Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
AAPS PharmSciTech ; 25(5): 116, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769223

RESUMO

Oral dispersible films have received broad interest due to fast drug absorption and no first-path metabolism, leading to high bioavailability and better patient compliance. Saxagliptin (SXG) is an antidiabetic drug that undergoes first-path metabolism, resulting in a less active metabolite, so the development of SXG oral dispersible films (SXG-ODFs) improves SXG bioavailability. The formula optimisation included a response surface experimental design and the impact of three formulation factors, the type and concentration of polymer and plasticiser concentration on in-vitro disintegration time and folding endurance. Two optimised SXG-ODFs prepared using either polyvinyl alcohol (PVA) or hydroxypropyl methylcellulose were investigated. SXG-ODFs prepared with PVA demonstrated a superior rapid disintegration time, ranging from 17 to 890 s, with the fastest disintegration time recorded at 17 s. These short durations can be attributed to the hydrophilic nature of PVA, facilitating rapid hydration and disintegration upon contact with saliva. Additionally, PVA-based films displayed remarkable folding endurance, surpassing 200 folds without rupture, indicating flexibility and stability. The high tensile strength of PVA-based films further underscores their robust mechanical properties, with tensile strength values reaching up to 4.53 MPa. SXG exhibits a UV absorption wavelength of around 212 nm, posing challenges for traditional quantitative spectrophotometric analysis, so a polyaniline nanoparticles-based solid-contact screen-printed ion-selective electrode (SP-ISE) was employed for the determination of SXG release profile effectively in comparison to HPLC. SP-ISE showed a better real-time release profile of SXG-ODFs, and the optimised formula showed lower blood glucose levels than commercial tablets.


Assuntos
Adamantano , Compostos de Anilina , Dipeptídeos , Liberação Controlada de Fármacos , Nanopartículas , Álcool de Polivinil , Adamantano/química , Adamantano/análogos & derivados , Dipeptídeos/química , Dipeptídeos/farmacocinética , Dipeptídeos/administração & dosagem , Compostos de Anilina/química , Nanopartículas/química , Administração Oral , Álcool de Polivinil/química , Hipoglicemiantes/química , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/farmacocinética , Humanos , Derivados da Hipromelose/química , Resistência à Tração , Química Farmacêutica/métodos , Disponibilidade Biológica , Solubilidade , Eletrodos
2.
Chem Biodivers ; 21(5): e202301788, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38484132

RESUMO

Curcuma angustifolia Roxb. is a plant with medicinal potential, traditionally used to treat different diseases. The present study aimed to determine the antidiabetic activity of C. angustifolia rhizome in vitro and in silico. The methanolic extract of C. angustifolia rhizome was analyzed by FTIR and GC-MS to determine the phytochemicals present. The antidiabetic potential of the extract was evaluated by different assays in vitro. The extract inhibited both α-amylase and α-glucosidase enzymes and the glucose diffusion through the dialysis membrane in a concentration-dependent manner with IC50 values of 530.39±0.09, 293.75±0.11, and 551.74±0.3 µg/ml respectively. The methanolic extract also improved yeast cell's ability to take up glucose across plasma membranes and the adsorption of glucose. The findings were supported by molecular docking studies. The results showed that the methanol extract of C. angustifolia rhizome has significant antidiabetic activity and thus can be also studied to isolate the potential compound with antidiabetic activities.


Assuntos
Curcuma , Hipoglicemiantes , Metanol , Simulação de Acoplamento Molecular , Extratos Vegetais , Rizoma , alfa-Amilases , alfa-Glucosidases , Curcuma/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/isolamento & purificação , Rizoma/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/isolamento & purificação , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/metabolismo , alfa-Glucosidases/metabolismo , Metanol/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Relação Dose-Resposta a Droga , Glucose/metabolismo
3.
Comput Biol Chem ; 107: 107954, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37738820

RESUMO

Paederia foetida is valued for its folk medicinal properties. This research aimed to assess the acute toxicity, hypoglycemic and anti-hemostasis properties of the methanolic extract of P. foetida leaves (PFLE). Acute toxicity of PFLE was performed on a mice model. Hypoglycemic and anti-hemostasis properties of PFLE were investigated on normal and streptozotocin-induced mice models. Deep learning, molecular docking, density functional theory, and molecular simulation techniques were employed to understand the underlying mechanisms through in silico study. Oral administration of PFLE at a dosage of 300 µg/kg body weight (BW) showed no signs of toxicity. Treatment with PFLE (300 µg/kg/BW) for 14 days resulted in a hypoglycemic condition and a 30.47% increase in body weight. Additionally, PFLE mixed with blood exhibited a 44.6% anti-hemostasis effect. Deep learning predicted the inhibitory concentration (pIC50, nM) of Cleomiscosins against SGLT2 and FXa to be 7.478 and 6.017, respectively. Molecular docking analysis revealed strong binding interactions of Cleomiscosins with crucial residues of the target proteins, exhibiting binding energies of -8.2 kcal/mol and -7.1 kcal/mol, respectively. ADME/Tox predictions indicated favorable pharmacokinetic properties of Cleomiscosins, and DFT calculations of frontier molecular orbitals analyzed the stability and reactivity of these compounds. Molecular simulation dynamics, principal component analysis and MM-PBSA calculation demonstrated the stable, compact, and rigid nature of the protein-ligand complexes. The methanolic PFLE exhibited significant hypoglycemic and anti-hemostasis properties. Cleomiscosin may have inhibitory properties for the development of novel drugs to manage diabetes and thrombophilia in the near future.


Assuntos
Diabetes Mellitus , Trombofilia , Camundongos , Animais , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Simulação de Dinâmica Molecular , Trombofilia/tratamento farmacológico , Peso Corporal
4.
J Biochem Mol Toxicol ; 37(12): e23513, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37698485

RESUMO

Recently, there has been a lot of focus on the environmentally friendly, specifically plant-based, synthesis of nanoparticles. The extract of leaves from Andrographis alata (A. alata) was used in the current work as a reducing agent to create selenium nanoparticles (SeNPs), which will be used in biological applications (antibacterial, antioxidant and antidiabetic, anti-Alzheimer's and wound healing properties). As part of detailed characterization, the UV-Vis spectra showed an absorption peak at 274 nm with a size in the range of 55-75 nm were shown in morphological investigations using EDS, DLS and SEM analysis to have crystalline spherical-shaped structures. Against several harmful bacterial strains, SeNPs demonstrated a remarkable antibacterial effectiveness. The minimum inhibitory concentration (MIC) of synthesized SeNPs completely prevented the development of various pathogens. Furthermore, bio-reduced SeNPs showed high cholinesterase inhibition efficacy and good antipotential Alzheimer's. According to the current research, treatment with biosynthesized SeNPs stimulates faster wound healing in NIH3T3 murine fibroblast cell lines without cytotoxicity. Different in vitro biological experiments also showed that, when compared with the extract of A. alata, bio-reduced SeNPs had considerable antibacterial, antioxidant effects, antidiabetic, anti-Alzheimer's and wound healing. In general, the findings demonstrate the efficacy and prospective therapeutic uses of SeNPs.


Assuntos
Andrographis , Anti-Infecciosos , Nanopartículas , Selênio , Camundongos , Animais , Selênio/farmacologia , Selênio/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Células NIH 3T3 , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Nanopartículas/química , Antibacterianos/farmacologia , Antibacterianos/química , Antioxidantes/farmacologia , Antioxidantes/química , Cicatrização
5.
Appl Biochem Biotechnol ; 195(4): 2261-2281, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35796947

RESUMO

Antidiabetic polyherbal formulations (APH) are used in management of diabetes mellitus (DM). High glucose levels in DM are related to oxidative stress leading to its associated complications. Therefore, assessing antioxidant activity of various APH might unveil an antioxidant-rich formulation for management of DM and its associated complications. Subsequently selecting an antioxidant assessment method is a challenging aspect, considering various in vitro assays working with diverse mechanism of action. Therefore, present study aims to validate the sensitivity/capacity of different antioxidant assay, thereby assessing the antioxidant potential of 9-APH. Obtained results revealed the ABTS·+ values were higher compared to DPPH+ assay. I-9-HAE (DPPH+: IC50 53.31 µg/ml), NK-HAE (ABTS·+: IC50 2.71 µg/ml), and MN-HAE (FRAP and TAC) exhibited highest antioxidant capacity. A significant correlation was obtained between TPC-DPPH+ (r2: 0.8187****). Furthermore, three APH with better antiradical potential was chosen for various in vitro and in silico method, for validating scientific antidiabetic propensities. Among the tested extracts, I-9-HAE (α-amylase inhibition: IC50 831.84 µg/ml) and MN-HAE (α-glucosidase inhibition: IC50 558.64 µg/ml and antiglycation: IC50 883.74 µg/ml) have showed highest antihyperglycemic and antiglycation properties. Finally, the secondary-metabolites of selected APH were screened through literature search, Lipinski rule, ADMET, and ProTox-II. Subsequently, in molecular docking for the selected 9 secondary metabolites, highest binding affinity was observed in apigenin-7-glucuronide for DPPiv (- 9.6), GLP-1 (- 8.8), NADPH (- 8.7), and HSA (- 9.4). Thus, obtained result proposes synergistic interaction with high antioxidant potential of the selected 3-APH and can be considered an alternative for management of DM, where multiple secondary metabolites exert holistic biological effects. Furthermore, our study also provides data on sensitivity/capacity of different in vitro antioxidant assays.


Assuntos
Diabetes Mellitus , Inibidores de Glicosídeo Hidrolases , Humanos , Inibidores de Glicosídeo Hidrolases/química , Antioxidantes/farmacologia , Antioxidantes/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Simulação de Acoplamento Molecular , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , alfa-Amilases/química
6.
Biomolecules ; 12(12)2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36551260

RESUMO

The number of patients with type 2 diabetes mellitus (T2DM), which is mainly characterized by insulin resistance and insulin secretion deficiency, has been soaring in recent years. Accompanied by many other metabolic syndromes, such as cardiovascular diseases, T2DM represents a big challenge to public health and economic development. Peroxisome proliferator-activated receptor γ (PPARγ), a ligand-activated nuclear receptor that is critical in regulating glucose and lipid metabolism, has been developed as a powerful drug target for T2DM, such as thiazolidinediones (TZDs). Despite thiazolidinediones (TZDs), a class of PPARγ agonists, having been proven to be potent insulin sensitizers, their use is restricted in the treatment of diabetes for their adverse effects. Post-translational modifications (PTMs) have shed light on the selective activation of PPARγ, which shows great potential to circumvent TZDs' side effects while maintaining insulin sensitization. In this review, we will focus on the potential effects of PTMs of PPARγ on treating T2DM in terms of phosphorylation, acetylation, ubiquitination, SUMOylation, O-GlcNAcylation, and S-nitrosylation. A better understanding of PTMs of PPARγ will help to design a new generation of safer compounds targeting PPARγ to treat type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Hipoglicemiantes , PPAR gama , Processamento de Proteína Pós-Traducional , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , PPAR gama/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Tiazolidinedionas/efeitos adversos , Tiazolidinedionas/uso terapêutico , Resistência à Insulina , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Desenho de Fármacos , Terapia de Alvo Molecular
7.
Biomed Res Int ; 2022: 4303506, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36277886

RESUMO

Background. Chamaerops humilis L. var. argentea Andre is a plant widely spread in the region of Taza (North-East of Morocco); it is used in traditional phytotherapy against cancer, diabetes, inflammations, cardiovascular and respiratory diseases, and for the treatment of digestive disorders. Objective and Methods. The objective of our work is to contribute firstly, to the study of the in vitro antimitotic potential by the phytotest of Lepidium sativum and the evaluation of the in vitro antidiabetic activity of three enzymes (α-amylase, α-glucosidase, and ß-galactosidase) on nine aqueous and organic extracts prepared from the leaves of Chamaerops humilis. In addition, a correlation study was carried out on the chemical composition and the antimitotic and antidiabetic activities of Chamaerops humilis leaves. Then, we tested the acute toxicity of the decocted extract and the ethanolic extract. Results. The results of the antimitotic activity showed that the decocted extract showed a higher inhibitory activity than the other aqueous extracts (IC50 = 9.624 × 103 ± 95.97 µg/mL); for the organic extracts, the ethanolic extract and ethanolic macerated expressed the highest values for the cell growth inhibition test with an IC50 of 5.638 × 103 ± 22.61 and 5.599 × 103 ± 45.51 µg/mL with statistically nonsignificant difference. Regarding the antidiabetic activity, the decocted showed a higher inhibitory activity than the other aqueous extracts for α-amylase (IC50 = 1.781 · 105 ± 358.30 µg/mL), α-glucosidase (2.540 × 102 ± 3.14 µg/mL), and ß-galactosidase (7.118 × 102 ± 16.13 µg/mL); the ethanolic extract also revealed the highest inhibitory activity for α-amylase (IC50 = 8.902 × 103 ± 57.81 µg/mL), α-glucosidase (2.216 × 102 ± 1.39 µg/mL), and ß-galactosidase (2.003 × 102 ± 7.41 µg/mL). A strong correlation was recorded between the antimitic activity and the inhibitory capacity of ß-galactosidase and between these two activities and the chemical composition of Chamaerops humilis leaves. The acute toxicity study showed that the decocted and the ethanolic extract are weakly toxic with an LD50 greater than or equal to 5000 mg/kg. Conclusion. Chamaerops humilis could become a good source in traditional herbal medicine.


Assuntos
Antimitóticos , Arecaceae , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , alfa-Glucosidases , Extratos Vegetais/farmacologia , Extratos Vegetais/química , alfa-Amilases , beta-Galactosidase , Inibidores de Glicosídeo Hidrolases/química
8.
Int J Biol Macromol ; 208: 1106-1115, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35378159

RESUMO

Hovenia dulcis polysaccharides (HDPs) have a variety of important biological activities associated with potential applications in food engineering, pharmacy science, and health care. Herein, we isolated and purified polysaccharides from H. dulcis. Chemical composition analysis revealed that the purified polysaccharides (HDPs-2A) were composed of different molar ratios of mannose, Rha, GalA, GlcA, Glc, Gal, and Ara and had a molecular weight of 372.91 kDa. The structure of HDPs-2A was assessed by FT-IR, periodate oxidation, Smith degradation, methylation analysis, and NMR, allowing us to determine that the backbone of HDPs-2A is composed primarily of →5)-α-L-Araf-(1→, →5)-α-L-Araf-(1→, →3,5)-α-L-Araf-(1→, →6)-ß-D-Galp-(1→, →3,6)-ß-D-Galp-(1→, T-ß-D-Galp, →3)-ß-D-Galp-(1→, and T-α-D-Glcp. The results of atomic force microscopy (AFM) showed that HDPs-2A present an irregular polymer particle morphology in water. X-ray diffraction (XRD) results showed that HDPs-2A have a single crystal structure. Finally, we demonstrated that HDPs-2A have a good therapeutic effect on a rat model of type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Rhamnaceae , Animais , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Polissacarídeos/química , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Ratos , Espectroscopia de Infravermelho com Transformada de Fourier
9.
Pak J Pharm Sci ; 35(1): 15-21, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35221267

RESUMO

Reported high performance liquid chromatographic (HPLC) methods for estimating metformin hydrochloride (MET) and sitagliptin phosphate monohydrate (SIT) are either laborious or contain higher proportions of organic solvents in mobile phase, thus presenting exorbitant procedures. So, a rapid, significantly more economical and eco-friendly HPLC method for synchronized analysis of both drugs was aimed to develop and validate in current study. Analytical evaluation was executed on Shimadzou⌖ C18 column (250mm × 4.6mm, 5µm) using acidified water and methanol 60:40 (v/v) as mobile phase at a flow of 1mL/min; while peaks were detected at 260nm at 25°C. Resultant values of accuracy, precision, linearity, limit of detection (LOD), limit of quantification (LOQ), robustness and specificity depicted that the method was validated in accordance with the ICH Guidelines. The approximate retention time for MET and SIT were 1.96 and 3.70 min, correspondingly. The greenness score of the developed method was evaluated using AGREE software and was found better (0.81) as compared with the methods reported (<0.8). Conclusively, the developed method was time saving, economical, rapid, robust, rugged, precise, accurate and found to be applicable for simultaneous determination of MET and SIT in commercial tablets.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Química Verde/normas , Hipoglicemiantes/química , Metformina/química , Fosfato de Sitagliptina/química , Química Verde/métodos , Limite de Detecção , Reprodutibilidade dos Testes , Software
10.
Molecules ; 26(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34770958

RESUMO

Gymnema sylvestre (Retz.) Schult is a multi-purpose traditional medicine that has long been used for the treatment of various diseases. To discover the potential bioactive composition of G. sylvestre, a chemical investigation was thus performed. In this research, four new C21 steroidal glycosides sylvepregosides A-D (1-4) were isolated along with four known compounds, gymnepregoside H (5), deacetylkidjoladinin (6), gymnepregoside G (7) and gymnepregoside I (8), from the ethyl acetate fraction of G. sylvestre. The structures of the new compounds were established by extensive 1D and 2D nuclear magnetic resonance (NMR) spectra with mass spectroscopy data. Compounds 1-6 promoted glucose uptake by the range of 1.10- to 2.37-fold, respectively. Compound 1 showed the most potent glucose uptake, with 1.37-fold enhancement. Further study showed that compounds 1 and 5 could promote GLUT-4 fusion with the plasma membrane in L6 cells. The result attained in this study indicated that the separation and characterization of these compounds play an important role in the research and development of new anti-diabetic drugs and pharmaceutical industry.


Assuntos
Glucose/antagonistas & inibidores , Glicosídeos/farmacologia , Gymnema sylvestre/química , Hipoglicemiantes/farmacologia , Esteroides/farmacologia , Animais , Linhagem Celular , Indústria Farmacêutica , Glucose/metabolismo , Glicosídeos/química , Glicosídeos/isolamento & purificação , Hipoglicemiantes/química , Hipoglicemiantes/isolamento & purificação , Conformação Molecular , Ratos , Estereoisomerismo , Esteroides/química , Esteroides/isolamento & purificação
11.
Molecules ; 26(21)2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34771042

RESUMO

Type 2 diabetes mellitus has been a major health issue with increasing morbidity and mortality due to macrovascular and microvascular complications. The urgent need for improved methods to control hyperglycemic complications reiterates the development of innovative preventive and therapeutic treatment strategies. In this perspective, xanthone compounds in the pericarp of the mangosteen fruit, especially α-mangostin (MGN), have been recognized to restore damaged pancreatic ß-cells for optimal insulin release. Therefore, taking advantage of the robust use of nanotechnology for targeted drug delivery, we herein report the preparation of MGN loaded nanosponges for anti-diabetic therapeutic applications. The nanosponges were prepared by quasi-emulsion solvent evaporation method. Physico-chemical characterization of formulated nanosponges with satisfactory outcomes was performed with Fourier transform infra-red (FTIR) spectroscopy, differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). Zeta potential, hydrodynamic diameter, entrapment efficiency, drug release properties, and stability studies at stress conditions were also tested. Molecular docking analysis revealed significant interactions of α-glucosidase and MGN in a protein-ligand complex. The maximum inhibition by nanosponges against α-glucosidase was observed to be 0.9352 ± 0.0856 µM, 3.11-fold higher than acarbose. In vivo studies were conducted on diabetic rats and plasma glucose levels were estimated by HPLC. Collectively, our findings suggest that MGN-loaded nanosponges may be beneficial in the treatment of diabetes since they prolong the antidiabetic response in plasma and improve patient compliance by slowly releasing MGN and requiring less frequent doses, respectively.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores de Glicosídeo Hidrolases/farmacologia , Hipoglicemiantes/farmacologia , Nanoestruturas/química , Xantonas/farmacologia , Animais , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Tipo 2/metabolismo , Inibidores de Glicosídeo Hidrolases/síntese química , Inibidores de Glicosídeo Hidrolases/química , Hipoglicemiantes/síntese química , Hipoglicemiantes/química , Masculino , Simulação de Acoplamento Molecular , Estrutura Molecular , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley , Estreptozocina/administração & dosagem , Xantonas/síntese química , Xantonas/química , alfa-Glucosidases/metabolismo
12.
Molecules ; 26(20)2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34684851

RESUMO

The purpose of this study was to reuse cassava wastewater (CW) for scaled-up production, via the fermentation of prodigiosin (PG), and to conduct an evaluation of its bioactivities. PG was produced at the yield of high 6150 mg/L in a 14 L-bioreactor system, when the designed novel medium (7 L), containing CW and supplemented with 0.25% casein, 0.05% MgSO4, and 0.1% K2HPO4, was fermented with Serratia marcescens TNU01 at 28 °C in 8 h. The PG produced and purified in this study was assayed for some medical effects and showed moderate antioxidant, high anti-NO (anti-nitric oxide), and potential α-glucosidase inhibitory activities. Notably, PG was first reported as a novel effective α-glucosidase inhibitor with a low IC50 value of 0.0183 µg/mL. The commercial anti-diabetic drug acarbose was tested for comparison and had a lesser effect with a high IC50 value of 328.4 µg/mL, respectively. In a docking study, the cation form of PG (cation-PG) was found to bind to the enzyme α-glucosidase by interacting with two prominent amino acids, ASP568 and PHE601, at the binding site on the target enzyme, creating six linkages and showing a better binding energy score (-14.6 kcal/mol) than acarbose (-10.5 kcal/mol). The results of this work suggest that cassava wastewater can serve as a low-cost raw material for the effective production of PG, a potential antidiabetic drug candidate.


Assuntos
Inibidores de Glicosídeo Hidrolases/química , Prodigiosina/química , Serratia marcescens/química , Águas Residuárias/química , Acarbose/química , Antioxidantes/química , Reatores Biológicos , Fermentação/fisiologia , Hipoglicemiantes/química
13.
Molecules ; 26(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34208908

RESUMO

Diabetes mellitus is a multifactorial disease that affects both developing and developed countries and is a major public health concern. Many synthetic drugs are available in the market, which counteracts the associated pathologies. However, due to the propensity of side effects, there is an unmet need for the investigation of safe and effective drugs. This research aims to find a novel phytoconstituent having diminished action on blood glucose levels with the least side effects. Shikonin is a naturally occurring naphthoquinone dying pigment obtained by the roots of the Boraginaceae family. Besides its use as pigments, it can be used as an antimicrobial, anti-inflammatory, and anti-tumor agent. This research aimed to hypothesize the physicochemical and phytochemical properties of Shikonin's in silico interaction with protein tyrosine phosphate 1B, as well as it's in vitro studies, in order to determine its potential anti-diabetic impact. To do so, molecular docking experiments with target proteins were conducted to assess their anti-diabetic ability. Analyzing associations with corresponding amino acids revealed the significant molecular interactions between Shikonin and diabetes-related target proteins. In silico pharmacokinetics and toxicity profile of Shikonin using ADMET Descriptor, Toxicity Prediction, and Calculate Molecular Properties tools from Biovia Discovery Studio v4.5. Filter by Lipinski and Veber Rule's module from Biovia Discovery Studio v4.5 was applied to assess the drug-likeness of Shikonin. The in vitro studies exposed that Shikonin shows an inhibitory potential against the PTP1B with an IC50 value of 15.51 µM. The kinetics studies revealed that it has a competitive inhibitory effect (Ki = 7.5 M) on the enzyme system, which could be useful in the production of preventive and therapeutic agents. The findings of this research suggested that the Shikonin could be used as an anti-diabetic agent and can be used as a novel source for drug delivery.


Assuntos
Inibidores Enzimáticos/química , Hipoglicemiantes/química , Simulação de Acoplamento Molecular , Naftoquinonas/química , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Regulação Alostérica , Humanos , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 1/química , Relação Estrutura-Atividade
14.
Int J Biol Macromol ; 181: 1224-1230, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-33989689

RESUMO

Proteins and peptides are widely used in various areas including pharmaceutical, health, food, textile and biofuel industries. At present, pharmaceutical proteins and peptides have attracted the attention of many researchers. These types of drugs are superior to chemical drugs in many ways so that every year the number of drugs with a protein or peptide moiety is increasing. Due to high performance and low side effects, the demand for these drugs has increased year by year. The beginning of the protein and peptide drug industry dates back to 1982 with the introduction of the protein hormone insulin into the field of treatment. From this year onwards, a new number of protein and peptide drugs have entered the field of treatment every year. In this article, we focus on human therapeutic insulin. First, the history of the hormone will be introduced, then-current methods for insulin therapy will be discussed and finally, the treatments by this hormone in the future will be pointed. Reading this article would be very helpful for nano researchers, biochemists, organic chemists, material scientists and other people who are interested in soft and hard matters interfaces.


Assuntos
Diabetes Mellitus/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Hipoglicemiantes/uso terapêutico , Insulina/uso terapêutico , Administração Oral , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Indústria Farmacêutica , Humanos , Hipoglicemiantes/química , Insulina/metabolismo , Peptídeos/química , Peptídeos/uso terapêutico , Proteínas/genética , Proteínas/uso terapêutico
15.
Z Naturforsch C J Biosci ; 76(7-8): 317-327, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-33559461

RESUMO

Phytochemical profiles of essential oil (EO), fatty acids, and n-hexane (CAH), diethyl ether (CAD), ethyl acetate (CAE) and methanol extracts (CAM) of Cota altissima L. J. Gay (syn. Anthemis altissima L.) were investigated as well as their antioxidant, anti-inflammatory, antidiabetic and antimicrobial activites. The essential oil was characterized by the content of acetophenone (35.8%) and ß-caryophyllene (10.3%) by GC-MS/FID. Linoleic and oleic acid were found as main fatty acids. The major constituents of the extracts were found to be 5-caffeoylquinic acid, 3,5-dicaffeoylquinic acid, isorhamnetin glucoside, quercetin and quercetin glucoside by LC-MS/MS. Antioxidant activities of the extracts were determined by scavenging of DPPH and ABTS free radicals. Also, the inhibitory effects on lipoxygenase and α-glucosidase enzymes were determined. Antimicrobial activity was evaluated against Gram positive, Gram negative bacteria and yeast pathogens. CAM showed the highest antioxidant activity against DPPH and ABTS radicals with IC50 values of 126.60 and 144.40 µg/mL, respectively. In the anti-inflammatory activity, CAE demonstrated the highest antilipoxygenase activity with an IC50 value of 105.40 µg/mL, whereas, CAD showed the best inhibition of α-glucosidase with an IC50 value of 396.40 µg/mL in the antidiabetic activity. CAH was effective against Staphylococcus aureus at MIC = 312.5 µg/mL. This is the first report on antidiabetic, anti-inflammatory and antimicrobial activities of different extracts of C. altissima.


Assuntos
Anti-Infecciosos/farmacologia , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Asteraceae/química , Hipoglicemiantes/farmacologia , Compostos Fitoquímicos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Antioxidantes/química , Antioxidantes/isolamento & purificação , Bactérias/classificação , Bactérias/efeitos dos fármacos , Compostos de Bifenilo/metabolismo , Candida/efeitos dos fármacos , Cromatografia Líquida/métodos , Flavonoides/química , Flavonoides/isolamento & purificação , Flavonoides/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/isolamento & purificação , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Óleos Voláteis/farmacologia , Oxirredução/efeitos dos fármacos , Fenol/química , Fenol/isolamento & purificação , Fenol/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Picratos/metabolismo , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Espectrometria de Massas em Tandem/métodos
16.
J Recept Signal Transduct Res ; 41(2): 159-169, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32718219

RESUMO

INTRODUCTION: Natural products play a pivotal role in innovative drug discovery by providing structural leads for the development of new therapeutic agents against various diseases.The present study aims to focus on the in silico assessment of the therapeutic potential of antidiabetic phytoconstituents which were identified and isolated from the extracts of Bauhinia rufescens Lam, a medicinal plant traditionally used for various pharmacotherapeutic purposes. METHOD: The physicochemical and pharmacokinetic parameters of the previously isolated thirty eight compounds were predicted using SwissADME web tool whereas OSIRIS Property Explorer was used for toxicity risk assessment and drug- likeliness. Twelve compounds were selected for docking on human α-glucosidase and α-amylaseenzymes using Autodock 4.0 software. Furthermore, the active extract was in vivo tested for the antidiabetic activity and then identified usingTLC bioautographic method. RESULTS AND DISCUSSION: Eriodictyol was found to have the highest potential as an inhibitor against α-amylase with binding energy of -9.92 kcal/mol. Rutin was the most potent against α-glucosidase with binding energy of-9.15 kcal/mol. A considerable number of hydrogen bonds and hydrophobic interactions were computed between the compounds and the enzymes thereby making them energetically favorable and suggesting inhibition of these two enzymes as a plausible molecular mechanism for their antidiabetic effect. CONCLUSION: These two flavonoids could therefore be used as potential leads for structure- based design of new effective hypoglycemic agents.


Assuntos
Bauhinia/química , Inibidores de Glicosídeo Hidrolases/química , Hipoglicemiantes/química , alfa-Amilases/química , alfa-Glucosidases/química , Produtos Biológicos/química , Produtos Biológicos/uso terapêutico , Simulação por Computador , Diabetes Mellitus/tratamento farmacológico , Descoberta de Drogas , Flavonoides/química , Flavonoides/uso terapêutico , Inibidores de Glicosídeo Hidrolases/uso terapêutico , Humanos , Hipoglicemiantes/uso terapêutico , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Plantas Medicinais/química , alfa-Amilases/antagonistas & inibidores , alfa-Glucosidases/efeitos dos fármacos
17.
Molecules ; 25(22)2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187049

RESUMO

Flavonoids are phytochemical compounds present in many plants, fruits, vegetables, and leaves, with potential applications in medicinal chemistry. Flavonoids possess a number of medicinal benefits, including anticancer, antioxidant, anti-inflammatory, and antiviral properties. They also have neuroprotective and cardio-protective effects. These biological activities depend upon the type of flavonoid, its (possible) mode of action, and its bioavailability. These cost-effective medicinal components have significant biological activities, and their effectiveness has been proved for a variety of diseases. The most recent work is focused on their isolation, synthesis of their analogs, and their effects on human health using a variety of techniques and animal models. Thousands of flavonoids have been successfully isolated, and this number increases steadily. We have therefore made an effort to summarize the isolated flavonoids with useful activities in order to gain a better understanding of their effects on human health.


Assuntos
Flavonoides/química , Flavonoides/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/prevenção & controle , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Antimaláricos/química , Antimaláricos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Antivirais/química , Antivirais/farmacologia , Sistema Cardiovascular/efeitos dos fármacos , Flavonoides/economia , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Camundongos , Sistema Nervoso/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Folhas de Planta/química , Plantas/química , Polifenóis/química , Polifenóis/farmacologia , Quercetina/química , Quercetina/farmacologia , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/prevenção & controle
18.
Artigo em Inglês | MEDLINE | ID: mdl-32860366

RESUMO

AIMS: The aim of this study was to evaluate the antidiabetic effect of Scorzonera undulata. BACKGROUND: Scorzonera undulata ssp deliciosa, locally known as "Guiz", is used as a phytomedicine in Morocco and Algeria to treat different health problems. Interestingly, it is used in the Moroccan pharmacopeia to treat diabetes. To our knowledge, this medicinal herb has never been investigated for any pharmacological activity. OBJECTIVE: This study aimed to evaluate the antihyperglycemic effect of the aqueous extract of the aerial part of Scorzonera undulata (SUAP) in normal and STZ-induced diabetic rats and to assess the acute toxicity of this extract in Wistar rats. METHODS: This study investigated the effects of SUAP at a dose of 20 mg/kg on blood glucose levels in normal and streptozotocin(STZ)-induced diabetic rats. The acute toxicity of SUAP was examined according to the OECD test guideline; rats were divided into four groups of each sex and orally received the SUAP (1000, 2000, or 3000 mg/kg BW). Post-treatment, body weight, signs of toxicity, and/or mortality were observed during 14 days. Other assays such as histopathological examination, preliminary phytochemical investigation, determination of glycogen content and evaluation of α-amylase were performed according to standard protocols. RESULTS: The findings of the current study depicted that both single and repeated oral administration of SUAP (20 mg/kg) generated a significant fall in the blood glucose levels in diabetic rats. A single oral administration of SUAP (at the highest dose of 3000 mg/kg BW) had no significant acute toxicological effects, and oral LD50 of SUAP was greater than 3000 mg/kg. Furthermore, repeated oral administration of SUAP during 15 days led to an increase in the liver glycogen content in diabetic rats to improve the histopathological structure of the liver and pancreas in SUAPtreated diabetic rats and to ameliorate some biochemical parameters such as ALT and creatinine. SUAP had no effect on α-amylase activity. In addition, the preliminary phytochemical investigation showed the richness of the roots of SUAP in some phytochemicals, particularly the polyphenols. CONCLUSION: The present study demonstrates the antihyperglycemic effect of Scorzonera undulata in diabetic rats which could be involved through the improvement of liver structure and function. In addition, the dose used is not toxic. Finally, the extract contains large amounts of bioactive compounds, mainly polyphenols.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Extratos Vegetais/uso terapêutico , Scorzonera , Administração Oral , Animais , Glicemia/análise , Diabetes Mellitus Experimental/sangue , Feminino , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/química , Hipoglicemiantes/toxicidade , Masculino , Componentes Aéreos da Planta/química , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Extratos Vegetais/toxicidade , Ratos , Ratos Wistar , Scorzonera/química
19.
Anal Bioanal Chem ; 412(19): 4647-4658, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32488383

RESUMO

For the quality control of biopharmaceutical products, which contain proteins as the most important active ingredients, shelf life may be limited due to inappropriate storage conditions or mechanical stress. For insulins as representatives of life-saving pharmaceuticals, analytical methods are needed, which are providing additional information than obtained by assays for total protein quantification. Despite sophisticated formulations, the chemical stability may be challenged by temperatures deviating from recommended conditions or shear rate exposure under storage, leading to misfolding, nucleation, and subsequent fibril formation, accompanied by a decrease in bioactivity. A reliable method for insulin quantification and determination of secondary structure changes has been developed by attenuated total reflection (ATR) Fourier-transform infrared spectroscopy of insulin formulations by a silver halide fiber-coupled diamond probe with subsequent dry-film preparation. A special emphasis has been placed on the protein amide I band evaluation, for which spectral band analysis provides unique information on secondary structure fractions for intact and misfolded insulins. Quantitative measurements are possible down to concentrations of less than 0.5 mg/ml, whereas the dry-film preparation delivers high signal-to-noise ratios due to the prior water evaporation, thus allowing a reliable determination of secondary structure information. Graphical abstract.


Assuntos
Hipoglicemiantes/química , Insulina/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Animais , Produtos Biológicos/química , Humanos , Estrutura Secundária de Proteína , Proteínas/química
20.
Life Sci ; 256: 117910, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32504753

RESUMO

AIMS: Insulin (Ins) covalently modified by catecholestrogens (CEs) was commonly found in diabetic patients who have developed insulin resistance. Estrogenization of insulin altered its molecular function and effect carbohydrates metabolisms in these patients. Insulin resistance is a common phenomenon in diabetes but the exact mechanism remains unknown. In this study, binding specificity and affinity of autoantibodies against estrogenized insulin (4-hydroxyestradiol-insulin; 4-OHE2-Ins) were assayed in the serum of type 1 diabetes (T1D) patients in order to explain the phenomena behind insulin resistance. MATERIALS AND METHODS: Specificity and affinity of autoantibodies from the sera of 66 T1D patients and 41 controls were analyzed by direct binding, competition ELISA and quantitative precipitin titration. Insulin was also estimated in the serum of T1D patients by ELISA. KEY FINDING: Estrogenized insulin (4-OHE2-Ins) exhibited high affinity and specificity to T1D autoantibodies in comparison to Ins (p < .05) or 4-OHE2 (p < .001). Estrogenization of insulin alters its interaction with the insulin receptor (IR). The affinity constant of 4-OHE2-Ins with the T1D autoantibodies was found to be 1.41 × 10-7 M. SIGNIFICANCE: Estrogenization of insulin by catecholestrogen makes these molecules highly antigenic and produced high-affinity autoantibodies in T1D patients. As a result, patients develop insulin resistance and presented this molecule as a potential biomarker for T1D.


Assuntos
Autoanticorpos/imunologia , Diabetes Mellitus Tipo 1/tratamento farmacológico , Estrogênios de Catecol/química , Hipoglicemiantes/química , Insulina/química , Adulto , Autoanticorpos/metabolismo , Biomarcadores/metabolismo , Glicemia/análise , Coleta de Amostras Sanguíneas , Proposta de Concorrência , Ensaio de Imunoadsorção Enzimática , Estrogênios de Catecol/uso terapêutico , Feminino , Humanos , Hipoglicemiantes/uso terapêutico , Insulina/uso terapêutico , Resistência à Insulina , Masculino , Pessoa de Meia-Idade , Receptor de Insulina/imunologia , Receptor de Insulina/metabolismo , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA