Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
J Physiol ; 600(4): 815-827, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33899241

RESUMO

KEY POINTS: Melanin-concentrating hormone (MCH) neuron-ablated mice exhibit increased energy expenditure and reduced fat weight. Increased brown adipose tissue (BAT) activity and locomotor activity-independent energy expenditure contributed to body weight reduction in MCH neuron-ablated mice. MCH neurons send inhibitory input to the medullary raphe nucleus to modulate BAT activity. ABSTRACT: Hypothalamic melanin-concentrating hormone (MCH) peptide robustly affects energy homeostasis. However, it is unclear whether and how MCH-producing neurons, which contain and release a variety of neuropeptides/transmitters, regulate energy expenditure in the central nervous system and peripheral tissues. We thus examined the regulation of energy expenditure by MCH neurons, focusing on interscapular brown adipose tissue (BAT) activity. MCH neuron-ablated mice exhibited reduced body weight, increased oxygen consumption, and increased BAT activity, which improved locomotor activity-independent energy expenditure. Trans-neuronal retrograde tracing with the recombinant pseudorabies virus revealed that MCH neurons innervate BAT via the sympathetic premotor region in the medullary raphe nucleus (MRN). MRN neurons were activated by MCH neuron ablation. Therefore, endogenous MCH neuron activity negatively modulates energy expenditure via BAT inhibition. MRN neurons might receive inhibitory input from MCH neurons to suppress BAT activity.


Assuntos
Tecido Adiposo Marrom , Hormônios Hipotalâmicos , Tecido Adiposo Marrom/metabolismo , Animais , Metabolismo Energético , Hormônios Hipotalâmicos/metabolismo , Hipotálamo/fisiologia , Melaninas/metabolismo , Camundongos , Neurônios/fisiologia , Hormônios Hipofisários/metabolismo
2.
J Neurochem ; 157(1): 73-94, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33370457

RESUMO

The daily temporal order of physiological processes and behavior contribute to the wellbeing of many organisms including humans. The central circadian clock, which coordinates the timing within our body, is located in the suprachiasmatic nucleus (SCN) of the hypothalamus. Like in other parts of the brain, aging impairs the SCN function, which in turn promotes the development and progression of aging-related diseases. We here review the impact of aging on the different levels of the circadian clock machinery-from molecules to organs-with a focus on the role of the SCN. We find that the molecular clock is less effected by aging compared to other cellular components of the clock. Proper rhythmic regulation of intracellular signaling, ion channels and neuronal excitability of SCN neurons are greatly disturbed in aging. This suggests a disconnection between the molecular clock and the electrophysiology of these cells. The neuronal network of the SCN is able to compensate for some of these cellular deficits. However, it still results in a clear reduction in the amplitude of the SCN electrical rhythm, suggesting a weakening of the output timing signal. Consequently, other brain areas and organs not only show aging-related deficits in their own local clocks, but also receive a weaker systemic timing signal. The negative spiral completes with the weakening of positive feedback from the periphery to the SCN. Consequently, chronotherapeutic interventions should aim at strengthening overall synchrony in the circadian system using life-style and/or pharmacological approaches.


Assuntos
Envelhecimento , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Hipotálamo/fisiologia , Núcleo Supraquiasmático/fisiologia , Animais , Humanos , Neurônios
3.
Neuron ; 95(4): 955-970.e4, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28757304

RESUMO

How environmental and physiological signals interact to influence neural circuits underlying developmentally programmed social interactions such as male territorial aggression is poorly understood. We have tested the influence of sensory cues, social context, and sex hormones on progesterone receptor (PR)-expressing neurons in the ventromedial hypothalamus (VMH) that are critical for male territorial aggression. We find that these neurons can drive aggressive displays in solitary males independent of pheromonal input, gonadal hormones, opponents, or social context. By contrast, these neurons cannot elicit aggression in socially housed males that intrude in another male's territory unless their pheromone-sensing is disabled. This modulation of aggression cannot be accounted for by linear integration of environmental and physiological signals. Together, our studies suggest that fundamentally non-linear computations enable social context to exert a dominant influence on developmentally hard-wired hypothalamus-mediated male territorial aggression.


Assuntos
Agressão/fisiologia , Hipotálamo/citologia , Hipotálamo/fisiologia , Neurônios/fisiologia , Comportamento Social , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/genética , Adenoviridae/genética , Animais , Antipsicóticos/farmacologia , Clozapina/análogos & derivados , Clozapina/farmacologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Feminino , Técnicas In Vitro , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Fatores Sexuais , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo
4.
PLoS One ; 12(1): e0170127, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28099477

RESUMO

Offspring of murine dams chronically fed a protein-restricted diet have an increased risk for metabolic and neurobehavioral disorders. Previously we showed that adult offspring, developmentally exposed to a chronic maternal low-protein (MLP) diet, had lower body and hind-leg muscle weights and decreased liver enzyme serum levels. We conducted energy expenditure, neurobehavioral and circadian rhythm assays in male offspring to examine mechanisms for the body-weight phenotype and assess neurodevelopmental implications of MLP exposure. C57BL/6J dams were fed a protein restricted (8%protein, MLP) or a control protein (20% protein, C) diet from four weeks before mating until weaning of offspring. Male offspring were weaned to standard rodent diet (20% protein) and single-housed until 8-12 weeks of age. We examined body composition, food intake, energy expenditure, spontaneous rearing activity and sleep patterns and performed behavioral assays for anxiety (open field activity, elevated plus maze [EPM], light/dark exploration), depression (tail suspension and forced swim test), sociability (three-chamber), repetitive (marble burying), learning and memory (fear conditioning), and circadian behavior (wheel-running activity during light-dark and constant dark cycles). We also measured circadian gene expression in hypothalamus and liver at different Zeitgeber times (ZT). Male offspring from separate MLP exposed dams had significantly greater body fat (P = 0.03), less energy expenditure (P = 0.004), less rearing activity (P = 0.04) and a greater number of night-time rest/sleep bouts (P = 0.03) compared to control. MLP offspring displayed greater anxiety-like behavior in the EPM (P<0.01) but had no learning and memory deficit in fear-conditioning assay (P = 0.02). There was an effect of time on Per1, Per 2 and Clock circadian gene expression in the hypothalamus but not on circadian behavior. Thus, transplacental and early developmental exposure of dams to chronic MLP reduces food intake and energy expenditure, increases anxiety like behavior and disturbs sleep patterns but not circadian rhythm in adult male offspring.


Assuntos
Ansiedade/etiologia , Ritmo Circadiano/fisiologia , Dieta com Restrição de Proteínas/efeitos adversos , Metabolismo Energético , Sono/fisiologia , Tecido Adiposo , Animais , Comportamento Animal , Ritmo Circadiano/genética , Feminino , Expressão Gênica , Hipotálamo/fisiologia , Fígado/fisiologia , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Camundongos Endogâmicos C57BL
5.
Neuroendocrinology ; 104(4): 319-329, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28013310

RESUMO

The incidence of obesity is rapidly escalating and has reached epidemic proportions. In all species, including rodents, humans, and sheep, there is large variation in the degree of weight gain across individuals in response to an obesogenic environment. This individual variation is, at least in part, determined by innate differences in energy expenditure, of which adaptive thermogenesis is a key component. The hypothalamus is essential to the control of body weight and adiposity. Appetite-regulating peptides within the hypothalamus exert reciprocal effects on food intake and energy expenditure, such that neuropeptides that stimulate food intake inhibit thermogenesis and vice versa. This review discusses the role of the hypothalamic neuropeptides in determining innate predisposition to obesity in 3 animal models being obesity-prone and obesity-resistant rodents, genetically lean and obese sheep, and animals selected for high/low cortisol responsiveness. In rodents, leptin resistance is a primary feature of the propensity to become obese. This contrasts that of larger mammals, such as sheep, where altered susceptibility to obesity manifests within the melanocortin and/or orexin pathways. This review highlights fundamental species differences within the hypothalamus that lead to altered susceptibility to weight gain and increased propensity to become obese.


Assuntos
Metabolismo Energético/fisiologia , Hipotálamo/fisiologia , Leptina/fisiologia , Melanocortinas/fisiologia , Obesidade/fisiopatologia , Orexinas/fisiologia , Animais , Modelos Animais de Doenças , Humanos , Modelos Biológicos , Especificidade da Espécie , Termogênese/fisiologia
6.
J Physiol ; 594(18): 5285-301, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27126579

RESUMO

KEY POINTS: The ventromedial hypothalamus (VMH) and the central melanocortin system both play vital roles in regulating energy balance by modulating energy intake and utilization. Recent evidence suggests that activation of the VMH alters skeletal muscle metabolism. We show that intra-VMH melanocortin receptor activation increases energy expenditure and physical activity, switches fuel utilization to fats, and lowers work efficiency such that excess calories are dissipated by skeletal muscle as heat. We also show that intra-VMH melanocortin receptor activation increases sympathetic nervous system outflow to skeletal muscle. Intra-VMH melanocortin receptor activation also induced significant changes in the expression of mediators of energy expenditure in muscle. These results support the role of melanocortin receptors in the VMH in the modulation of skeletal muscle metabolism. ABSTRACT: The ventromedial hypothalamus (VMH) and the brain melanocortin system both play vital roles in increasing energy expenditure (EE) and physical activity, decreasing appetite and modulating sympathetic nervous system (SNS) outflow. Because of recent evidence showing that VMH activation modulates skeletal muscle metabolism, we propose the existence of an axis between the VMH and skeletal muscle, modulated by brain melanocortins, modelled on the brain control of brown adipose tissue. Activation of melanocortin receptors in the VMH of rats using a non-specific agonist melanotan II (MTII), compared to vehicle, increased oxygen consumption and EE and decreased the respiratory exchange ratio. Intra-VMH MTII enhanced activity-related EE even when activity levels were held constant. MTII treatment increased gastrocnemius muscle heat dissipation during controlled activity, as well as in the home cage. Compared to vehicle-treated rats, rats with intra-VMH melanocortin receptor activation had higher skeletal muscle norepinephrine turnover, indicating an increased SNS drive to muscle. Lastly, intra-VMH MTII induced mRNA expression of muscle energetic mediators, whereas short-term changes at the protein level were primarily limited to phosphorylation events. These results support the hypothesis that melanocortin peptides act in the VMH to increase EE by lowering the economy of activity via the enhanced expression of mediators of EE in the periphery including skeletal muscle. The data are consistent with the role of melanocortins in the VMH in the modulation of skeletal muscle metabolism.


Assuntos
Metabolismo Energético , Hipotálamo/fisiologia , Músculo Esquelético/fisiologia , Receptores de Melanocortina/fisiologia , Termogênese , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/fisiologia , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/fisiologia , Animais , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/fisiologia , Masculino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Norepinefrina/metabolismo , Peptídeos Cíclicos/farmacologia , Condicionamento Físico Animal , Ratos Sprague-Dawley , Receptores de Melanocortina/agonistas , alfa-MSH/análogos & derivados , alfa-MSH/farmacologia
7.
Handb Exp Pharmacol ; 233: 173-94, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26578523

RESUMO

The continuous rise in obesity is a major concern for future healthcare management. Many strategies to control body weight focus on a permanent modification of food intake with limited success in the long term. Metabolism or energy expenditure is the other side of the coin for the regulation of body weight, and strategies to enhance energy expenditure are a current focus for obesity treatment, especially since the (re)-discovery of the energy depleting brown adipose tissue in adult humans. Conversely, several human illnesses like neurodegenerative diseases, cancer, or autoimmune deficiency syndrome suffer from increased energy expenditure and severe weight loss. Thus, strategies to modulate energy expenditure to target weight gain or loss would improve life expectancies and quality of life in many human patients. The aim of this book chapter is to give an overview of our current understanding and recent progress in energy expenditure control with specific emphasis on central control mechanisms.


Assuntos
Encéfalo/fisiologia , Metabolismo Energético , Adaptação Fisiológica , Animais , Tronco Encefálico/fisiologia , Humanos , Hipotálamo/fisiologia , Termogênese
8.
Cell Metab ; 22(1): 175-88, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26073495

RESUMO

Brain-derived neurotrophic factor (BDNF) is a key regulator of energy balance; however, its underlying mechanism remains unknown. By analyzing BDNF-expressing neurons in paraventricular hypothalamus (PVH), we have uncovered neural circuits that control energy balance. The Bdnf gene in the PVH was mostly expressed in previously undefined neurons, and its deletion caused hyperphagia, reduced locomotor activity, impaired thermogenesis, and severe obesity. Hyperphagia and reduced locomotor activity were associated with Bdnf deletion in anterior PVH, whereas BDNF neurons in medial and posterior PVH drive thermogenesis by projecting to spinal cord and forming polysynaptic connections to brown adipose tissues. Furthermore, BDNF expression in the PVH was increased in response to cold exposure, and its ablation caused atrophy of sympathetic preganglionic neurons. Thus, BDNF neurons in anterior PVH control energy intake and locomotor activity, whereas those in medial and posterior PVH promote thermogenesis by releasing BDNF into spinal cord to boost sympathetic outflow.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Metabolismo Energético , Comportamento Alimentar , Hipotálamo/citologia , Hipotálamo/fisiologia , Neurônios/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Feminino , Deleção de Genes , Hiperfagia/genética , Hiperfagia/metabolismo , Hiperfagia/patologia , Hipotálamo/patologia , Locomoção , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/patologia , Termogênese
9.
Hum Brain Mapp ; 35(12): 6088-96, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25131690

RESUMO

The hypothalamus is of enormous importance for multiple bodily functions such as energy homeostasis. Especially, rodent studies have greatly contributed to our understanding how specific hypothalamic subregions integrate peripheral and central signals into the brain to control food intake. In humans, however, the neural circuitry of the hypothalamus, with its different subregions, has not been delineated. Hence, the aim of this study was to map the hypothalamus network using resting-state functional connectivity (FC) analyses from the medial hypothalamus (MH) and lateral hypothalamus (LH) in healthy normal-weight adults (n = 49). Furthermore, in a separate sample, we examined differences within the LH and MH networks between healthy normal-weight (n = 25) versus overweight/obese adults (n = 23). FC patterns from the LH and MH revealed significant connections to the striatum, thalamus, brainstem, orbitofrontal cortex, middle and posterior cingulum and temporal brain regions. However, our analysis revealed subtler distinctions within hypothalamic subregions. The LH was functionally stronger connected to the dorsal striatum, anterior cingulum, and frontal operculum, while the MH showed stronger functional connections to the nucleus accumbens and medial orbitofrontal cortex. Furthermore, overweight/obese participants revealed heightened FC in the orbitofrontal cortex and nucleus accumbens within the MH network. Our results indicate that the MH and LH network are tapped into different parts of the dopaminergic circuitry of the brain, potentially modulating food reward based on the functional connections to the ventral and dorsal striatum, respectively. In obese adults, FC changes were observed in the MH network.


Assuntos
Hipotálamo/fisiologia , Adulto , Encéfalo/fisiologia , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/fisiologia , Obesidade/fisiopatologia , Descanso , Processamento de Sinais Assistido por Computador
10.
Brain Res ; 1350: 18-34, 2010 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-20353764

RESUMO

Metabolic homeostasis reflects the complex output of endocrine, autonomic, and behavioral control circuits that extend throughout the central nervous system. Brain regions that control food intake and energy expenditure are privy to continuous visceral sensory feedback signals that presumably modulate appetite, satiety, digestion, and metabolism. Sensory signals from the gastrointestinal tract and associated digestive viscera are delivered to the brain primarily by vagal afferents that terminate centrally within the caudal nucleus of the solitary tract (NST), with signals subsequently relayed to higher brain regions by parallel noradrenergic and peptidergic projection pathways arising within the NST. This article begins with an overview of these ascending pathways identified in adult rats using a standard anterograde tracer microinjected into the caudal visceral sensory region of the NST, and also by immunocytochemical localization of glucagon-like peptide-1. NST projection targets identified by these two approaches are compared to the distribution of neurons that become infected after inoculating the ventral stomach wall with a neurotropic virus that transneuronally infects synaptically-linked chains of neurons in the anterograde (i.e., ascending sensory) direction. Although the focus of this article is the anatomical organization of axonal projections from the caudal visceral NST to the hypothalamus and limbic forebrain, discussion is included regarding the hypothesized role of these projections in modulating behavioral arousal and coordinating endocrine and behavioral (i.e., hypophagic) responses to stress.


Assuntos
Ingestão de Alimentos/fisiologia , Metabolismo Energético/fisiologia , Hipotálamo/fisiologia , Núcleo Solitário/fisiologia , Animais , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Vias Neurais/fisiologia , Neurônios/fisiologia
11.
Horm Behav ; 58(3): 355-67, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20350549

RESUMO

Though obesity is common, some people remain resistant to weight gain even in an obesogenic environment. The propensity to remain lean may be partly associated with high endurance capacity along with high spontaneous physical activity and the energy expenditure of activity, called non-exercise activity thermogenesis (NEAT). Previous studies have shown that high-capacity running rats (HCR) are lean compared to low-capacity runners (LCR), which are susceptible to cardiovascular disease and metabolic syndrome. Here, we examine the effect of diet on spontaneous activity and NEAT, as well as potential mechanisms underlying these traits, in rats selectively bred for high or low intrinsic aerobic endurance capacity. Compared to LCR, HCR were resistant to the sizeable increases in body mass and fat mass induced by a high-fat diet; HCR also had lower levels of circulating leptin. HCR were consistently more active than LCR, and had lower fuel economy of activity, regardless of diet. Nonetheless, both HCR and LCR showed a similar decrease in daily activity levels after high-fat feeding, as well as decreases in hypothalamic orexin-A content. The HCR were more sensitive to the NEAT-activating effects of intra-paraventricular orexin-A compared to LCR, especially after high-fat feeding. Lastly, levels of cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C) in the skeletal muscle of HCR were consistently higher than LCR, and the high-fat diet decreased skeletal muscle PEPCK-C in both groups of rats. Differences in muscle PEPCK were not secondary to the differing amount of activity. This suggests the possibility that intrinsic differences in physical activity levels may originate at the level of the skeletal muscle, which could alter brain responsiveness to neuropeptides and other factors that regulate spontaneous daily activity and NEAT.


Assuntos
Gorduras na Dieta/administração & dosagem , Obesidade/etiologia , Condicionamento Físico Animal/fisiologia , Corrida/fisiologia , Adiposidade/genética , Adiposidade/fisiologia , Animais , Metabolismo Energético/genética , Metabolismo Energético/fisiologia , Hipotálamo/química , Hipotálamo/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/análise , Leptina/sangue , Masculino , Músculo Esquelético/enzimologia , Neuropeptídeos/análise , Obesidade/genética , Obesidade/metabolismo , Orexinas , Fosfoenolpiruvato Carboxiquinase (GTP)/análise , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Ratos , Termogênese/genética , Termogênese/fisiologia , Aumento de Peso/genética , Aumento de Peso/fisiologia
12.
Brain Res ; 1325: 19-27, 2010 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-20170645

RESUMO

Thermoregulatory neurons in the preoptic area of the anterior hypothalamus (POA) form synaptic networks, which affect responses that regulate body temperature. To characterize these pathways of activation, projections to effector control areas, like the dorsomedial hypothalamus (DMH), require labeling in live tissue slices. Traditional fluorescent dyes label axon terminals near an injection site, but unfortunately, also that of nearby fibers of passage. Here, we describe a novel methodology for retrograde labeling of neurons in vitro, which will allow for further electrophysiological recording. To determine if POA neurons project to the DMH, we have used nanometer-sized, gold nanoprobes, which provide for specific neuronal entry, via synapses in close proximity to the injection site. Upon neuronal entry, these nanoprobe complexes diffuse to the soma, where they are readily visualized and quantified. We found that conjugation of these gold nanoprobes with VGLUT-2 antibodies and polyethyleneimine (PEI) facilitates neuronal entry and a high level of labeling efficacy. This novel method, adapted from emerging cancer therapy technologies, is highly specific for determining axon terminal projections within particular neuronal populations, while maintaining neuronal viability for targeted live cell electrophysiological recording.


Assuntos
Compostos de Ouro , Hipotálamo/fisiologia , Nanopartículas Metálicas , Neurônios/fisiologia , Área Pré-Óptica/fisiologia , Animais , Anticorpos/metabolismo , Eletrofisiologia/instrumentação , Eletrofisiologia/métodos , Hipotálamo/citologia , Técnicas In Vitro , Masculino , Nanotecnologia , Vias Neurais/citologia , Vias Neurais/fisiologia , Marcadores do Trato Nervoso , Neurônios/citologia , Polietilenoimina/metabolismo , Área Pré-Óptica/citologia , Ratos , Ratos Sprague-Dawley , Sinapses/fisiologia , Proteína Vesicular 2 de Transporte de Glutamato/imunologia , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
13.
Int J Obes (Lond) ; 33 Suppl 1: S11-5, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19363500

RESUMO

For humans and animal models alike there is general agreement that the central nervous system processing of gastrointestinal (GI) signals arising from ingested food provides the principal determinant of the size of meals and their frequency. Despite this, relatively few studies are aimed at delineating the brain circuits, neurochemical pathways and intracellular signals that mediate GI-stimulation-induced intake inhibition. Two additional motivations to pursue these circuits and signals have recently arisen. First, the success of gastric-bypass surgery in obesity treatment is highlighting roles for GI signals such as glucagon-like peptide-1 (GLP-1) in intake and energy balance control. Second, accumulating data suggest that the intake-reducing effects of leptin may be mediated through an amplification of the intake-inhibitory effects of GI signals. Experiments reviewed show that: (1) the intake-suppressive effects of a peripherally administered GLP-1 receptor agonist is mediated by caudal brainstem neurons and that forebrain-hypothalamic neural processing is not necessary for this effect; (2) a population of medial nucleus tractus solitarius (NTS) neurons that are responsive to gastric distention is also driven by leptin; (3) caudal brainstem-targeted leptin amplifies the food-intake-inhibitory effects of gastric distention and intestinal nutrient stimulation; (4) adenosine monophosphate-activated protein kinase (AMPK) activity in NTS-enriched brain lysates is elevated by food deprivation and reduced by refeeding and (5) the intake-suppressive effect of hindbrain-directed leptin is reversed by elevating hindbrain AMPK activity. Overall, data support the view that the NTS and circuits within the hindbrain mediate the intake inhibition of GI signals, and that the effects of leptin on food intake result from the amplification of GI signal processing.


Assuntos
Regulação do Apetite/fisiologia , Tronco Encefálico/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Peptídeo 1 Semelhante ao Glucagon/fisiologia , Leptina/fisiologia , Núcleo Solitário/fisiologia , Animais , Regulação do Apetite/efeitos dos fármacos , Tronco Encefálico/fisiologia , Metabolismo Energético/fisiologia , Esvaziamento Gástrico , Receptor do Peptídeo Semelhante ao Glucagon 1 , Humanos , Hipotálamo/efeitos dos fármacos , Hipotálamo/fisiologia , Leptina/farmacologia , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/fisiologia , Ratos , Receptores de Glucagon/agonistas , Receptores de Glucagon/metabolismo , Saciação/efeitos dos fármacos , Núcleo Solitário/efeitos dos fármacos , Fibras Aferentes Viscerais/fisiologia
14.
Arq. bras. endocrinol. metab ; 53(2): 120-128, Mar. 2009. ilus
Artigo em Inglês | LILACS | ID: lil-513765

RESUMO

Current estimates suggest that over 1 billion people are overweight and over 300 million people are obese. Weight gain is due to an imbalance between energy expenditure and dietary intake. This review discusses the hypothalamic control of appetite and highlights key developments in research that have furthered our understanding of the complex pathways involved. Nuclei within the hypothalamus integrate peripheral signals such as adiposity and caloric intake to regulate important pathways within the central nervous system controlling food intake and energy expenditure. Firmly established pathways involve the orexigenic NPY/AgRP and the anorexigenic POMC/CART neurons in the arcuate nucleus (ARC) of the hypothalamus. These project from the ARC to other important hypothalamic nuclei, including the paraventricular, dorsomedial, ventromedial and lateral hypothalamic nuclei. In addition there are many projections to and from the brainstem, cortical areas and reward pathways, which modulate food intake.


As estimativas atuais sugerem que mais de 1 bilhão de pessoas apresentam sobrepeso e 300 milhões são obesas. O ganho de peso representa um desequilíbrio entre o gasto energético e o consumo alimentar. Esta revisão discute o controle hipotalâmico do apetite e destaca os pontos-chave no desenvolvimento de pesquisas para ampliar o nosso entendimento dos complexos mecanismos envolvidos nesta regulação. Núcleos situados no hipotálamo integram uma série de sinais com o sistema nervoso central controlando a ingestão alimentar e o gasto energético. As vias mais estabelecidas envolvem os neurônios orexigênicos NPY/AgRP e os neurônios anorexigênicos POMC/CART no núcleo arqueado (ARC) do hipotálamo. Esses neurônios se projetam do ARC para outros importantes núcleos hipotalâmicos, tais quais: paraventricular, dorsomedial, ventromedial e lateral. Além disso, existem várias projeções que vão e vem do tronco cerebral, das áreas corticais e das vias de retroalimentação que modulam o consumo alimentar.


Assuntos
Humanos , Regulação do Apetite/fisiologia , Comportamento Alimentar/fisiologia , Hipotálamo/fisiologia , Obesidade/fisiopatologia , Núcleo Arqueado do Hipotálamo/fisiologia , Hormônios Gastrointestinais/fisiologia , Obesidade/metabolismo , Obesidade/terapia
15.
Can J Physiol Pharmacol ; 87(10): 839-49, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20052010

RESUMO

Space travelers experience anorexia and body weight loss in a microgravity environment, and microgravity-like situations cause changes in hypothalamic activity. Hypothalamic melanocortins play a critical role in the regulation of metabolism. Therefore, we hypothesized that microgravity affects metabolism through alterations in specific hypothalamic signaling pathways, including melanocortin signaling. To address this hypothesis, the microgravity-like situation was produced by an antiorthostatic tail suspension in wild-type and agouti mice, and the effect of tail suspension on energy expenditure and hypothalamic gene expression was examined. Energy expenditure was measured using indirect calorimetry before and during the tail suspension protocol. Hypothalamic tissues were collected for gene expression analysis at the end of the 3 h tail suspension period. Tail suspension significantly increased oxygen consumption, carbon dioxide production, and heat production in wild-type mice. Tail suspension-induced increases in energy expenditure were not attenuated in agouti mice. Although tail suspension did not alter hypothalamic proopiomelanocortin (POMC) and agouti-related protein (AGRP) mRNA levels, it significantly increased hypothalamic interleukin 6 (Il-6) mRNA levels. These data are consistent with the hypothesis that microgravity increases energy expenditure and suggest that these effects are mediated through hypothalamic signaling pathways that are independent of melanocortins, but possibly used by Il-6.


Assuntos
Metabolismo Energético/fisiologia , Elevação dos Membros Posteriores/fisiologia , Melanocortinas/biossíntese , Tecido Adiposo Marrom/metabolismo , Proteína Relacionada com Agouti/metabolismo , Animais , Análise Química do Sangue , Western Blotting , Expressão Gênica/fisiologia , Hormônios/sangue , Hipotálamo/fisiologia , Interleucina-6/biossíntese , Cinética , Masculino , Melanocortinas/genética , Metabolismo/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Pró-Opiomelanocortina/metabolismo , RNA/biossíntese , RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/fisiologia , Ausência de Peso
16.
Int J Obes (Lond) ; 32 Suppl 4: S49-54, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18719599

RESUMO

Energy balance is monitored by the hypothalamus. Malonyl-CoA, an intermediate in fatty acid synthesis, serves as an indicator of energy status in the hypothalamic neurons. The cellular malonyl-CoA level is determined by its rate of synthesis, catalyzed by acetyl-CoA carboxylase (ACC), and rate of removal, by fatty acid synthase (FAS). Malonyl-CoA functions in the hypothalamic neurons that express orexigenic and anorexigenic neuropeptides. Inhibitors of FAS, administered systemically or intracerebroventricularly to mice, increase hypothalamic malony-CoA and suppress food intake. Recent evidence suggests that the changes of hypothalamic malonyl-CoA during feeding and fasting cycles are caused by changes in the phosphorylation state and activity of ACC mediated via 5'-AMP-activated protein kinase (AMPK). Stereotactic delivery of a viral malonyl-CoA decarboxylase (MCD) vector into the ventral hypothalamus lowers malonyl-CoA and increases food intake. Fasting decreases hypothalamic malonyl-CoA and refeeding increases hypothalamic malonyl-CoA, to alter feeding behavior in the predicted manner. Malonyl-CoA level is under the control of AMP kinase which phosphorylates/inactivates ACC. Malonyl-CoA is an inhibitor of carnitine palmitoyl-CoA transferase-1 (CPT1), an outer mitochondrial membrane enzyme that regulates entry into, and oxidation of fatty acids, by mitochondria. CPT1c, a recently discovered, brain-specific enzyme expressed in the hypothalamus, has high sequence similarity to liver/muscle CPT1a/b and binds malonyl-CoA, but does not catalyze the prototypical reaction. This suggests that CPT1c has a unique function or activation mechanism. CPT1c knockout (KO) mice have lower food intake, weigh less and have less body fat, consistent with the role as an energy-sensing malonyl-CoA target. Paradoxically, CPT1c protects against the effects of a high-fat diet. CPT1cKO mice exhibit decreased rates of fatty acid oxidation, consistent with their increased susceptibility to diet-induced obesity. We suggest that CPT1c may be a downstream target of malonyl-CoA that regulates energy homeostasis.


Assuntos
Ingestão de Alimentos/fisiologia , Metabolismo Energético/fisiologia , Hipotálamo/enzimologia , Malonil Coenzima A/metabolismo , Acetil-CoA Carboxilase/metabolismo , Animais , Carboxiliases/metabolismo , Carnitina O-Palmitoiltransferase/metabolismo , Ácido Graxo Sintases/metabolismo , Hipotálamo/fisiologia , Malonil Coenzima A/fisiologia , Camundongos
17.
Rev Neurol ; 45(11): 672-82, 2007.
Artigo em Espanhol | MEDLINE | ID: mdl-18050100

RESUMO

INTRODUCTION: Overweight and obesity present significant public health concerns because of the link with numerous chronic health conditions. During the last ten years, since the discovery of leptin, great advances were obtained in the characterization oh the hypothalamic mechanisms involved in the control of food intake and thermogenesis. DEVELOPMENT: This review will present some the most recent findings in this field. It will be focused on the actions of leptin and insulin in the hypothalamus and will explore the hypothesis that hypothalamic resistance to the action of these hormones may play a key role in the development of obesity. CONCLUSIONS: The physical activity is an important component on long-term weight control. The exercise markedly increased phosphorylation activity of several proteins involved in leptin and insulin signal transduction in the hypothalamus. Recently our laboratory showed that physical activity increase in sensitivity to leptin- and insulin-induced anorexia after enhances interleukin-6 production. These findings provide support for the hypothesis that the appetite-suppressive actions of exercise may be mediated by the hypothalamus.


Assuntos
Encéfalo/fisiologia , Ingestão de Energia/fisiologia , Metabolismo Energético/fisiologia , Exercício Físico/fisiologia , Insulina/fisiologia , Leptina/fisiologia , Tecido Adiposo Branco/fisiologia , Animais , Humanos , Fome/fisiologia , Hipotálamo/fisiologia , Resistência à Insulina/fisiologia , Interleucina-6/fisiologia , Camundongos , Camundongos Obesos , Modelos Biológicos , Obesidade/fisiopatologia , Receptor de Insulina/fisiologia , Receptores para Leptina/fisiologia , Transdução de Sinais/fisiologia
18.
Minerva Endocrinol ; 32(3): 173-83, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17912156

RESUMO

Energy stores are regulated through complex neural controls exerted on both food intake and energy expenditure. These controls are insured by interconnected neurons that produce different peptides or classic neurotransmitters, which have been regrouped into anabolic' and catabolic' systems. While the control of energy intake has been addressed in numerous investigations, that of energy expenditure has, as yet, only received a moderate interest, even though energy expenditure represents a key determinant of energy balance. In laboratory rodents, in particular, a strong regulatory control is exerted on brown adipose tissue (BAT), which represent an efficient thermogenic effector. BAT thermogenesis is governed by the sympathetic nervous system (SNS), whose activity is controlled by neurons comprised in various brain regions, which include the paraventricular hypothalamic nucleus (PVH), the arcuate nucleus (ARC) and the lateral hypothalamus (LH). Proopiomelanocortin neurons from the ARC project to the PVH and terminate in the vicinity of the melanocortin-4 receptors, which are concentrated in the descending division of the PVH, which comprise neurons controlling the SNS outflow to BAT. The LH contains neurons producing melanin-concentrating hormone or orexins, which also are important peptides in the control of energy expenditure. These neurons are not only polysynaptically connected to BAT, but also linked to brains regions controlling motivated behaviors and locomotor activity and, consequently, their role in the control of energy expenditure could go beyond BAT thermogenesis.


Assuntos
Metabolismo Energético/fisiologia , Hipotálamo/fisiologia , Tecido Adiposo Marrom/fisiologia , Animais , Ingestão de Alimentos/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Camundongos , Proteínas Mitocondriais/fisiologia , Modelos Biológicos , Atividade Motora/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neurônios/química , Neurônios/fisiologia , Neuropeptídeos/fisiologia , Neurotransmissores/fisiologia , Obesidade/fisiopatologia , Orexinas , Hormônios Peptídicos/fisiologia , Pró-Opiomelanocortina/fisiologia , Ratos , Termogênese/fisiologia , alfa-MSH/fisiologia
19.
Annu Rev Neurosci ; 30: 367-98, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17506645

RESUMO

Significant advancements have been made in the past century regarding the neuronal control of feeding behavior and energy expenditure. The effects and mechanisms of action of various peripheral metabolic signals on the brain have become clearer. Molecular and genetic tools for visualizing and manipulating individual components of brain homeostatic systems in combination with neuroanatomical, electrophysiological, behavioral, and pharmacological techniques have begun to elucidate the molecular and neuronal mechanisms of complex feeding behavior and energy expenditure. This review highlights some of these advancements that have led to the current understanding of the brain's involvement in the acute and chronic regulation of energy homeostasis.


Assuntos
Regulação do Apetite/fisiologia , Metabolismo Energético/fisiologia , Comportamento Alimentar/fisiologia , Hipotálamo/fisiologia , Vias Neurais/fisiologia , Animais , Hormônios/fisiologia , Humanos , Hipotálamo/anatomia & histologia , Leptina/fisiologia , Melanocortinas/fisiologia , Motivação , Vias Neurais/anatomia & histologia
20.
Biochem Soc Trans ; 33(Pt 5): 1063-7, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16246046

RESUMO

The brain plays an important role in the regulation of energy balance in higher animals. Global energy balance is monitored by sets of neurons in the hypothalamus that respond to peripheral hormonal and afferent neural signals that sense the energy status. Malonyl-CoA, an intermediate in the biosynthesis of fatty acids, appears to function in this hypothalamic energy-sensing system. The steady-state level of malonyl-CoA is determined by its rate of synthesis catalysed by ACC (acetyl-CoA carboxylase) relative to its rate of turnover catalysed by FAS (fatty acid synthase). Changes in the level of malonyl-CoA in the hypothalamus alter the expression/secretion of key hypothalamic orexigenic and anorexigenic neuropeptides that regulate the feeding behaviour and energy expenditure. Inhibitors of FAS, administered i.c.v. (intracerebroventricularly) to lean or obese mice, cause a rapid rise in hypothalamic malonyl-CoA level, suppression of food intake, increased fatty acid oxidation in skeletal muscle and profound weight loss. Stereotactic delivery of a viral MCD (malonyl-CoA decarboxylase) expression vector into the ventral hypothalamus lowers malonyl-CoA levels and reverses the anorectic effect of the FAS inhibitors. Fasting decreases, whereas refeeding increases, hypothalamic malonyl-CoA and alters subsequent feeding behaviour accordingly. The level of malonyl-CoA in the hypothalamus appears to be under the control of 5'-AMP kinase, which phosphorylates and thereby inactivates ACC under conditions of energy surplus. Thus malonyl-CoA appears to link the energy-responsive fatty acid synthesis in the hypothalamus to feeding behaviour and peripheral energy expenditure.


Assuntos
Ingestão de Energia , Metabolismo Energético , Comportamento Alimentar , Hipotálamo/fisiologia , Malonil Coenzima A/fisiologia , Animais , Camundongos , Modelos Animais , Neurônios/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA