Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(24)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38139280

RESUMO

Synthesis, the complete 1H- and 13C-NMR assignments, and the long-range C,H coupling constants (nJC,H) of some hydrogen-deficient carbazolequinones, assessed by a J-HMBC experiment, are reported. In these molecules, the protons, used as entry points for assignments, are separated by several bonds with non-protonated atom carbons. Therefore, the use of long-range NMR experiments for the assignment of the spectra is mandatory; we used HSQC and HMBC. On the other hand, the measured heteronuclear (C,H) coupling constants 2J to 5J) allow us to choose the value of the long-range delay used in the HMBC experiment less arbitrarily in order to visualize a desired correlation in the spectrum. The chemical shifts and the coupling constant values can be used as input for assignments in related chemical structures.


Assuntos
Carbono , Prótons , Espectroscopia de Ressonância Magnética , Carbono/química , Hidrogênio/química , Imageamento por Ressonância Magnética
2.
Biotechnol Adv ; 69: 108262, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37758024

RESUMO

Biomass is regarded as the only carbon-containing renewable energy source and has performed an increasingly important role in the gradual substitution of conventional fossil energy, which also contributes to the goals of carbon neutrality. In the past decade, the academic field has paid much greater attention to the development of biomass pyrolysis technologies. However, most biomass conversion technologies mainly derive from the fossil fuel industry, and it must be noticed that the large element component difference between biomass and traditional fossil fuels. Thus, it's necessary to develop biomass directional pyrolysis technology based on the unique element distribution of biomass for realizing enrichment target element (i.e., element economy). This article provides a broad review of biomass directional pyrolysis to produce high-quality fuels, chemicals, and carbon materials based on element economy. The C (carbon) element economy of biomass pyrolysis is realized by the production of high-performance carbon materials from different carbon sources. For efficient H (hydrogen) element utilization, high-value hydrocarbons could be obtained by the co-pyrolysis or catalytic pyrolysis of biomass and cheap hydrogen source. For improving the O (oxygen) element economy, different from the traditional hydrodeoxygenation (HDO) process, the high content of O in biomass would also become an advantage because biomass is an appropriate raw material for producing oxygenated liquid additives. Based on the N (nitrogen) element economy, the recent studies on preparing N-containing chemicals (or N-rich carbon materials) are reviewed. Moreover, the feasibility of the biomass poly-generation industrialization and the suitable process for different types of target products are also mentioned. Moreover, the enviro-economic assessment of representative biomass pyrolysis technologies is analyzed. Finally, the brief challenges and perspectives of biomass pyrolysis are provided.


Assuntos
Carbono , Pirólise , Biomassa , Carbono/química , Biocombustíveis , Hidrogênio/química , Catálise
3.
Chemosphere ; 337: 139367, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37414294

RESUMO

Hydrogen is recognized as a critical substance for diversifying the global energy supply, providing new economic opportunities and realizing a carbon-free energy sector. In the current study, a life cycle assessment is conducted on a photoelectrochemical hydrogen production process of a newly developed photoelectrochemical reactor. With a photoactive electrode area of 870 cm2, the hydrogen production rate of the reactor is 47.1 µg/s while operating with the energy and exergy efficiencies of 6.3% and 6.31%, respectively. For a Faradaic efficiency of 96%, the produced current density is evaluated as 3.15 mA/cm2. A comprehensive study is conducted for a cradle-to-gate life cycle assessment of the proposed hydrogen photoelectrochemical production system. The life cycle assessment results of the proposed photoelectrochemical system are further evaluated within a comparative analysis by considering a total of four key hydrogen generation processes, namely steam-methane reforming, photovoltaics-based and wind electricity-driven proton exchange membrane water electrolysis and the current photoelectrochemical system and studying five environmental impact categories. The global warming potential of hydrogen production via the proposed photoelectrochemical cell is evaluated as 1.052 kg CO2 equivalent per kg of produced hydrogen. In the normalized comparative life cycle assessment results, the PEC-based hydrogen production is found to be the most nature-friendly option among the considered pathways.


Assuntos
Vapor , Água , Água/química , Meio Ambiente , Eletrólise/métodos , Hidrogênio/química
4.
Carbohydr Polym ; 298: 120104, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36241281

RESUMO

To evaluate cellulose interactions with water, 1H->13C polarization transfer kinetics during Variable Contact Time CP-MAS NMR spectroscopy were studied and modelled using cellulose of different origins. The increase in the temporal resolution of the plot relating signal intensity to contact-time made it possible to compare different physical models for use in fitting the kinetic curve. These models involve combinations of variables, such as proton spin diffusions, that require a better understanding of their physicochemical and structural bases. To that end, hydrogen interactions were modulated by adding water, first by varying cellulose water content, second by exchanging hydroxyl protons with D2O, and last by varying the spinning rate. The results demonstrate that this approach makes it possible to probe interactions of polysaccharides with structural water, as well as to follow the evolution of the proton-proton interactions during hydration through spin diffusion times.


Assuntos
Celulose , Prótons , Celulose/química , Hidrogênio/química , Cinética , Polissacarídeos/química , Água/química
5.
J Phys Chem A ; 126(44): 8305-8314, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36300359

RESUMO

The multi-structural approximation with torsional anharmonicity (MS-T) method and its variants have been widely used for calculating conformational-rovibrational partition functions of large molecules. The present work aimed to propose a systematic method to assess and explain the performance of various variants of the MS-T method. First, we proposed the simplest variant MS-T(2NN) (two nearest neighborhood torsions are coupled) and systematically validated it for large alkanes n-CnH2n+2 (n = 6-10) and their transition states of hydrogen abstraction reactions. Second, we proposed a metric-based method to explain the underlying reason for the good performance of MS-T(2NN)─it includes the torsional conformers that have dominant contributions to the partition function calculations. These conformers are closer to the lowest-energy conformer in the space of dihedral and energy metrics. Third, the same observation and explanation apply to the other two variants, MS-2DT (any two torsions are coupled) and MS-3DT (any three torsional are coupled), which contain increasingly more torsional conformers than MS-T(2NN) but are subsets of the complete set of torsional conformers considered by the MS-T method. Overall, the present method provides a mathematically rigorous and computationally effective diagnosis tool to assess various MS-T methods dealing with the torsional anharmonicity of large molecules in the partition function calculation.


Assuntos
Hidrogênio , Termodinâmica , Conformação Molecular , Hidrogênio/química
6.
J Chem Phys ; 157(5): 054502, 2022 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-35933202

RESUMO

Using our recently developed dynamic Monte Carlo (MC) method [Nagai et al., J. Chem. Phys. 156, 154506 (2022)], we investigated the global diffusion of hydrogen molecules over structural heterogeneities of polymer electrolyte membranes in fuel cells. The three-dimensional position-dependent free energies and the diffusion constants of the hydrogen molecules, required by the present dynamic MC calculations, were taken from our previous study [Nagai et al., J. Chem. Phys. 156, 044507 (2022)] and newly evaluated in this work, respectively. The calculations enabled evaluating the hydrogen dynamics over long-time scales, including global diffusion constants. Based on the calculated global diffusion constants and free energies, the permeability of hydrogen molecules was estimated via the solubility-diffusion model. The estimated values were in good agreement with the reported experimental data, thus validating the present methodology. The analysis of the Monte Carlo trajectories indicated that the main permeation paths are located in the polymer and interfacial phases, although the water phase may make a non-negligible contribution to mass transport.


Assuntos
Hidrogênio , Simulação de Dinâmica Molecular , Difusão , Hidrogênio/química , Método de Monte Carlo , Polímeros , Água/química
7.
Int J Biol Macromol ; 193(Pt B): 1937-1951, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34752795

RESUMO

Alarming environmental impacts have been resulted across the globe due to the recovery and consumption of fossil fuels. The elevated global carbon footprint has paved the way to an alternative to combat the prevalent pollution. On the other hand, the fossil-based plastics produced from the byproducts of petroleum remain intact in the environment leading to pollution. Fossil abated bioproducts are in high demand due to the increase in pollution. This call to utilize feedstock for simultaneous production of biologically useful products through carbon capture utilisation where the leftover carbon-rich substrate is converted into usable chemicals like bioplastics, methanol, urea and various other industrially essential components. The present review extensively focuses on the research and economic perspectives of an integrated biorefinery and addresses technical breaches, bottlenecks, and efficient strategies for the simultaneous production of biohydrogen and polyhydroxyalkanoates.


Assuntos
Hidrogênio/química , Hidrogênio/economia , Poli-Hidroxialcanoatos/química , Poli-Hidroxialcanoatos/economia , Biocombustíveis/economia , Biomassa , Carbono/química , Meio Ambiente , Poluição Ambiental/economia , Fósseis , Metanol/química , Petróleo , Plásticos/química , Plásticos/economia
8.
Appl Biochem Biotechnol ; 193(3): 791-806, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33184765

RESUMO

In this study, we present a techno-economic analysis for integrating an electrochemical reactor into a lignocellulosic biorefinery for the purpose of converting biorefinery lignin to higher-value industrial chemicals with co-generation of hydrogen. We consider how the electrochemical reactor impacts the manufacturing costs for producing biofuel and determine a break-even value for the lignin oxidation product stream, which is the minimum lignin conversion product stream value that renders the cost to produce biofuel the same as in the typical biorefinery concept. We conclude that at low extents of lignin conversion, the break-even product stream value is likely too high for the process to be feasible. However, at higher extents of lignin conversion, the break-even product stream value may be between $1.00 and $2.00/kg, depending on capital cost and other manufacturing costs like depreciation. Potential markets for the biomass conversion products include resin manufacturing, where the products would compete with petroleum-derived resin precursors.


Assuntos
Biocombustíveis , Técnicas Eletroquímicas , Hidrogênio/química , Lignina/química
10.
Nature ; 587(7832): 157-161, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33087927

RESUMO

Single-particle electron cryo-microscopy (cryo-EM) is a powerful method for solving the three-dimensional structures of biological macromolecules. The technological development of transmission electron microscopes, detectors and automated procedures in combination with user-friendly image processing software and ever-increasing computational power have made cryo-EM a successful and expanding technology over the past decade1. At resolutions better than 4 Å, atomic model building starts to become possible, but the direct visualization of true atomic positions in protein structure determination requires much higher (better than 1.5 Å) resolution, which so far has not been attained by cryo-EM. The direct visualization of atom positions is essential for understanding the mechanisms of protein-catalysed chemical reactions, and for studying how drugs bind to and interfere with the function of proteins2. Here we report a 1.25 Å-resolution structure of apoferritin obtained by cryo-EM with a newly developed electron microscope that provides, to our knowledge, unprecedented structural detail. Our apoferritin structure has almost twice the 3D information content of the current world record reconstruction (at 1.54 Å resolution3). We can visualize individual atoms in a protein, see density for hydrogen atoms and image single-atom chemical modifications. Beyond the nominal improvement in resolution, we also achieve a substantial improvement in the quality of the cryo-EM density map, which is highly relevant for using cryo-EM in structure-based drug design.


Assuntos
Apoferritinas/química , Apoferritinas/ultraestrutura , Microscopia Crioeletrônica/instrumentação , Microscopia Crioeletrônica/normas , Hidrogênio/química , Microscopia Crioeletrônica/métodos , Desenho de Fármacos , Humanos , Modelos Moleculares , Controle de Qualidade
11.
Molecules ; 25(16)2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32824686

RESUMO

In the present study, the effect of 2H/1H isotopic exchange in hydrogen bonds between nitrogenous base pairs on occurrence and open states zones dynamics is investigated. These processes are studied using mathematical modeling, taking into account the number of open states between base pairs. The calculations of the probability of occurrence of open states in different parts of the gene were done depending on the localization of the deuterium atom. The mathematical modeling study demonstrated significant inequality (dependent on single 2H/1H replacement in DNA) among three parts of the gene similar in length of the frequency of occurrence of the open states. In this paper, the new convenient approach of the analysis of the abnormal frequency of open states in different parts of the gene encoding interferon alpha 17 was presented, which took into account both rising and decreasing of them that allowed to make a prediction of the functional instability of the specific DNA regions. One advantage of the new algorithm is diminishing the number of both false positive and false negative results in data filtered by this approach compared to the pure fractile methods, such as deciles or quartiles.


Assuntos
Algoritmos , DNA/química , Hidrogênio/química , Interferon-alfa/química , Pareamento de Bases , DNA/genética , Humanos , Ligação de Hidrogênio , Interferon-alfa/genética , Modelos Moleculares , Conformação de Ácido Nucleico
12.
J Radiol Prot ; 40(3): 774-789, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32503019

RESUMO

In order to shield neutron and gamma rays efficiently, a multilayer model is designed with metal hydrides and heavy metals and is analysed based on Monte Carlo simulations. In terms of shielding performance, the hydrogen in metal hydrides acts as a moderator to slow down the neutron energy and heavy metals are good for absorbing gamma rays. A simulation and calculational analysis are carried out with various parameters such as spectrum change, shield thickness, and number of multilayers. In addition, the rate of DPA (displacement per atom) is analysed to estimate both the lifetime and radiation resistance with the MCNP code. From lots of simulations, ZrH2 and W couples are the best candidate especially for shielding gamma rays, while TiH2 with W is good for neutron shielding. The concept of multilayer metal hydride such as TiH2 and ZrH2 coupled with W could be one of best combinations to shield both neutron and gamma-rays in many nuclear facilities such as nuclear reactor, fusion reactor and other applications.


Assuntos
Hidrogênio/química , Metais Pesados/química , Proteção Radiológica/instrumentação , Simulação por Computador , Raios gama , Método de Monte Carlo , Nêutrons
13.
J Phys Chem Lett ; 11(14): 5655-5660, 2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32453582

RESUMO

Theoretical models aimed at describing magic-angle-spinning (MAS) dynamic nuclear polarization (DNP) NMR have great potential in facilitating the in silico design of DNP polarizing agents and formulations. These models must typically face a trade-off between the accuracy of a strict quantum mechanical description and the need for using realistically large spin systems, for instance, using phenomenological models. Here, we show that the use of aggressive state-space restrictions and an optimization strategy allows full-scale ab initio MAS-DNP simulations of spin systems containing thousands of nuclei. Our simulations are shown to reproduce experimental DNP enhancements quantitatively, including their MAS rate dependence, for both frozen solutions and solid materials. They also reveal the importance of a previously unrecognized structural feature found in some polarizing agents that helps minimize the sensitivity losses imposed by the spin diffusion barrier.


Assuntos
Simulação por Computador , Modelos Químicos , Espectroscopia de Prótons por Ressonância Magnética , Hidrogênio/química , Isótopos/química , Simulação de Dinâmica Molecular , Método de Monte Carlo , Silício/química
14.
Int J Mol Sci ; 21(5)2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32164330

RESUMO

Radiolysis of biomolecules by fast ions has interest in medical applications and astrobiology. The radiolysis of solid D-valine (0.2-2 µm thick) was performed at room temperature by 1.5 MeV H+, He+, N+, and 230 MeV S15+ ion beams. The samples were prepared by spraying/dropping valine-water-ethanol solution on ZnSe substrate. Radiolysis was monitored by infrared spectroscopy (FTIR) through the evolution of the intensity of the valine infrared 2900, 1329, 1271, 948, and 716 cm-1 bands as a function of projectile fluence. At the end of sample irradiation, residues (tholins) presenting a brownish color are observed. The dependence of the apparent (sputtering + radiolysis) destruction cross section, σd, on the beam stopping power in valine is found to follow the power law σd = aSen, with n close to 1. Thus, σd is approximately proportional to the absorbed dose. Destruction rates due to the main galactic cosmic ray species are calculated, yielding a million year half-life for solid valine in space. Data obtained in this work aim a better understanding on the radioresistance of complex organic molecules and formation of radioproducts.


Assuntos
Valina/química , Radiação Cósmica , Hélio/química , Hidrogênio/química , Método de Monte Carlo , Nitrogênio/química , Compostos de Selênio/metabolismo , Espectrofotometria Infravermelho , Compostos de Zinco/metabolismo
15.
PLoS One ; 15(3): e0227368, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32130215

RESUMO

The idea that households produce and consume their own energy, that is, energy self-sufficiency at a very local level, captures the popular imagination and commands political support across parts of Europe. This paper investigates the technical and economic feasibility of household energy self-sufficiency in Switzerland, which can be seen as representative for other regions with a temperate climate, by 2050. We compare sixteen cases that vary across four dimensions: household type, building type, electricity demand reduction, and passenger vehicle use patterns. We assume that photovoltaic (PV) electricity supplies all energy, which implies a complete shift away from fossil fuel based heating and internal combustion engine vehicles. Two energy storage technologies are considered: short-term storage in lithium-ion batteries and long-term storage with hydrogen, requiring an electrolyzer, storage tank, and a fuel cell for electricity conversion. We examine technological feasibility and total system costs for self-sufficient households compared to base cases that rely on fossil fuels and the existing power grid. PV efficiency and available rooftop/facade area are most critical with respect to the overall energy balance. Single-family dwellings with profound electricity demand reduction and urban mobility patterns achieve self-sufficiency most easily. Multi-family buildings with conventional electricity demand and rural mobility patterns can only be self-sufficient if PV efficiency increases, and all of the roof plus most of the facade can be covered with PV. All self-sufficient cases are technically feasible but more expensive than fully electrified grid-connected cases. Self-sufficiency may even become cost-competitive in some cases depending on storage and fossil fuel prices. Thus, if political measures improve their financial attractiveness or individuals decide to shoulder the necessary investments, self-sufficient buildings may start to become increasingly prevalent.


Assuntos
Poluição do Ar/prevenção & controle , Clima , Indústria da Construção/métodos , Fontes de Energia Elétrica/economia , Semicondutores/economia , Automóveis/economia , Mudança Climática , Indústria da Construção/economia , Indústria da Construção/tendências , Fontes de Energia Elétrica/tendências , Eletrólise/economia , Estudos de Viabilidade , Combustíveis Fósseis/efeitos adversos , Humanos , Hidrogênio/química , Hidrogênio/economia , Lítio/química , Lítio/economia , Densidade Demográfica , Suíça
16.
ACS Sens ; 5(4): 978-983, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32037801

RESUMO

Due to the changing global climate, the role of renewable energy sources is of increasing importance. Hydrogen can play an important role as an energy carrier in the transition from fossil fuels. However, to ensure safe operations, a highly reliable and sensitive hydrogen sensor is required for leakage detection. We present a sensor design with purely optical readout that reliably operates between 50 and 100,000 ppm. The building block of the sensor is a reactive sample that consists of a layered structure with palladium nanodisks as the top layer and changes its optical properties depending on the external hydrogen partial pressure. We use a fiber-coupled setup consisting of an LED, a sensor body containing the reactive sample, and a photodiode to probe and read out the reflectance of the sample. This allows separation of the explosive detection area from the operating electronics and thus comes with an inherent protection against hydrogen ignition by electronic malfunctions. Our results prove that this sensor design provides a large detection range, fast response times, and enhanced robustness against aging compared to conventional thin-film technologies. Especially, the simplicity, feasibility, and scalability of the presented approach yield a holistic approach for industrial hydrogen monitoring.


Assuntos
Técnicas Biossensoriais/métodos , Hidrogênio/química , Paládio/química , Ressonância de Plasmônio de Superfície/métodos , Custos e Análise de Custo
17.
N Biotechnol ; 55: 12-18, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-31550548

RESUMO

The carrying capacity of the planet is being exceeded, and there is an urgent need to bring forward revolutionary approaches, particularly in terms of energy supply, carbon emissions and nitrogen inputs into the biosphere. Hydrogen gas, generated by means of renewable energy through water electrolysis, can be a platform molecule to drive the future bioeconomy and electrification in the 21st century. The potential to use hydrogen gas in microbial metabolic processes is highly versatile, and this opens a broad range of opportunities for novel biotechnological developments and applications. A first approach concerns the central role of hydrogen gas in the production of bio-based building block chemicals using the methane route, thus, bypassing the inherent low economic value of methane towards higher-value products. Second, hydrogen gas can serve as a key carbon-neutral source to produce third-generation proteins, i.e. microbial protein for food applications, whilst simultaneously enabling carbon capture and nutrient recovery, directly at their point of emission. Combining both approaches to deal with the intermittent nature of renewable energy sources maximises the ability for efficient use of renewable resources.


Assuntos
Biocombustíveis/economia , Alimentos/economia , Hidrogênio/química , Energia Renovável/economia , Proteínas de Bactérias/metabolismo , Metano/metabolismo
18.
J Am Soc Mass Spectrom ; 30(6): 1102-1114, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30980382

RESUMO

Rapid, solution-phase hydrogen/deuterium exchange (HDX) coupled with mass spectrometry (MS) is demonstrated as a means for distinguishing small-molecule metabolites. HDX is achieved using capillary vibrating sharp-edge spray ionization (cVSSI) to allow sufficient time for reagent mixing and exchange in micrometer-sized droplets. Different compounds are observed to incorporate deuterium with varying efficiencies resulting in unique isotopic patterns as revealed in the MS spectra. Using linear regression techniques, parameters representing contribution to exchange by different hydrogen types can be computed. In this proof-of-concept study, the exchange parameters are shown to be useful in the retrodiction of the amount of deuterium incorporated within different compounds. On average, the exchange parameters retrodict the exchange level with ~ 2.2-fold greater accuracy than treating all exchangeable hydrogens equally. The parameters can be used to produce hypothetical isotopic distributions that agree (± 16% RMSD) with experimental measurements. These initial studies are discussed in light of their potential value for identifying challenging metabolite species.


Assuntos
Medição da Troca de Deutério/instrumentação , Metabolômica/instrumentação , Deutério/química , Medição da Troca de Deutério/economia , Desenho de Equipamento , Hidrogênio/química , Espectrometria de Massas/economia , Espectrometria de Massas/instrumentação , Metabolômica/economia , Fatores de Tempo
19.
J Pharm Biomed Anal ; 165: 366-373, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30580085

RESUMO

Within the pharmaceutical industry, the determination of residual solvents by Gas Chromatography Flame Ionization Detection (GC-FID) is a highly utilized analytical test that often employs helium (He) as the carrier gas. However, many do not realize that helium is a non-renewable resource that will eventually become progressively more difficult to source. In recent years, analytical chemists are increasingly adopting hydrogen (H2) in place of helium for routine GC analysis. In this study, a simple and efficient generic/universal GC-FID method using H2 as the carrier gas has been developed with the capability of baseline resolution of over 30 of the most commonly used solvents in development and manufacturing with a method run time of less than eight minutes. The use of this method for the separation and analysis of solvents within a pharmaceutical manufacturing process is demonstrated with additional method validation data presented using five different diluents as a means to increase flexibility for the chromatographer. Furthermore, it is the recommendation of the authors that the current compendia for residual solvent analysis be updated to allow for hydrogen as a carrier gas. The similarity between He and H2 observed within this study supports the use of hydrogen as a suitable replacement for helium, and an update of the EU and USP compendia for residual solvent analysis should be made to reflect this.


Assuntos
Cromatografia Gasosa/métodos , Ionização de Chama/métodos , Hidrogênio/química , Solventes/análise , Indústria Farmacêutica/métodos , Solventes/química
20.
PLoS One ; 13(10): e0205371, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30304050

RESUMO

Helium, a minor component of natural gas and radioactive minerals, is most commonly used as a carrier in gas chromatography-mass spectrometry (GC-MS). Its scarcity leads to limited availability and higher costs. In this experiment, hydrogen from a safe source of a hydrogen generator was tested as a substitutive carrier gas for the detection of adulterant in traditional Chinese medicine (TCM) and food supplements by GC-MS analysis. We found that the limits of detection (LODs) of using hydrogen were from 10 to 1000 µg/g. The levels of LODs tested among 170 drugs remain the same whether hydrogen or helium was used as a carrier gas with the exception of 7 drugs-benzbromarone, estradiol benzoate, bezafibrate, mefenamic acid, oxymetholone, piperidenafil and cetilistat. The real sample analysis results using hydrogen were as satisfactory as those using helium. In addition, the retention time was shortened after the chromatographic performance was optimized. In summary, it is worth considering hydrogen as a carrier gas due to its affordable costs, energy efficiency, carbon reduction and chromatographic advantages to detect adulterated drugs in TCM and dietary supplement using GC-MS.


Assuntos
Suplementos Nutricionais/análise , Contaminação de Medicamentos/prevenção & controle , Medicamentos de Ervas Chinesas/análise , Hidrogênio/química , Clorzoxazona/análise , Contaminação de Medicamentos/economia , Cromatografia Gasosa-Espectrometria de Massas/métodos , Hélio/química , Hélio/economia , Humanos , Hidrogênio/economia , Limite de Detecção , Oximetolona/análise , Pirimidinonas/análise , Citrato de Sildenafila/análise , Sulfonas/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA