Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 315
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Comput Biol Med ; 176: 108567, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38763065

RESUMO

INTRODUCTION: High-flow nasal cannula therapy has garnered significant interest for managing pathologies affecting infants' airways, particularly for humidifying areas inaccessible to local treatments. This therapy promotes mucosal healing during the postoperative period. However, further data are needed to optimize the use of these devices. In vivo measurement of pediatric airway humidification presents a challenge; thus, this study aimed to investigate the airflow dynamics and humidification effects of high-flow nasal cannulas on an infant's airway using computational fluid dynamics. METHODS: Two detailed models of an infant's upper airway were reconstructed from CT scans, with high-flow nasal cannula devices inserted at the nasal inlets. The airflow was analyzed, and wall humidification was modeled using a film-fluid approach. RESULTS: Air velocities and pressure were very high at the airway inlet but decreased rapidly towards the nasopharynx. Maximum relative humidity-close to 100%-was achieved in the nasopharynx. Fluid film development along the airway was heterogeneous, with condensation primarily occurring in the nasal vestibule and larynx. CONCLUSION: This study provides comprehensive models of airway humidification, which pave the way for future studies to assess the impact of surgical interventions on humidification and drug deposition directly at operative sites, such as the nasopharynx or larynx, in infants.


Assuntos
Cânula , Umidade , Hidrodinâmica , Humanos , Lactente , Modelos Biológicos , Simulação por Computador
2.
J Biomech ; 167: 112086, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38615481

RESUMO

Accurate assessment of portacaval pressure gradient (PCG) in patients with portal hypertension (PH) is of great significance both for diagnosis and treatment. This study aims to develop a noninvasive method for assessing PCG in PH patients and evaluate its accuracy and effectiveness. This study recruited 37 PH patients treated with transjugular intrahepatic portosystemic shunt (TIPS). computed tomography angiography was used to create three dimension (3D) models of each patient before and after TIPS. Doppler ultrasound examinations were conducted to obtain the patient's portal vein flow (or splenic vein and superior mesenteric vein). Using computational fluid dynamics (CFD) simulation, the patient's pre-TIPS and post-TIPS PCG was determined by the 3D models and ultrasound measurements. The accuracy of these noninvasive results was then compared to clinical invasive measurements. The results showed a strong linear correlation between the PCG simulated by CFD and the clinical invasive measurements both before and after TIPS (R2 = 0.998, P < 0.001 and R2 = 0.959, P < 0.001). The evaluation accuracy of this noninvasive method reached 94 %, and the influence of ultrasound result errors on the numerical accuracy was found to be marginal if the error was less than 20 %. Furthermore, the information about the hemodynamic environment in the portal system was obtained by this numerical method. Spiral flow patterns were observed in the portal vein of some patients. In a conclusion, this study proposes a noninvasive numerical method for assessing PCG in PH patients before and after TIPS. This method can assist doctors in accurately diagnosing patients and selecting appropriate treatment plans. Additionally, it can be used to further investigate potential biomechanical causes of complications related to TIPS in the future.


Assuntos
Hipertensão Portal , Derivação Portossistêmica Transjugular Intra-Hepática , Humanos , Derivação Portossistêmica Transjugular Intra-Hepática/efeitos adversos , Derivação Portossistêmica Transjugular Intra-Hepática/métodos , Hidrodinâmica , Veia Porta/diagnóstico por imagem , Hipertensão Portal/diagnóstico por imagem , Hemodinâmica
3.
Environ Pollut ; 351: 124032, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38670425

RESUMO

Benthic fluxes refer to the exchange rates of nutrients and other compounds between the water column and the sediment bed in aquatic ecosystems. Their quantification contributes to our understanding of aquatic ecosystem functioning. Near-bed hydrodynamics plays an important role at the sediment-water interface, especially in shallow lakes, but it is poorly considered by traditional measuring techniques of flux quantification, such as sediment incubations. Thus, alternative sampling techniques are needed to characterize key benthic fluxes under in-situ hydrodynamic conditions. This study aimed to evaluate the performance of two promising methods: relaxed eddy accumulation (REA) and mass transfer coefficient (MTC). We applied them in a hyper-eutrophic shallow lake to measure the fluxes of ammonium, phosphate, iron, and manganese ions. For the first time, REA revealed hourly nutrient flux variations, indicating a strong lake biogeochemical dynamics at short time-scales. Daily average fluxes are of similar orders of magnitude for REA and MTC for ammonium (24 and 42 mmol m2 d-1), manganese (1.0 and 0.8), and iron (0.8 and 0.7) ions. They are one order of magnitude higher than fluxes estimated from sediment incubations, due to the difficulty in reproducing in-situ oxygen and hydrodynamic conditions in the laboratory. Although the accuracy of both techniques needs to be improved, the results revealed their potential: REA follows the short-term biogeochemical dynamics of sediments, while MTC could be widely used for lake monitoring because of its simpler implementation.


Assuntos
Compostos de Amônio , Monitoramento Ambiental , Sedimentos Geológicos , Lagos , Poluentes Químicos da Água , Lagos/química , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Compostos de Amônio/análise , Ecossistema , Hidrodinâmica , Ferro/análise , Manganês/análise , Fosfatos/análise , Eutrofização
4.
Sci Rep ; 14(1): 9515, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664464

RESUMO

Stroke, a major global health concern often rooted in cardiac dynamics, demands precise risk evaluation for targeted intervention. Current risk models, like the CHA 2 DS 2 -VASc score, often lack the granularity required for personalized predictions. In this study, we present a nuanced and thorough stroke risk assessment by integrating functional insights from cardiac magnetic resonance (CMR) with patient-specific computational fluid dynamics (CFD) simulations. Our cohort, evenly split between control and stroke groups, comprises eight patients. Utilizing CINE CMR, we compute kinematic features, revealing smaller left atrial volumes for stroke patients. The incorporation of patient-specific atrial displacement into our hemodynamic simulations unveils the influence of atrial compliance on the flow fields, emphasizing the importance of LA motion in CFD simulations and challenging the conventional rigid wall assumption in hemodynamics models. Standardizing hemodynamic features with functional metrics enhances the differentiation between stroke and control cases. While standalone assessments provide limited clarity, the synergistic fusion of CMR-derived functional data and patient-informed CFD simulations offers a personalized and mechanistic understanding, distinctly segregating stroke from control cases. Specifically, our investigation reveals a crucial clinical insight: normalizing hemodynamic features based on ejection fraction fails to differentiate between stroke and control patients. Differently, when normalized with stroke volume, a clear and clinically significant distinction emerges and this holds true for both the left atrium and its appendage, providing valuable implications for precise stroke risk assessment in clinical settings. This work introduces a novel framework for seamlessly integrating hemodynamic and functional metrics, laying the groundwork for improved predictive models, and highlighting the significance of motion-informed, personalized risk assessments.


Assuntos
Átrios do Coração , Hemodinâmica , Hidrodinâmica , Acidente Vascular Cerebral , Humanos , Acidente Vascular Cerebral/fisiopatologia , Feminino , Masculino , Átrios do Coração/fisiopatologia , Átrios do Coração/diagnóstico por imagem , Pessoa de Meia-Idade , Medição de Risco/métodos , Idoso , Simulação por Computador , Modelos Cardiovasculares , Imagem Cinética por Ressonância Magnética/métodos
5.
Environ Res ; 251(Pt 2): 118762, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38527720

RESUMO

Treating high salt and high organic matter wastewater (HHW) generated during rapid socio-economic development is a significant challenge. This study aims to optimize a closed-cycle low-temperature evaporation (CCLE) system using mathematical modelling to be adapted to industrial applications. By using mathematical modelling and computational fluid dynamics (CFD), this study investigated the operating mechanism of the system under different operating conditions. Parametric analysis shows that increasing the compressor evaporation temperature and decreasing the condensation temperature is conducive to improving the performance of the heat pump unit, thereby increasing the wastewater treatment efficiency of the system and that a smaller heat transfer coil windward area is conducive to heat and mass transfer within the humidifier. The unique characteristics of the CCLE system are identified, and the wastewater treatment process under various operating conditions is explained. These findings may provide supporting information for the treatment of HHW by the CCLE system.


Assuntos
Hidrodinâmica , Modelos Teóricos , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Temperatura Baixa
6.
Biomech Model Mechanobiol ; 23(3): 959-985, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38341820

RESUMO

In silico simulations can be used to evaluate and optimize the safety, quality, efficacy and applicability of medical devices. Furthermore, in silico modeling is a powerful tool in therapy planning to optimally tailor treatment for each patient. For this purpose, a workflow to perform fast preoperative risk assessment of paravalvular leakage (PVL) after transcatheter aortic valve replacement (TAVR) is presented in this paper. To this end, a novel, efficient method is introduced to calculate the regurgitant volume in a simplified, but sufficiently accurate manner. A proof of concept of the method is obtained by comparison of the calculated results with results obtained from in vitro experiments. Furthermore, computational fluid dynamics (CFD) simulations are used to validate more complex stenosis scenarios. Comparing the simplified leakage model to CFD simulations reveals its potential for procedure planning and qualitative preoperative risk assessment of PVL. Finally, a 3D device deployment model and the efficient leakage model are combined to showcase the application of the presented leakage model, by studying the effect of stent size and the degree of stenosis on the regurgitant volume. The presented leakage model is also used to visualize the leakage path. To generalize the leakage model to a wide range of clinical applications, further validation on a large cohort of patients is needed to validate the accuracy of the model's prediction under various patient-specific conditions.


Assuntos
Simulação por Computador , Humanos , Medição de Risco , Substituição da Valva Aórtica Transcateter/efeitos adversos , Hidrodinâmica , Valva Aórtica/cirurgia , Valva Aórtica/fisiopatologia , Modelos Cardiovasculares , Stents
7.
Facial Plast Surg ; 40(3): 331-335, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38198818

RESUMO

An objective assessment of nasal breathing is currently insufficiently achievable. The application of computational fluid dynamics for this purpose is increasingly gaining attention. However, the suggested specific frameworks can differ considerably. To the best of our knowledge, there is not yet a widely accepted clinical usage of computational fluid dynamics. In this article, selected aspects are addressed that might be crucial for future development and possible implementation of computational fluid dynamics in rhinology.


Assuntos
Hidrodinâmica , Respiração , Humanos , Simulação por Computador , Nariz/fisiologia , Nariz/anatomia & histologia
8.
Environ Pollut ; 344: 123417, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38253163

RESUMO

The study concerned technical feasibility, economic profitability, and carbon footprint (CF) analysis of semi-continuous anaerobic digestion (sAD) of organic fraction of municipal solid waste (OFMSW). The research assessed the pre-treatment effect on sAD by varying organic loading rates (OLR) from 3.38 to 6.75 kgvs/m3d. Three sAD configurations were investigated: hydrodynamic-cavitated (HC-OFMSW), enzymatically pre-treated (EN-OFMSW), and non-pre-treated (AD-OFMSW). Principal Component Analysis and Supervised Kohonen's Self-Organizing Maps combined the experimental, economic, and environmental evaluations. The sAD configurations were grouped predominantly according to the OLR however, within each OLR group the configurations were clustered according to the pre-treatments. The finding highlighted that pre-treatments offset inhibition in sAD of OFMSW due to the OLR increase, being economically profitable and CF negative up to 4.50 kgvs/m3d for EN-OFMSW and to 5.40 kgvs/m3d for HC-OFMSW. Whereas sAD-OFMSW remained economically and environmentally viable only up to 3.87 kgvs/m3d. HC-OFMSW reached the highest performance. In detail, for HC-OFMSW the NPV and CF ranged from 17679.30 to 43827.12 euros and from -51.08 to -407.210 kg CO2eq/1 MWh daily produced, by decreasing the OLR from 5.40 to 3.87 kgvs/m3d. These results are fundamental since pre-treatment is usually expensive due to additional energy or chemical requirements.


Assuntos
Eliminação de Resíduos , Resíduos Sólidos , Análise Custo-Benefício , Anaerobiose , Algoritmos , Hidrodinâmica , Reatores Biológicos , Metano
9.
Eur Endod J ; 9(1): 89-94, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37941399

RESUMO

OBJECTIVE: Computational fluid dynamic analysis (CFD) is claimed to be a reliable tool for analysing the fluid flow and the generated apical pressures in the simulated root canal. The current study aimed to analyse the apical pressures in extracted teeth with single and joining canals. METHODS: Forty-six freshly extracted teeth were collected for the present study. The power was set at 95%, with an effect size of 0.55 (1-ß=95%, α=0.05). Once the root canal anatomy was confirmed with cone-beam computed tomography (CBCT), they were divided into two groups: group I: mandibular second premolars with Vertucci type-I (n=23), and group II: maxillary second premolars with Vertucci type-II (n=23). The instrumentation of the specimens was carried out to a 0.04-taper using rotary instruments. A post-instrumentation CBCT was obtained, and computer-aided design models were obtained. The CFD simulations were then con- ducted with simulated 30-gauge side vented needles at 25, 50, and 75% short of the working length (WL). RESULTS: Group I recorded significantly (p<0.05) higher apical pressures at needle positions 25% short of the WL. However, no significant differences were elicited in the groups at other needle positions. CONCLUSION: Single canal specimens recorded higher apical pressures at needle positions 25% short of the WL. However, no differences were elicited between single and joining canals at higher needle positions.


Assuntos
Cavidade Pulpar , Hidrodinâmica , Cavidade Pulpar/diagnóstico por imagem , Tratamento do Canal Radicular , Tomografia Computadorizada de Feixe Cônico/métodos , Agulhas
10.
Aust Endod J ; 50(1): 40-51, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37849412

RESUMO

This study aims to assess the influence of root canal preparation, irrigation needle design and its placement depth in the irrigation flow of confluent canals during syringe irrigation. A mandibular molar presenting two confluent canals in its mesial root was sequentially prepared and scanned by micro-computed tomography after mechanical preparation up to ProTaper Next system sizes X2 (25/.06v), X3 (30/.07v) and X4 (40/.06v). In each of the root canal preparation models, a side-vented and an open-ended needle at 5, 3 and 2 mm from the working length were included, and irrigation flow was assessed by a validated computational fluid dynamics model. The results revealed that the irrigant flowed out of the confluent canals mainly through the canal that did not have the needle. Apical penetration and renewal of the irrigant were most efficiently achieved with the use of a 30G open-ended needle and a 30/.07v preparation.


Assuntos
Cavidade Pulpar , Hidrodinâmica , Cavidade Pulpar/diagnóstico por imagem , Microtomografia por Raio-X , Seringas , Irrigantes do Canal Radicular , Irrigação Terapêutica , Preparo de Canal Radicular
11.
Environ Sci Process Impacts ; 25(12): 2157-2166, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-37966351

RESUMO

The purpose of this study was to assess the utility of a low-cost flow simulation tool for an indoor air modeling application by comparing its outputs with the results of a physical experiment, as well as those from a more advanced computational fluid dynamics (CFD) software package. Five aerosol dispersion tests were performed in two different classrooms by releasing a CO2 tracer gas from six student locations. Resultant steady-state concentrations were monitored at 13 locations around the periphery of the room. Subsequently, the experiments were modeled using both a low-cost tool (SolidWorks Flow Simulation) and a more sophisticated tool (STAR-CCM+). Models were evaluated based on their ability to predict the experimentally measured concentrations at the 13 monitoring locations by calculating four performance parameters commonly used in the evaluation of dispersion models: fractional mean bias (FB), normalized mean-square error (NMSE), fraction of predicted value within a factor of two (FAC2), and normalized absolute difference (NAD). The more sophisticated model performed better in 15 of the 20 possible cases (five tests at four parameters each), with parameters meeting acceptance criteria in 19 of 20 cases. However, the lower-cost tool was only slightly worse, with parameters meeting acceptance criteria in 18 of 20 cases, and it performed better than the other tool in 3 of 20 cases. Because it provides useful results at a fraction of the monetary and training cost and is already widely accessible to many institutions, such a tool may be worthwhile for many indoor aerosol dispersion applications, especially for students or researchers just beginning CFD modeling.


Assuntos
Hidrodinâmica , Modelos Teóricos , Humanos , Simulação por Computador , Aerossóis
12.
BMC Cardiovasc Disord ; 23(1): 488, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794371

RESUMO

OBJECTIVE: The purpose of this study was to investigate the feasibility of visualizing and quantifying the normal pattern of vortex formation in the left ventricle (LV) and right ventricle (RV) of the fetal heart during diastole using vector flow mapping (VFM). METHODS: A total of 36 healthy fetuses in the second trimester (mean gestational age: 23 weeks, 2 days; range: 22-24 weeks) were enrolled in the study. Color Doppler signals were recorded in the four-chamber view to observe the phase of the diastolic vortices in the LV and RV. The vortex area and circulation were measured, and parameters such as intraventricular pressure difference (IVPD), intraventricular pressure gradient (IVPG), and average energy loss (EL_AVG) were evaluated at different diastolic phases, including isovolumic relaxation (D1), early diastole (D2), and late diastole (D3). RESULTS: Healthy second-trimester fetal vortex formations were observed in both the LV and RV at the end of diastole, with the vortices rotating in a clockwise direction towards the outflow tract. There were no significant differences in vortex area and circulation between the two ventricles (p > 0.05). However, significant differences were found in IVPD, IVPG, and EL_AVG among the diastolic phases (D1, D2, and D3) (p < 0.05). Trends in IVPD, IVPG, and EL_AVG during diastole (D1-D2-D3) revealed increasing IVPD and EL_AVG values, as well as decreasing IVPG values. Furthermore, during D3, the RV exhibited significantly higher IVPD, IVPG, and EL_AVG compared to the LV (p > 0.05). CONCLUSION: VFM is a valuable technique for analyzing the formation of vortices in the left and right ventricles during fetal diastole. The application of VFM technology has the potential to enhance the assessment of fetal cardiac parameters.


Assuntos
Ventrículos do Coração , Hidrodinâmica , Humanos , Lactente , Diástole , Ventrículos do Coração/diagnóstico por imagem , Ultrassonografia , Coração Fetal/diagnóstico por imagem , Função Ventricular Esquerda
13.
PLoS One ; 18(9): e0291445, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37703273

RESUMO

Persistent variability observed during spirometry, even when technical and personal factors are controlled, has prompted interest in uncovering its underlying mechanisms. Notably, our prior investigations have unveiled that spirometry has the potential to trigger gastro-esophageal reflux in a susceptible population. This current study embarks on elucidating the intricate mechanisms orchestrating reflux induced by spirometry. To achieve this, we enlisted twenty-four (24) participants exhibiting reflux symptoms for esophageal assessment. These participants underwent two sets of spirometry sessions, interspersed with a 10-minute intermission, during which we closely scrutinized fluid flow dynamics and esophageal function through high-resolution impedance esophageal manometry. Our comprehensive evaluation juxtaposed baseline manometric parameters against their equivalents during the initial spirometry session, the intervening rest period, and the subsequent spirometry session. Remarkably, impedance values, serving as a metric for fluid quantity, exhibited a substantial elevation during each spirometry session and the ensuing recovery interval in the pan-esophageal and hypopharyngeal regions when compared to baseline levels. Additionally, the resting pressure of the lower esophageal sphincter experienced a noteworthy reduction subsequent to the first bout of spirometry (13.6 ± 8.8 mmHg) in comparison to the baseline pressure (22.5 ± 13.3 mmHg). Furthermore, our observations unveiled a decline in spirometric parameters-FEV1 (0.14 ± 0.24 L, P = 0.042) and PEFR (0.67 L/s, P = 0.34)-during the second spirometry session when contrasted with the first session. Collectively, our study underscores the compelling evidence that spirometry maneuvers can elicit gastro-esophageal reflux by eliciting intra-esophageal pressure differentials and inducing temporary relaxation of the lower esophageal sphincter.


Assuntos
Refluxo Gastroesofágico , Humanos , Refluxo Gastroesofágico/diagnóstico , Impedância Elétrica , Hidrodinâmica , Manometria , Espirometria
14.
Transl Vis Sci Technol ; 12(8): 4, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37552202

RESUMO

Purpose: The purpose of this study was to quantify retinal hydration (RH) levels with optical coherence tomography (OCT) and determine the extent of cellular damage resulting from intraretinal fluid alterations. Methods: We took 6.0 mm sections of the human sensory retina that were excised from 18 fresh (<24 hours) donor eyes. They were either exposed to various osmotic stresses between 90 and 305 mOsm or dehydrated under a laminar flow hood. Change in tissue weight was used to calculate the retinal water content (RWC). Image analyses were conducted on OCT between 0 and 180 minutes to assess retinal thickness (RT) and "optically empty areas" (OEAs) representing intraretinal fluid. Correlations were sought among RWC, OEA, RWC, and RT. The effect of RH on retinal cell viability (RCV) was assessed with the Live-Dead Assay. Results: RH demonstrated a stronger correlation with the OEA than plain RT measurements (r = 0.99, P < 0.001). RH-RCV interaction fits well to a bell-shaped curve. A significant proportion of retinal cells (>80%) remained viable despite the change in RH ranging between 0.87 and 1.42 times. This "safe zone" was found to be associated with a 22% increase in OEA (r = 0.99, P < 0.01). Conclusions: OCT has been demonstrated as a valuable tool for assessing RH and can be used for intraretinal fluid content analysis. RH is a better indicator of RCV compared with RT. Computing RH may improve the determination of functional outcome of intravitreal pharmacotherapeutics used for diabetic macular edema and exudative age-related macular degeneration. Translational Relevance: We link basic research and clinical care by assessing retinal hydration's impact on retinal fluid dynamics, macular edema, and cell viability.


Assuntos
Retinopatia Diabética , Edema Macular , Humanos , Edema Macular/diagnóstico por imagem , Tomografia de Coerência Óptica/métodos , Retinopatia Diabética/diagnóstico por imagem , Sobrevivência Celular , Hidrodinâmica , Retina/diagnóstico por imagem
15.
Mar Pollut Bull ; 194(Pt B): 115293, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37531664

RESUMO

This study aimed to investigate the sediment transport pathways and geochemical parameters in the Izmir Gulf to determine the heavily impacted areas by natural and anthropogenic parameters. The grain size trend analysis was used to determine sediment transport patterns and, statistical methods were employed to identify the sources and distribution of chemical elements in sediments. The main factors that were affecting the area were identified as lithogenic, anthropogenic, maritime traffic, biogenic and shipyard activities. The tannery industry (Cr), maritime traffic and shipyard/dock activities (Cu and Zn), road traffic run-offs (Pb and Zn), and untreated domestic waste discharges (TOC and S) were identified as the sources of metals. Contamination rankings based on metal concentrations indicated higher pollution levels in the Inner Gulf compared to the Central Gulf. Zinc and chromium were found to pose significant risks to benthic organisms. The pollutants tended to accumulate in deposition zones, following sediment transport directions.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Sedimentos Geológicos/química , Metais Pesados/análise , Hidrodinâmica , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Medição de Risco
16.
Environ Sci Pollut Res Int ; 30(31): 77642-77656, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37261689

RESUMO

With the development of the city, people pay more attention to the ecological construction of the city. The objective of this work was to study the effect of artificial lakes on hydrodynamic conditions in urban drainage systems. With Arcgis and the advantage of SWMM in analyzing the impact of the rainfall process on urban runoff, the urban flooding model of "pipe network + river network + artificial lake" was established in the study area. Two scenarios were set up with and without the presence of artificial lakes, and comparative analyses were conducted under the different intensities of rainfall (0.5a, 1a, 2a, 5a, 10a, 20a). The results show that under certain rainfall conditions, the presence of the artificial lake increases the peak flow and rate of upstream streams and decreases the flow and rate of downstream streams in the regional drainage system. The duration of the peak flow rate in the upstream channel increases, and the flow rate curve becomes flat during the confluence; the flow rate in the downstream section decreases, and the magnitude of the peak flow rate change decreases, and a more obvious horizontal section appears. The time of peak occurrence in the downstream river is earlier. The hydrodynamic impact on the downstream channel is more significant. The improvement of hydrodynamic conditions of the drainage system by the artificial lake helps to optimize the layout of low impact development (LID) measures in the study area and also guides ecological construction in other cities.


Assuntos
Desenvolvimento Econômico , Hidrodinâmica , Lagos , Humanos , China , Cidades , Chuva , Movimentos da Água
17.
Mar Pollut Bull ; 193: 115220, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37390625

RESUMO

Modeling fecal contamination in water bodies is of importance for microbiological risk assessment and management. This study investigated the transport of fecal coliform (e.g., up to 2.1 × 106 CFU/100 ml at the Zhongshan Bridge due to the main point source from the Xinhai Bridge) in the Danshuei River estuarine system, Taiwan with the main focus on assessing model uncertainty due to three relevant parameters for the microbial decay process. First, a 3D hydrodynamic-fecal coliform model (i.e., SCHISM-FC) was developed and rigorously validated against the available data of water level, velocity, salinity, suspended sediment and fecal coliform measured in 2019. Subsequently, the variation ranges of decay reaction parameters were considered from several previous studies and properly determined using the Monte Carlo simulations. Our analysis showed that the constant ratio of solar radiation (α) as well as the settling velocity (vs) had the normally-distributed variations while the attachment fraction of fecal coliform bacteria (Fp) was best fitted by the Weibull distribution. The modeled fecal coliform concentrations near the upstream (or downstream) stations were less sensitive to those parameter variations (see the smallest width of confidence interval about 1660 CFU/100 ml at the Zhongzheng Bridge station) due to the dominant effects of inflow discharge (or tides). On the other hand, for the middle parts of Danshuei River where complicated hydrodynamic circulation and decay reaction occurred, the variations of parameters led to much larger uncertainty in modeled fecal coliform concentration (see a wider confidence interval about 117,000 CFU/100 ml at the Bailing Bridge station). Overall, more detailed information revealed in this study would be helpful while the environmental authority needs to develop a proper strategy for water quality assessment and management. Owing to the uncertain decay parameters, for instance, the modeled fecal coliform impacts at Bailing Bridge over the study period showed a 25 % difference between the lowest and highest concentrations at several moments. For the detection of pollution occurrence, the highest to lowest probabilities for a required fecal coliform concentration (e.g., 260,000 CFU/100 ml over the environmental regulation) at Bailing Bridge was possibly greater than three.


Assuntos
Monitoramento Ambiental , Hidrodinâmica , Monitoramento Ambiental/métodos , Incerteza , Enterobacteriaceae , Rios/microbiologia , Bactérias Gram-Negativas , Fezes/microbiologia , Microbiologia da Água
18.
Environ Sci Pollut Res Int ; 30(28): 72782-72792, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37178289

RESUMO

Hydrodynamic cavitation (HC) was a kind of advanced oxidation mode. There were defects in the common HC devices, such as high energy consumption, low efficiency, and easy plugging. In order to effectively utilize HC, it was urgent to research new HC devices and used them together with other traditional water treatment methods. Ozone was widely used as a water treatment agent that does not produce harmful by-products. Sodium hypochlorite (NaClO) was efficient and cheap, but too much chlorine will be harmful to water. The combination of ozone and NaClO with the HC device of propeller orifice plate can improve the dissolution and utilization rate of ozone in wastewater, reduce the use of NaClO, and avoid the generation of residual chlorine. The degradation rate reached 99.9% when the mole ratio γ of NaClO to ammonia nitrogen (NH3-N) was 1.5 and the residual chlorine was near zero. As for the degradation rate of NH3-N or COD of actual river water and real wastewater after biological treatment, the ideal mole ratio γ was also 1.5 and the ideal O3 flow rates were 1.0 L/min. The combined method has been preliminarily applied to actual water treatment and was expected to be used in more and more scenarios.


Assuntos
Amônia , Ozônio , Purificação da Água , Amônia/análise , Amônia/química , Cloro , Hidrodinâmica , Nitrogênio , Águas Residuárias
19.
Bioresour Technol ; 380: 129094, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37100295

RESUMO

Microalgae are promising alternatives to mitigate atmospheric CO2 owing to their fast growth rates, resilience in the face of adversity and ability to produce a wide range of products, including food, feed supplements, chemicals, and biofuels. However, to fully harness the potential of microalgae-based carbon capture technology, further advancements are required to overcome the associated challenges and limitations, particularly with regards to enhancing CO2 solubility in the culture medium. This review provides an in-depth analysis of the biological carbon concentrating mechanism and highlights the current approaches, including species selection, optimization of hydrodynamics, and abiotic components, aimed at improving the efficacy of CO2 solubility and biofixation. Moreover, cutting-edge strategies such as gene mutation, bubble dynamics and nanotechnology are systematically outlined to elevate the CO2 biofixation capacity of microalgal cells. The review also evaluates the energy and economic feasibility of using microalgae for CO2 bio-mitigation, including challenges and prospects for future development.


Assuntos
Dióxido de Carbono , Microalgas , Hidrodinâmica , Biocombustíveis , Biomassa
20.
Comput Biol Med ; 156: 106720, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36878124

RESUMO

Endovascular treatment of intracranial aneurysms with flow diverters (FD) has become one of the most promising interventions. Due to its woven high-density structure they are particularly applicable for challenging lesions. Although several studies have already conducted realistic hemodynamic quantification of the FD efficacy, a comparison with morphologic post-interventional data is still missing. This study analyses the hemodynamics of ten intracranial aneurysm patients treated with a novel FD device. Based on pre- and post-interventional 3D digital subtraction angiography image data, patient-specific 3D models of both treatment states are generated applying open source threshold-based segmentation methods. Using a fast virtual stenting approach, the real stent positions available in the post-interventional data are virtually replicated and both treatment scenarios were characterized using image-based blood flow simulations. The results show FD-induced flow reductions at the ostium by a decrease in mean neck flow rate (51%), inflow concentration index (56%) and mean inflow velocity (53%). Intraluminal reductions in flow activity for time-averaged wall shear stress (47%) and kinetic energy (71%) are present as well. However, an intra-aneurysmal increase in flow pulsatility (16%) for the post-interventional cases can be observed. Patient-specific FD simulations demonstrate the desired flow redirection and activity reduction inside the aneurysm beneficial for thrombosis formation. Differences in the magnitude of hemodynamic reduction exist over the cardiac cycle which may be addressed in a clinical setting by anti-hypertensive treatment in selected cases.


Assuntos
Aneurisma Intracraniano , Humanos , Hemodinâmica/fisiologia , Stents/efeitos adversos , Imageamento Tridimensional , Hidrodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA