59.4 % of honey samples contained at least one of eight neonicotinoids, and the ic-ELISA rapid detection and calculation method could detect all the samples containing neonicotinoids. Additionally, the dietary risk assessment for humans and honeybees indicates that the consumption of a specific quantity of honey may not pose a health risk to human due to neonicotinoid intake. However, the Risk Quotient values for imidacloprid to adult bees and bee larvae, as well as clothianidin to bee larvae, were determined to be 2.22, 5.03, and 1.01, respectively-each exceeding 1. This highlights the elevated risk of acute toxicity posed by imidacloprid and clothianidin residues to honey bees. The study bears significant implications for the safety evaluation of non-targeted organisms in the natural food chain. Moreover, it provides scientific guidance for protecting the diversity and health of the ecosystem.


Assuntos
Ecossistema , Guanidinas , Inseticidas , Tiazóis , Humanos , Abelhas , Animais , Cromatografia Líquida , Espectrometria de Massas em Tandem , Neonicotinoides/toxicidade , Neonicotinoides/análise , Nitrocompostos/análise , Inseticidas/toxicidade , Inseticidas/análise , Pólen/química , Plantas , Medição de Risco
4.
Environ Sci Pollut Res Int ; 31(3): 3763-3774, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38091217

RESUMO

Imidacloprid (IM) is a systemic insecticide persistent in the environment and possesses a negative impact on the non-targeted ecosystem. The objective of the present study was to evaluate the dissipation and degradation mechanism of IM residues in grape rhizosphere soil and to investigate its residual effect on soil enzyme activity at different IM spiking levels. The half-life of IM residue in soil was 27, 36, and 43.5 days at a spiking level of 1, 10, and 50 mg kg-1, respectively following a bi-phasic first + first-order dissipation kinetics. UHPLC-Orbitrap™-MS analysis by targeted metabolomics approach revealed that IM metabolites such as IM-amine analogue, guanidine (reduction), 5-hydroxy IM (hydroxylation), IM-Urea (oxidation), reduced NO analogue of IM (oxidation), and olefin of guanidine IM (dehydrogenation) were identified and proposed the degradation mechanism in grape rhizosphere soil. Toxicity of IM residues on five extracellular enzymes, viz., dehydrogenase, acid phosphatase, alkaline phosphatase, ß-glucosidase, and urease revealed that activity of dehydrogenase, acid phosphatase, and alkaline phosphatase remained unaffected at 60th day of sampling. The ß-glucosidase and urease were negatively affected throughout the incubation period indicating the influence of IM residues on carbon and nitrogen mineralization in soil. Thus, long-term exposure of IM to grape rhizosphere through soil drenching could affect soil enzyme activity which has a negative effect on the soil nutrient cycle and soil microbiome.


Assuntos
Celulases , Neonicotinoides , Nitrocompostos , Poluentes do Solo , Vitis , Rizosfera , Ecossistema , Fosfatase Alcalina/metabolismo , Vitis/metabolismo , Solo/química , Urease , Cromatografia Líquida de Alta Pressão , Fosfatase Ácida , Oxirredutases/metabolismo , Guanidinas , Microbiologia do Solo , Poluentes do Solo/análise
5.
Pest Manag Sci ; 80(2): 910-921, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37822143

RESUMO

BACKGROUND: Understanding the trade-offs between insecticide resistance and the associated fitness is of particular importance to sustainable pest control. One of the most devastating pest worldwide, the whitefly Bemisia tabaci, has developed resistance to various insecticides, especially the neonicotinoid group. Although neonicotinoid resistance often is conferred by P450s-mediated metabolic resistance, the relationship between such resistance and the associated fitness phenotype remains largely elusive. By gene cloning, quantitative reverse transcription (qRT)-PCR, RNA interference (RNAi), transgenic Drosophila melanogaster, metabolism capacity in vitro and 'two sex-age stage' life table study, this study aims to explore the molecular role of a P450 gene CYP4CS5 in neonicotinoid resistance and to investigate whether such resistance mechanism carries fitness costs in the whitefly. RESULTS: Our bioassay tests showed that a total of 13 field-collected populations of B. tabaci MED biotype displayed low-to-moderate resistance to thiamethoxam and clothianidin. Compared to the laboratory susceptible strain, we then found that an important P450 CYP4CS5 was remarkably upregulated in the field resistant populations. Such overexpression of CYP4CS5 had a good match with the resistance level among the whitefly samples. Further exposure to the two neonicotinoids resulted in an increase in CYP4CS5 expression. These results implicate that overexpression of CYP4CS5 is closely correlated with thiamethoxam and clothianidin resistance. RNAi knockdown of CYP4CS5 increased mortality of the resistant and susceptible populations after treatment with thiamethoxam and clothianidin in bioassay, but obtained an opposite result when using a transgenic line of D. melanogaster expressing CYP4CS5. Metabolic assays in vitro revealed that CYP4CS5 exhibited certain capacity of metabolizing thiamethoxam and clothianidin. These in vivo and in vitro assays indicate an essential role of CYP4CS5 in conferring thiamethoxam and clothianidin resistance in whitefly. Additionally, our life-table analysis demonstrate that the field resistant whitefly exhibited a prolonged development time, shortened longevity and reduced fecundity compared to the susceptible, suggesting an existing fitness cost as a result of the resistance. CONCLUSION: Collectively, in addition to the important role of CYP4CS5 in conferring thiamethoxam and clothianidin resistance, this resistance mechanism is associated with fitness costs in the whitefly. These findings not only contribute to the development of neonicotinoids resistance management strategies, but also provide a new target for sustainable whitefly control. © 2023 Society of Chemical Industry.


Assuntos
Guanidinas , Hemípteros , Inseticidas , Tiazóis , Animais , Tiametoxam/metabolismo , Drosophila melanogaster/genética , Nitrocompostos/farmacologia , Nitrocompostos/metabolismo , Oxazinas , Neonicotinoides/farmacologia , Neonicotinoides/metabolismo , Inseticidas/farmacologia , Inseticidas/metabolismo , Animais Geneticamente Modificados , Resistência a Inseticidas/genética
6.
ChemSusChem ; 16(12): e202300779, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37309289

RESUMO

Invited for this month's cover is the group of Professor Sonja Herres-Pawlis at the RWTH Aachen (Germany). The cover image illustrates the complex yet flexible circular economy of (bio)plastics and the role of a Zn-based catalyst therein. The Research Article itself is available at 10.1002/cssc.202300192.


Assuntos
Poliésteres , Zinco , Polimerização , Guanidina , Guanidinas
7.
ChemSusChem ; 16(12): e202300192, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37041114

RESUMO

A new aliphatic hybrid guanidine N,O-donor ligand (TMGeech) and its zinc chloride complex ([ZnCl2 (TMGeech)]) are presented. This complex displays high catalytic activity for the ring-opening polymerization (ROP) of lactide in toluene, exceeding the toxic industry standard tin octanoate by a factor of 10. The high catalytic activity of [ZnCl2 (TMGeech)] is further demonstrated under industrially preferred melt conditions, reaching high lactide conversions within seconds. To bridge the gap towards a sustainable circular (bio)economy, the catalytic activity of [ZnCl2 (TMGeech)] for the chemical recycling of polylactide (PLA) by alcoholysis in THF is investigated. Fast production of different value-added lactates at mild temperatures is demonstrated. Selective PLA degradation from mixtures with polyethylene terephthalate (PET) and a polymer blend, catalyst recycling, and a detailed kinetic analysis are presented. For the first time, chemical recycling of post-consumer PET producing different value-added materials is demonstrated using a guanidine-based zinc catalyst. Therefore, [ZnCl2 (TMGeech)] is a promising, highly active multitool, not only to implement a circular (bio)plastics economy, but also to tackle today's ongoing plastics pollution.


Assuntos
Plásticos , Zinco , Polimerização , Guanidina , Cinética , Polietilenotereftalatos , Guanidinas , Reciclagem
8.
Int J Toxicol ; 42(4): 345-351, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36723994

RESUMO

Neonicotinoid insecticides, known for their selectivity and low mammalian toxicity, have been widely used in recent years as alternatives to organophosphate insecticides. Although neonicotinoids are generally considered to be safe, data show that they can cause harmful effects on human and environmental health. Due to the lack of information on their mechanism of toxicity, the effects of imidacloprid and thiamethoxam on DNA methylation as the most used marker for epigenetic effects were investigated in human neuroblastoma (SH-SY5Y) cells. The cells were exposed to imidacloprid and thiamethoxam in concentrations of 100, 200, and 500 µM for 24 hours, then global DNA methylation and expression of genes involved in global DNA methylation (DNMT1, DNMT3a and DNMT3b) were investigated. Global DNA methylation significantly increased after imidacloprid exposure at 100 µM, and thiamethoxam exposures at 200 µM and 500 µM (>1.5-fold). Imidacloprid significantly decreased the expression of DNMT1 and DNMT3a, whereas thiamethoxam did not cause any significant changes in the expression of DNMT genes. Our findings suggested that alteration in global DNA methylation may be involved in the toxic mechanisms of imidacloprid and thiametoxam.


Assuntos
Inseticidas , Neuroblastoma , Animais , Humanos , Tiametoxam/toxicidade , Inseticidas/toxicidade , Metilação de DNA , Oxazinas/toxicidade , Tiazóis/toxicidade , Guanidinas/toxicidade , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Mamíferos
9.
Food Chem Toxicol ; 166: 113212, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35690182

RESUMO

Toxicological risk assessment is essential in the evaluation and authorization of different classes of chemical substances. Genotoxicity and mutagenicity testing are of highest priority and rely on established in vitro systems with bacterial and mammalian cells, sometimes followed by in vivo testing using rodent animal models. Transcriptomic approaches have recently also shown their value to determine transcript signatures specific for genotoxicity. Here, we studied how transcriptomic data, in combination with in vitro tests with human cells, can be used for the identification of genotoxic properties of test compounds. To this end, we used liver samples from a 28-day oral toxicity study in rats with the pesticidal active substances imazalil, thiacloprid, and clothianidin, a neonicotinoid-type insecticide with, amongst others, known hepatotoxic properties. Transcriptomic results were bioinformatically evaluated and pointed towards a genotoxic potential of clothianidin. In vitro Comet and γH2AX assays in human HepaRG hepatoma cells, complemented by in silico analyses of mutagenicity, were conducted as follow-up experiments to check if the genotoxicity alert from the transcriptomic study is in line with results from a battery of guideline genotoxicity studies. Our results illustrate the combined use of toxicogenomics, classic toxicological data and new approach methods in risk assessment. By means of a weight-of-evidence decision, we conclude that clothianidin does most likely not pose genotoxic risks to humans.


Assuntos
Mutagênicos , Transcriptoma , Animais , Dano ao DNA , Guanidinas , Humanos , Mamíferos , Testes de Mutagenicidade/métodos , Mutagênicos/toxicidade , Neonicotinoides/toxicidade , Ratos , Medição de Risco , Tiazóis
10.
Molecules ; 27(7)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35408608

RESUMO

Thiamethoxam and its metabolite clothianidin residues pose a potential threat to human health. This study aims to investigate the residue behavior and acute dietary risk assessment of thiamethoxam and clothianidin on spinach. Thiamethoxam and clothianidin were extracted using a quick, easy, cheap, effective, rugged, safe (QuEChERS) method and analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). At spike levels from 0.01 to 5 mg kg−1, the average recoveries of both analytes were in the range of 94.5−105.5%, with relative standard deviations (RSDs) of 3.8−10.9%. The dissipation behavior of thiamethoxam followed first-order kinetics, with half-lives of ≤1.6 days. Clothianidin appeared readily as a plant metabolite with highest level exhibited during 3 to 5 days after application. Temperature and light may be two main factors for degradation of thiamethoxam. Besides, acute risk assessment of thiamethoxam and clothianidin was evaluated with risk quotients (RQs) <100%, which suggested a low health risk for all consumer groups of Chinese residents.


Assuntos
Resíduos de Praguicidas , Spinacia oleracea , Cromatografia Líquida/métodos , Guanidinas , Humanos , Neonicotinoides , Resíduos de Praguicidas/análise , Medição de Risco , Spinacia oleracea/metabolismo , Espectrometria de Massas em Tandem/métodos , Tiametoxam/análise , Tiazóis
11.
Nature ; 603(7899): 25-27, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35233098

Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Ensaios Clínicos como Assunto , Reposicionamento de Medicamentos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Monofosfato de Adenosina/administração & dosagem , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/uso terapêutico , Administração Oral , Alanina/administração & dosagem , Alanina/análogos & derivados , Alanina/uso terapêutico , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/uso terapêutico , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Neutralizantes/economia , Anticorpos Neutralizantes/uso terapêutico , Antivirais/administração & dosagem , Antivirais/farmacologia , COVID-19/economia , COVID-19/imunologia , COVID-19/mortalidade , COVID-19/virologia , Vacinas contra COVID-19 , Citidina/análogos & derivados , Citidina/uso terapêutico , Depsipeptídeos/farmacologia , Depsipeptídeos/uso terapêutico , Dexametasona/administração & dosagem , Dexametasona/uso terapêutico , Combinação de Medicamentos , Sinergismo Farmacológico , Ésteres/farmacologia , Ésteres/uso terapêutico , Guanidinas/farmacologia , Guanidinas/uso terapêutico , Hospitalização , Humanos , Hidroxilaminas/uso terapêutico , Internacionalidade , Lactamas/uso terapêutico , Leucina/uso terapêutico , Camundongos , National Institutes of Health (U.S.)/organização & administração , Nitrilas/uso terapêutico , Fator 1 de Elongação de Peptídeos/antagonistas & inibidores , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/uso terapêutico , Prolina/uso terapêutico , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico , RNA Polimerase Dependente de RNA/antagonistas & inibidores
12.
Biomed Chromatogr ; 36(2): e5267, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34654060

RESUMO

To evaluate the residual levels of bifenthrin and dinotefuran, a modified quick, easy, cheap, effective, rugged, and safe (QuEChERS) and high-performance liquid chromatography-tandem mass spectrometry method for simultaneous detection of bifenthrin and dinotefuran and its major metabolites in wheat was developed and validated. Dietary risk assessments were further performed based on the relevant residual data from 12 wheat fields, toxicology data and dietary patterns. In wheat grain and straw, the recoveries of all analytes ranged from 77 to 102% with the relative standard deviation <9.7% and the limit of quantitation 0.05 mg kg-1 . The highest terminal residue of bifenthrin in wheat grain was 0.069 mg kg-1 and dinotefuran was 0.34 mg kg-1 . Residual concentrations of bifenthrin and dinotefuran decreased to <0.05 and 0.15 mg kg-1 at 21 days (pre-harvest interval), respectively. The chronic risk quotient ranged from 6.4 to 62.7% and the acute risk quotient varied from 0.38 to 17.73%. The chronic and acute dietary risks caused by the terminal residues of the two insecticides were negligible for Chinese populations. The recommended pre-harvest interval was proposed to ensure safe wheat consumption. These data could provide a scientific reference to establish the Chinese maximum residue limit of dinotefuran in wheat.


Assuntos
Guanidinas/análise , Neonicotinoides/análise , Nitrocompostos/análise , Resíduos de Praguicidas/análise , Piretrinas/análise , Triticum/química , Cromatografia Líquida de Alta Pressão/métodos , Dieta , Medição de Risco , Espectrometria de Massas em Tandem/métodos
13.
J Sci Food Agric ; 102(1): 417-424, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34143904

RESUMO

BACKGROUND: Thiamethoxam is widely used to control pests in Chinese kale, popularly consumed leafy vegetables. The potential risk to the environment and human health has aroused much public concern. Therefore, it is important to investigate the degradation behavior, residue distribution and dietary risk assessment of thiamethoxam in Chinese kale. RESULTS: A sensitive analytical method for determination of thiamethoxam and its metabolite clothianidin residue in Chinese kale was established and validated through a quick, easy, cheap, effective, rugged, and safe (QuEChERS) technique with ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). The recoveries were 85.4-101.2% for thiamethoxam and 79.5-108.1% for clothianidin, with the relative standard deviations (RSDs) of 0.9-10.2% and 1.8-6.0%, respectively. For the dissipation kinetics, the data showed that thiamethoxam in Chinese kale was degraded with the half-lives of 4.1 to 4.5 days. In the terminal residue experiments, the residues of thiamethoxam were 0.017-0.357 mg kg-1 after application 2-3 times with a preharvest interval (PHI) of 7 days under the designed dosages. The chronic and acute dietary exposure assessment risk quotient (RQ) values of thiamethoxam in Chinese kale for different Chinese consumers were 0.08-0.19% and 0.05-0.12%, respectively, and those of clothianidin were 0.01-0.04% and 0.02-0.04%, respectively, all of the RQ values were lower than 100%. CONCLUSION: Thiamethoxam in Chinese kale was rapidly degraded following first-order kinetics models. The dietary risk of thiamethoxam and clothianidin through Chinese kale was negligible to consumers. The results from this study are important reference for Chinese governments to developing criteria for the safe and rational use of thiamethoxam, setting maximum residue levels (MRLs), monitoring the quality safety of agricultural products and protecting consumer health. © 2021 Society of Chemical Industry.


Assuntos
Brassica/química , Cromatografia Líquida/métodos , Guanidinas/metabolismo , Neonicotinoides/metabolismo , Resíduos de Praguicidas/química , Resíduos de Praguicidas/metabolismo , Espectrometria de Massas em Tandem/métodos , Tiametoxam/química , Tiametoxam/metabolismo , Tiazóis/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Brassica/metabolismo , Criança , Pré-Escolar , China , Exposição Dietética/efeitos adversos , Exposição Dietética/análise , Feminino , Contaminação de Alimentos/análise , Humanos , Cinética , Masculino , Pessoa de Meia-Idade , Medição de Risco , Verduras/química , Verduras/metabolismo , Adulto Jovem
14.
Toxicol Lett ; 356: 100-109, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34902520

RESUMO

Lung epithelial cells and fibroblasts play key roles in pulmonary fibrosis and are involved in fibrotic signaling and production of the extracellular matrix (ECM), respectively. Recently, 3D airway models consisting of both cell types have been developed to evaluate the fibrotic responses while facilitating cell-cell crosstalk. This study aimed to evaluate the fibrotic responses in these models using different fibrogenic agents, which are known as key events in adverse outcome pathways of pulmonary fibrosis. We quantified cell injury and several sequential steps in fibrogenesis, including inflammation, the epithelial-mesenchymal transition (EMT), fibroblast activation, and ECM accumulation, using two different 3D airway models, the EpiAirway™-full thickness (Epi/FT) and MucilAir™-human fibroblast (Mucil/HF) models. In the Epi/FT model, fibrogenic agents induced the expression of inflammation and EMT-associated markers, while in the Mucil/HF model, they induced fibroblast activation and ECM accumulation. Using this information, we conducted gene ontology term network analysis. In the Epi/FT model, the terms associated with cell migration and response to stimulus made up a large part of the network. In the Mucil/HF model, the terms associated with ECM organization and cell differentiation and proliferation constituted a great part of the network. Collectively, our data suggest that polyhexamethyleneguanidine phosphate and bleomycin induce different responses in the two 3D airway models. While Epi/FT was associated with inflammatory/EMT-associated responses, Mucil/HF was associated with fibroblast-associated responses. This study will provide an important basis for selecting proper 3D airway models and fibrogenic agents to further research or screen chemicals causing inhalation toxicity.


Assuntos
Técnicas de Cultura de Células em Três Dimensões/métodos , Células Epiteliais/fisiologia , Fibroblastos/fisiologia , Fibrose/induzido quimicamente , Sistema Respiratório/citologia , Antineoplásicos/toxicidade , Biomarcadores , Bleomicina/toxicidade , Citocinas/genética , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Guanidinas/toxicidade , Humanos , Fator de Crescimento Transformador beta
15.
PLoS One ; 16(8): e0255807, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34407100

RESUMO

The use of saliva for the diagnosis of SARS-CoV-2 has shown to be a good alternative to nasopharyngeal swabs (NPS), since it permits self-collection, avoids the exposure of healthy persons to infected patients, reduces waiting times, eliminates the need of personal protective equipment and is non-invasive. Yet current saliva testing is still expensive due to the need of specialized tubes containing buffers to stabilize the RNA of SARS-CoV-2 and inactivate the virus. These tubes are expensive and not always accessible in sufficient quantities. We now developed an alternative saliva testing method, using TRIzol for extraction, viral inactivation, and storage of SARS-CoV-2 RNA, combined with RT-qPCR, which was comparable in its performance to NPS. Paired saliva samples and NPS were taken from 15 asymptomatic healthcare workers and one patient with SARS-CoV-2. Further 13 patients with SARS-CoV-2 were only saliva-tested. All the tests were performed according to CDC 2019-Novel Coronavirus (2019-nCoV) Real-Time RT-PCR Diagnostic Panel. Saliva (4 mL) was taken in sterile 50 mL tubes, 1.5 mL TRIzol were added and mixed. Our results show that 5 µL of saliva RNA extracted with TRIzol allow for an adequate detection of the virus in patients positive for SARS-CoV-2 and was equally sensitive to NPS in TRIzol. We conclude that saliva testing using TRIzol is a recommendable method for diagnosis of SARS-CoV-2 since it has several advantages over currently used saliva tests: it can be done with normal sterile tubes, does not need cold-chain handling, is stable at room temperature, is non-invasive and less costly, making it more accessible for low-income countries. Cheaper saliva testing using TRIzol is especially relevant for low-income countries to optimize diagnosis and help define quarantine durations for families, healthcare workers, schools, and other public workplaces, thus decreasing infections and mortality caused by SARS-CoV-2.


Assuntos
COVID-19/diagnóstico , SARS-CoV-2/isolamento & purificação , Saliva/virologia , Manejo de Espécimes/instrumentação , Adulto , Idoso , Idoso de 80 Anos ou mais , Países em Desenvolvimento , Testes Diagnósticos de Rotina/economia , Diagnóstico Precoce , Guanidinas/química , Humanos , Masculino , Pessoa de Meia-Idade , Nasofaringe/virologia , Fenóis/química , RNA Viral/genética , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , SARS-CoV-2/genética , Sensibilidade e Especificidade , Fatores Socioeconômicos , Manejo de Espécimes/economia , Adulto Jovem
16.
J Hazard Mater ; 419: 126491, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34323739

RESUMO

This study aimed to assess the chronic toxicity and risk of clothianidin in a seed dressing formulation to non-target soil invertebrates. The toxicity assays were performed with two oligochaetes (earthworms Eisenia andrei and enchytraeids Enchytraeus crypticus) and three collembolans (Folsomia candida, Proisotoma minuta and Sinella curviseta) species following ISO protocols. Risk assessment (via Hazard Quotient approach - HQ) was based on the hazardous concentrations for 95% of the species (HC5), derived from chronic Species Sensitivity Distributions (SSD) for clothianidin, and on its predicted environmental concentrations (PEC). Four SSD scenarios were generated with literature and/or this study data, following different data selection criteria (i.e., general, only data from tests using similar formulations, similar soils, or identical soil/formulation). In our experiments, a higher clothianidin toxicity (EC50-based) was found for collembolans (varying from 0.11 to 0.28 mg kg-1 between species) followed by the earthworms (4.35 mg kg-1), while the enchytraeids were the least sensitive (33.5 mg kg-1). HQ indicated a significant risk of clothianidin to soil invertebrates because the estimated PEC were at least 16.6 times higher than HC5 and are expected to affect the whole group of collembolans. Despite the criteria for data inclusion have influenced the HC5 values, no substantial changes were observed for the risk outcomes. To our knowledge, this is the first study assessing the chronic ecological risk of clothianidin to beneficial soil fauna based on a probabilistic SSD approach. Data from this study can help to derive more reliable protection thresholds for clothianidin in soils.


Assuntos
Oligoquetos , Poluentes do Solo , Animais , Guanidinas , Invertebrados , Neonicotinoides , Medição de Risco , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Tiazóis
17.
J Sci Food Agric ; 101(14): 5992-6000, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33851415

RESUMO

BACKGROUND: Tolfenpyrad and dinotefuran are two representative pesticides used for pest control in tea gardens. Their application may bring about a potential risk to the health of consumers. Therefore, it is essential to investigate the residue behavior, transfer and risk assessment of tolfenpyrad, dinotefuran and metabolites from tea garden to teacup. RESULTS: An effective analytical method was established and validated to simultaneously determine tolfenpyrad, dinotefuran and its metabolites (DN and UF) in tea. The average recoveries of tolfenpyrad, dinotefuran, DN and UF were in the range 72.1-106.3%, with relative standard deviations lower than 11.8%. On the basis of the proposed method, the dissipation of tolfenpyrad and dinotefuran in fresh tea leaves followed first-order kinetics models with half-lives of 4.30-7.33 days and 4.65-5.50 days, respectively. With application amounts of 112.5-168.75 g a.i. ha-1 once or twice, the terminal residues of tolfenpyrad and total dinotefuran in green tea were lower than 19.6 and 7.13 mg kg-1 , respectively, and below their corresponding maximum residue limits . The leaching rates of tolfenpyrad and total dinotefuran during the tea brewing were in the ranges 1.4-2.3% and 93.7-98.1%, respectively. CONCLUSION: Tolfenpyrad and dinotefuran in tea were easily degraded. The RQc and RQa values for tolfenpyrad were 37.6% and 5.4%, which were much higher than for dinotefuran at 24.7% and 0.84%, respectively. The data indicated that there was no significant health risk in tea for consumers at the recommended dosages. The results provide scientific data regarding the reasonable use of tolfenpyrad and dinotefuran aiming to ensure safe tea consuption. © 2021 Society of Chemical Industry.


Assuntos
Camellia sinensis/crescimento & desenvolvimento , Guanidinas/química , Neonicotinoides/química , Nitrocompostos/química , Resíduos de Praguicidas/química , Pirazóis/química , Chá/química , Camellia sinensis/química , Camellia sinensis/metabolismo , Qualidade de Produtos para o Consumidor , Culinária , Contaminação de Alimentos/análise , Guanidinas/metabolismo , Humanos , Cinética , Neonicotinoides/metabolismo , Nitrocompostos/metabolismo , Resíduos de Praguicidas/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Pirazóis/metabolismo , Medição de Risco , Chá/metabolismo
18.
Curr Med Res Opin ; 37(7): 1135-1148, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33858277

RESUMO

OBJECTIVE: Baloxavir marboxil (baloxavir) is a single-dose antiviral which was previously found to be a cost-effective alternative to laninamivir in otherwise healthy adults in Japan. This study aimed at investigating the cost-effectiveness of baloxavir versus laninamivir in patients with influenza at high risk for complications. METHODS: A decision tree was utilized to estimate costs and health gains associated with the use of antivirals. A lifetime horizon was applied to capture the long-term impact of influenza complications, and other events with associated costs and health outcomes were accounted for one influenza season. The study population was stratified into three categories: adolescents and non-elderly adults with high-risk conditions (HRC), elderly without other HRC, and elderly with other HRC. The cost-effectiveness was assessed from a public healthcare payer's perspective. The duration of influenza symptoms, probabilities of complications and probabilities of adverse events were obtained from a clinical trial and network meta-analysis. The costs of influenza and adverse events management were derived from the JammNet claims database. Utility values were informed by the clinical trial data and literature. Sensitivity analyses were also performed. RESULTS: The baloxavir strategy was associated with higher costs (+¥144) and higher quality-adjusted life-years (QALYs) in adults with HRC, elderly without HRC and elderly with HRC (+0.00078, +0.00183 and +0.00350 respectively). The overall incremental cost/QALY for baloxavir versus laninamivir was ¥68,855, which was below the willingness-to-pay threshold of ¥5 million/QALY gained. Key drivers of the model results were the probability of pneumonia and bronchitis. The probability of baloxavir being cost-effective was 72%. CONCLUSIONS: This study suggests that influenza treatment with baloxavir is cost-effective compared with laninamivir in the adult high-risk population in Japan.


Assuntos
Dibenzotiepinas , Influenza Humana , Adolescente , Adulto , Idoso , Antivirais/uso terapêutico , Análise Custo-Benefício , Dibenzotiepinas/uso terapêutico , Guanidinas , Humanos , Influenza Humana/tratamento farmacológico , Japão/epidemiologia , Pessoa de Meia-Idade , Morfolinas/uso terapêutico , Piranos , Piridonas/uso terapêutico , Ácidos Siálicos , Triazinas/uso terapêutico
19.
J Sci Food Agric ; 101(14): 5842-5850, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33788960

RESUMO

BACKGROUND: Flonicamid and dinotefuran are widely applied to control pests and diseases in various economic crops arousing much public concerns about the potential risk to human health. In this study, the multi-determination and residual behavior of flonicamid-dinotefuran mixture on peach trees were investigated. The chronic risk of long-term dietary intake for Chinese consumers was evaluated. RESULTS: An optimized QuEChERS method combined with ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis for simultaneous determination of flonicamid, dinotefuran and its metabolites was established to analyze the residual dissipation and terminal residues in peach matrices. The results demonstrated that (i) a satisfactory linearity relationship with the detector response and the correlation coefficient R2 > 0.999, the average recoveries of these four analytes ranged from 94 to 108%, the relative standard deviation was between 1.0% and 8.8%, and the limit of the quantitation was 0.02 mg kg-1 ; (ii) the dissipation behaviors of flonicamid and dinotefuran followed with the first-order dynamic kinetics model, and the half-lives were 6.9-12.4 days and 8.1-15.1 days, respectively; (iii) the recommended preharvest interval (PHI) was 21 days, the risk quotient (RQ) values of flonicamid and dinotefuran were 16.6 and 20.7%, respectively, which were significantly less than 100%. CONCLUSION: The established analytical method met the detection requirement in terms of sensitivity, accuracy, and precision. Additionally, the results indicated that the potential dietary intake risk of the flonicamid-dinotefuran mixture on peach trees was negligible. This work can be utilized in the safe and responsible use of flonicamid-dinotefuran mixture and provide guidance for establishing its maximum residue limit (MRL) in China. © 2021 Society of Chemical Industry.


Assuntos
Guanidinas/química , Neonicotinoides/química , Niacinamida/análogos & derivados , Nitrocompostos/química , Resíduos de Praguicidas/química , Prunus persica/química , China , Cromatografia Líquida de Alta Pressão , Qualidade de Produtos para o Consumidor , Ingestão de Alimentos , Inocuidade dos Alimentos , Frutas/química , Frutas/metabolismo , Guanidinas/metabolismo , Humanos , Cinética , Neonicotinoides/metabolismo , Niacinamida/química , Niacinamida/metabolismo , Nitrocompostos/metabolismo , Resíduos de Praguicidas/metabolismo , Prunus persica/metabolismo , Espectrometria de Massas em Tandem
20.
Bull Environ Contam Toxicol ; 106(5): 892-898, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33709159

RESUMO

Clothianidin is drenched at planting to manage the termites of sugarcane. The application of organic manures at planting is also in vogue to conserve the soil moisture in the tropical ecosystem. Hence, the persistence behaviour of clothianidin was studied in the sandy clay loam soil of tropical sugarcane ecosystem under different organic manuring. The clothianidin residues persisted up to 90th DAT and reached below the limit of quantification (LOQ = 0.005 µg/g) on 105th DAT both in the manurial and non-manurial soils. The half-lives of clothianidin were in the range of 22.4-24.8 days in the manurial soils as against 21 days in the non-manurial soil, indicating the insignificant positive impact of organic manures on the soil persistence of clothianidin. The clothianidin residues in the soil were predicted to pose unacceptable to medium level of risk to earthworms during the course of its dissipation in the tropical sugarcane environment.


Assuntos
Saccharum , Poluentes do Solo , Ecossistema , Guanidinas , Esterco , Neonicotinoides , Medição de Risco , Solo , Poluentes do Solo/análise , Tiazóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA