Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Nat Cancer ; 4(2): 257-275, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36585452

RESUMO

Inhibiting individual histone deacetylase (HDAC) is emerging as well-tolerated anticancer strategy compared with pan-HDAC inhibitors. Through preclinical studies, we demonstrated that the sensitivity to the leading HDAC6 inhibitor (HDAC6i) ricolinstat can be predicted by a computational network-based algorithm (HDAC6 score). Analysis of ~3,000 human breast cancers (BCs) showed that ~30% of them could benefice from HDAC6i therapy. Thus, we designed a phase 1b dose-escalation clinical trial to evaluate the activity of ricolinostat plus nab-paclitaxel in patients with metastatic BC (MBC) (NCT02632071). Study results showed that the two agents can be safely combined, that clinical activity is identified in patients with HR+/HER2- disease and that the HDAC6 score has potential as predictive biomarker. Analysis of other tumor types also identified multiple cohorts with predicted sensitivity to HDAC6i's. Mechanistically, we have linked the anticancer activity of HDAC6i's to their ability to induce c-Myc hyperacetylation (ac-K148) promoting its proteasome-mediated degradation in sensitive cancer cells.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Desacetilase 6 de Histona/metabolismo , Neoplasias da Mama/tratamento farmacológico , Histona Desacetilases/metabolismo , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/uso terapêutico
2.
Methods Mol Biol ; 2589: 269-291, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36255631

RESUMO

Posttranslational modifications are important for protein functions and cellular signaling pathways. The acetylation of lysine residues is catalyzed by histone acetyltransferases (HATs) and removed by histone deacetylases (HDACs), with the latter being grouped into four phylogenetic classes. The class III of the HDAC family, the sirtuins (SIRTs), contributes to gene expression, genomic stability, cell metabolism, and tumorigenesis. Thus, several specific SIRT inhibitors (SIRTi) have been developed to target cancer cell proliferation. Here we provide an overview of methods to study SIRT-dependent cell metabolism and mitochondrial functionality. The chapter describes metabolic flux analysis using Seahorse analyzers, methods for normalization of Seahorse data, flow cytometry and fluorescence microscopy to determine the mitochondrial membrane potential, mitochondrial content per cell and mitochondrial network structures, and Western blot analysis to measure mitochondrial proteins.


Assuntos
Sirtuínas , Sirtuínas/metabolismo , Lisina/metabolismo , Filogenia , Acetilação , Histona Desacetilases/metabolismo , Histona Acetiltransferases/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Inibidores de Histona Desacetilases/farmacologia
3.
SAR QSAR Environ Res ; 33(12): 987-1011, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36533308

RESUMO

Histone deacetylase 8 (HDAC8) is a verified biomolecular target associated with diverse diseases including cancer. Though several HDAC inhibitors emerged effective against such diseases, no selective HDAC8 inhibitor is approved to date. Therefore, the development of potent HDAC8-selective inhibitors is inevitable to combat such diseases. Here, some benzothiazine-derived HDAC8 inhibitors were considered for a comparative QSAR analysis which may elucidate the prime structural components responsible for modulating their efficacy. Several outcomes from these diverse modelling techniques justified one another and thus validated each other. The ligand-based pharmacophore modelling study identified ring aromatic, positive ionizable, and hydrophobic features as essential structural attributes for HDAC8 inhibition. Besides, MLR, HQSAR and field-based 3D-QSAR studies signified the utility of the positive ionizable and hydrophobic features for potent HDAC8 inhibition. Again, the field-based 3D-QSAR study provided useful insight regarding the substitution in the fused phenyl ring. Moreover, the current observations also validated the previously reported molecular docking observations. Based on the outcomes, some new molecules were designed and predicted. Therefore, this comparative structural analysis of these HDAC8 inhibitors will surely assist in the development of potent HDAC8 inhibitors as promising anticancer therapeutics in the future.


Assuntos
Desenho de Fármacos , Relação Quantitativa Estrutura-Atividade , Simulação de Acoplamento Molecular , Ligantes , Histona Desacetilases/química , Histona Desacetilases/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química
4.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35091469

RESUMO

Sirt6 is a multifunctional enzyme that regulates diverse cellular processes such as metabolism, DNA repair, and aging. Overexpressing Sirt6 extends lifespan in mice, but the underlying cellular mechanisms are unclear. Drosophila melanogaster are an excellent model to study genetic regulation of lifespan; however, despite extensive study in mammals, very little is known about Sirt6 function in flies. Here, we characterized the Drosophila ortholog of Sirt6, dSirt6, and examined its role in regulating longevity; dSirt6 is a nuclear and chromatin-associated protein with NAD+-dependent histone deacetylase activity. dSirt6 overexpression (OE) in flies produces robust lifespan extension in both sexes, while reducing dSirt6 levels shortens lifespan. dSirt6 OE flies have normal food consumption and fertility but increased resistance to oxidative stress and reduced protein synthesis rates. Transcriptomic analyses reveal that dSirt6 OE reduces expression of genes involved in ribosome biogenesis, including many dMyc target genes. dSirt6 OE partially rescues many effects of dMyc OE, including increased nuclear size, up-regulation of ribosome biogenesis genes, and lifespan shortening. Last, dMyc haploinsufficiency does not convey additional lifespan extension to dSirt6 OE flies, suggesting dSirt6 OE is upstream of dMyc in regulating lifespan. Our results provide insight into the mechanisms by which Sirt6 OE leads to longer lifespan.


Assuntos
Longevidade/genética , Sirtuínas/metabolismo , Envelhecimento/fisiologia , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Feminino , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Haploinsuficiência/genética , Histona Desacetilases/economia , Histona Desacetilases/metabolismo , Masculino , Sirtuínas/genética
5.
Genet Med ; 23(3): 562-570, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33122805

RESUMO

PURPOSE: Existing research suggests that while some laboratories report variants of uncertain significance, unsolicited findings (UF), and/or secondary findings (SF) when performing exome sequencing, others do not. METHODS: To investigate reporting differences, we created virtual patient-parent trio data by merging variants from patients into "normal" exomes. We invited laboratories worldwide to analyze the data along with patient phenotype information (developmental delay, dysmorphic features, and cardiac hypertrophy). Laboratories issued a diagnostic exome report and completed questionnaires to explain their rationale for reporting (or not reporting) each of the eight variants integrated. RESULTS: Of the 39 laboratories that completed the questionnaire, 30 reported the HDAC8 variant, which was a partial cause of the patient's primary phenotype, and 26 reported the BICD2 variant, which explained another phenotypic component. Lack of reporting was often due to using a filter or a targeted gene panel that excluded the variant, or because they did not consider the variant to be responsible for the phenotype. There was considerable variation in reporting variants associated with the cardiac phenotype (MYBPC3 and PLN) and reporting UF/SF also varied widely. CONCLUSION: This high degree of variability has significant impact on whether causative variants are identified, with important implications for patient care.


Assuntos
Testes Genéticos , Laboratórios , Exoma/genética , Histona Desacetilases , Humanos , Proteínas Repressoras , Análise de Sequência de DNA , Sequenciamento do Exoma
6.
Mol Diagn Ther ; 24(5): 557-569, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32696211

RESUMO

Sarcomas are a rare group of neoplasms with a mesenchymal origin that are mainly characterized by the abnormal growth of connective tissue cells. The standard treatment for local control of sarcomas includes surgery and radiation, while for adjuvant and palliative therapy, chemotherapy has been strongly recommended. Despite the availability of multimodal therapies, the survival rate for patients with sarcoma is still not satisfactory. In recent decades, there has been a considerable effort to overcome chemotherapy resistance in sarcoma cells. This has led to the investigation of more cellular compounds implicated in gene expression and transcription processes. Furthermore, it has been discovered that histone acetylation/deacetylation equilibrium is affected in carcinogenesis, leading to a modified chromatin structure and therefore changes in gene expression. In addition, histone deacetylase inhibition is found to play a key role in limiting the tumor burden in sarcomas, as histone deacetylase inhibitors act on well-described oncogenic signaling pathways. Histone deacetylase inhibitors disrupt the increased cell motility and invasiveness of sarcoma cells, undermining their metastatic potential. Moreover, their activity on evoking cell arrest has been extensively described, with histone deacetylase inhibitors regulating the reactivation of tumor suppressor genes and induction of apoptosis. Promoting autophagy and increasing cellular reactive oxygen species are also included in the antitumor activity of histone deacetylase inhibitors. It should be noted that many studies revealed the synergy between histone deacetylase inhibitors and other drugs, leading to the enhancement of an antitumor effect in sarcomas. Therefore, there is an urgent need for therapeutic interventions modulated according to the distinct clinical and molecular characteristics of each sarcoma subtype. It is concluded that a better understanding of histone deacetylase and histone deacetylase inhibitors could provide patients with sarcoma with more targeted and efficient therapies, which may contribute to significant improvement of their survival potential.


Assuntos
Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/metabolismo , Terapia de Alvo Molecular , Sarcoma/tratamento farmacológico , Sarcoma/metabolismo , Acetilação , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Ensaios Clínicos como Assunto , Gerenciamento Clínico , Suscetibilidade a Doenças , Sinergismo Farmacológico , Inibidores de Histona Desacetilases/administração & dosagem , Inibidores de Histona Desacetilases/efeitos adversos , Histonas/metabolismo , Humanos , Especificidade de Órgãos , Prognóstico , Sarcoma/diagnóstico , Sarcoma/mortalidade , Resultado do Tratamento
7.
J Virol ; 94(9)2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32051267

RESUMO

Clinical trials investigating histone deacetylase inhibitors (HDACi) to reverse HIV-1 latency aim to expose reservoirs in antiretroviral (ARV)-treated individuals to clearance by immune effectors, yet have not driven measurable reductions in the frequencies of infected cells. We therefore investigated the effects of the class I-selective HDACi nanatinostat and romidepsin on various blocks to latency reversal and elimination, including viral splicing, antigen presentation, and CD8+ T cell function. In ex vivo CD4+ T cells from ARV-suppressed individuals, both HDACi significantly induced viral transcription, but not splicing nor supernatant HIV-1 RNA. In an HIV-1 latency model using autologous CD8+ T cell clones as biosensors of antigen presentation, neither HDACi-treated CD4+ T cell condition induced clone degranulation. Both HDACi also impaired the function of primary CD8+ T cells in viral inhibition assays, with nanatinostat causing less impairment. These findings suggest that spliced or cell-free HIV-1 RNAs are more indicative of antigen expression than unspliced HIV-RNAs and may help to explain the limited abilities of HDACi to generate CD8+ T cell targets in vivoIMPORTANCE Antiretroviral (ARV) drug regimens suppress HIV-1 replication but are unable to cure infection. This leaves people living with HIV-1 burdened by a lifelong commitment to expensive daily medication. Furthermore, it has become clear that ARV therapy does not fully restore health, leaving individuals at elevated risk for cardiovascular disease, certain types of cancers, and neurocognitive disorders, as well as leaving them exposed to stigma. Efforts are therefore under way to develop therapies capable of curing infection. A key focus of these efforts has been on a class of drugs called histone deacetylase inhibitors (HDACi), which have the potential of exposing hidden reservoirs of HIV-1 to elimination by the immune system. Unfortunately, clinical trial results with HDACi have thus far been disappointing. In the current study, we integrate a number of experimental approaches to build a model that provides insights into the limited activity of HDACi in clinical trials and offers direction for future approaches.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Latência Viral/efeitos dos fármacos , Adulto , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Depsipeptídeos/farmacologia , Feminino , Infecções por HIV/imunologia , Soropositividade para HIV/tratamento farmacológico , HIV-1/metabolismo , HIV-1/patogenicidade , HIV-1/fisiologia , Histona Desacetilases/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Cultura Primária de Células , Latência Viral/fisiologia , Replicação Viral/efeitos dos fármacos
8.
Sci Rep ; 9(1): 16047, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31690769

RESUMO

Small interfering RNA (siRNA) are synthetic RNA duplex designed to specifically knockdown the abnormal gene to treat a disease at cellular and molecular levels. In spite of their high potency, specificity, and therapeutic potential, the full-fledged utility of siRNA is predominantly limited to in vitro set-up. Till date, Onpattro is the only USFDA approved siRNA therapeutics available in the clinic. The lack of a reliable in vivo siRNA delivery carrier remains a foremost obstacle towards the clinical translation of siRNA therapeutics. To address the obstacles associated with siRNA delivery, we tested a dendrimer-templated polymeric approach involving a USFDA approved carrier (albumin) for in vitro as well as in vivo delivery of siRNA. The developed approach is simple in application, enhances the serum stability, avoids in vivo RNase-degradation and mediates cytosolic delivery of siRNA following the endosomal escape process. The successful in vitro and in vivo delivery of siRNA, as well as targeted gene knockdown potential, was demonstrated by HDAC4 inhibition in vitro diabetic nephropathy (DN) podocyte model as well as in vivo DN C57BL/6 mice model. The developed approach has been tested using HDAC4 siRNA as a model therapeutics, while the application can also be extended to other gene therapeutics including micro RNA (miRNA), plasmids oligonucleotides, etc.


Assuntos
Nefropatias Diabéticas , Sistemas de Liberação de Medicamentos , Histona Desacetilases , Podócitos , RNA Interferente Pequeno , Proteínas Repressoras , Animais , Linhagem Celular Transformada , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Modelos Animais de Doenças , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Camundongos , Podócitos/metabolismo , Podócitos/patologia , RNA Interferente Pequeno/química , RNA Interferente Pequeno/farmacologia , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
9.
Bioorg Chem ; 92: 103262, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31518757

RESUMO

This report presents the development of a novel and primary model of sulfonamide compounds encompassing a chromene azo motif with the intent of becoming applicable for drug candidates in the cases of drug-resistant pathogens. The novel molecules (7a-n) have been synthesized via a two-step reaction. First, 4-((2, 4-dihydroxyphenyl)diazenyl)benzenesulfonamide (3a-e) were obtained through the reaction of their corresponding diazotized 4-aminobenzenesulfonamides (1a-e) with resorcinol, followed by the heterocyclization of 3a-e with arylidenemalononitriles (6a-d). Upon structural identification, the newly synthesized compounds were evaluated for their antibacterial and antifungal activities. Moreover, their cytotoxic screening was performed against three cancer cell lines: HCT-116, HepG-2, and MCF-7. Further examinations were comprised of the inhibitory effect analyses of the novel sulfonamide/chromene derivatives against the HDAC classes and the Tubulin polymerization in order to discern the prime antitumor drug candidates.


Assuntos
Antineoplásicos/farmacologia , Compostos Azo/farmacologia , Benzopiranos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Simulação de Acoplamento Molecular , Antineoplásicos/síntese química , Antineoplásicos/química , Compostos Azo/química , Benzopiranos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Histona Desacetilase 1/antagonistas & inibidores , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/antagonistas & inibidores , Histona Desacetilase 2/metabolismo , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Histona Desacetilases/metabolismo , Humanos , Estrutura Molecular , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
10.
Molecules ; 23(2)2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-29385079

RESUMO

Epigenetic alterations of gene expression have emerged as a key factor in several neurodegenerative diseases. In particular, inhibitors targeting histone deacetylases (HDACs), which are enzymes responsible for deacetylation of histones and other proteins, show therapeutic effects in animal neurodegenerative disease models. However, the details of the interaction between changes in HDAC levels in the brain and disease progression remain unknown. In this review, we focus on recent advances in development of radioligands for HDAC imaging in the brain with positron emission tomography (PET). We summarize the results of radiosynthesis and biological evaluation of the HDAC ligands to identify their successful results and challenges. Since 2006, several small molecules that are radiolabeled with a radioisotope such as carbon-11 or fluorine-18 have been developed and evaluated using various assays including in vitro HDAC binding assays and PET imaging in rodents and non-human primates. Although most compounds do not readily cross the blood-brain barrier, adamantane-conjugated radioligands tend to show good brain uptake. Until now, only one HDAC radioligand has been tested clinically in a brain PET study. Further PET imaging studies to clarify age-related and disease-related changes in HDACs in disease models and humans will increase our understanding of the roles of HDACs in neurodegenerative diseases.


Assuntos
Radioisótopos de Carbono , Radioisótopos de Flúor , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/metabolismo , Marcação por Isótopo , Doenças Neurodegenerativas/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Animais , Inibidores de Histona Desacetilases/química , Humanos , Doenças Neurodegenerativas/enzimologia
11.
Methods Mol Biol ; 1510: 11-22, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27761810

RESUMO

Aberrant histone deacetylase (HDAC) activity often correlates with neoplastic transformation and inhibition of HDACs by small molecules has emerged as a promising strategy to treat hematological malignancies in particular. Treatment with HDAC inhibitors (HDACis) often prompts tumor cells to undergo apoptosis, thereby causing a caspase-dependent cleavage of target proteins. An unexpectedly large number of proteins are in vivo caspase substrates and defining caspase-mediated substrate specificity is a major challenge. In this chapter we demonstrate that the hematopoietic transcription factor PU.1 becomes cleaved after treatment of acute myeloid leukemia (AML) cells with the HDACis LBH589 (panobinostat) or MS-275 (entinostat). To define caspase specificity for PU.1, an in vitro caspase assay including caspases 1-10 with in vitro-translated PU.1 is described in detail.


Assuntos
Antineoplásicos/farmacologia , Caspase 8/genética , Regulação Neoplásica da Expressão Gênica , Inibidores de Histona Desacetilases/farmacologia , Proteínas Proto-Oncogênicas/genética , Transativadores/genética , Benzamidas/farmacologia , Western Blotting/métodos , Caspase 8/metabolismo , Eletroforese em Gel de Poliacrilamida/métodos , Ativação Enzimática , Células HEK293 , Células HL-60 , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Ácidos Hidroxâmicos/farmacologia , Indóis/farmacologia , Células K562 , Panobinostat , Proteólise , Proteínas Proto-Oncogênicas/metabolismo , Piridinas/farmacologia , Especificidade por Substrato , Transativadores/metabolismo , Transfecção
12.
Methods Mol Biol ; 1510: 23-45, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27761811

RESUMO

The chromatin contains the genetic and the epigenetic information of a eukaryotic organism. Posttranslational modifications of histones, such as acetylation and methylation, regulate their structure and control gene expression. Histone acetyltransferases (HATs) acetylate lysine residues in histones while histone deacetylases (HDACs) remove this modification. HDAC inhibitors (HDACi) can alter gene expression patterns and induce cytotoxicity in cancer cells. Here we provide an overview of methods to determine the cytotoxic effects of HDACi treatment. Our chapter describes colorimetric methods, like trypan blue exclusion test, crystal violet staining, lactate dehydrogenase assay, MTT and Alamar Blue assays, as well as fluorogenic methods like TUNEL staining and the caspase-3/7 activity assay. Moreover, we summarize flow cytometric analysis of propidium iodide uptake, annexin V staining, cell cycle status, ROS levels, and mitochondrial membrane potential as well as detection of apoptosis by Western blot.


Assuntos
Antineoplásicos/farmacologia , Caspase 3/genética , Caspase 7/genética , Regulação Neoplásica da Expressão Gênica , Inibidores de Histona Desacetilases/farmacologia , Processamento de Proteína Pós-Traducional , Acetanilidas/farmacologia , Apoptose/efeitos dos fármacos , Western Blotting/métodos , Caspase 3/metabolismo , Caspase 7/metabolismo , Ciclo Celular/efeitos dos fármacos , Cromatina/química , Cromatina/efeitos dos fármacos , Cromatina/metabolismo , Colorimetria/métodos , Corantes/química , Ativação Enzimática , Citometria de Fluxo/métodos , Fluoresceínas/química , Corantes Fluorescentes/química , Células HCT116 , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Espécies Reativas de Oxigênio/metabolismo , Tioureia/análogos & derivados , Tioureia/farmacologia
13.
Methods Mol Biol ; 1510: 405-412, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27761839

RESUMO

Chimeric compounds combine the structural features of inhibitors of histone deacetylases (HDACi) and tyrosine kinase inhibitors (TKi), and therefore unite the effects of a dual-targeting strategy in one compound. Here, we describe the generation of such hybrid molecules. Small molecules, known as TKi, are combined with a Zn2+ chelating motive, preferentially a hydroxamic acid, in addition. The resulting small molecules also can inhibit histone deacetylases, which are dependent on the catalytically active Zn2+. Moreover, we summarize how the growth-inhibitory effects of these combined compounds can be determined with a simple proliferation assay with a leukemic cell line.


Assuntos
Antineoplásicos/síntese química , Quelantes/química , Técnicas de Química Sintética , Inibidores de Histona Desacetilases/química , Ácidos Hidroxâmicos/química , Inibidores de Proteínas Quinases/química , Antineoplásicos/farmacologia , Cátions Bivalentes , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quelantes/farmacologia , Expressão Gênica , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Ácidos Hidroxâmicos/farmacologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Monócitos/patologia , Inibidores de Proteínas Quinases/farmacologia , Zinco/química , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/metabolismo
14.
Cell Rep ; 16(11): 2802-2810, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27626651

RESUMO

Drugs that recapitulate aspects of the exercise adaptive response have the potential to provide better treatment for diseases associated with physical inactivity. We previously observed reduced skeletal muscle class IIa HDAC (histone deacetylase) transcriptional repressive activity during exercise. Here, we find that exercise-like adaptations are induced by skeletal muscle expression of class IIa HDAC mutants that cannot form a corepressor complex. Adaptations include increased metabolic gene expression, mitochondrial capacity, and lipid oxidation. An existing HDAC inhibitor, Scriptaid, had similar phenotypic effects through disruption of the class IIa HDAC corepressor complex. Acute Scriptaid administration to mice increased the expression of metabolic genes, which required an intact class IIa HDAC corepressor complex. Chronic Scriptaid administration increased exercise capacity, whole-body energy expenditure and lipid oxidation, and reduced fasting blood lipids and glucose. Therefore, compounds that disrupt class IIa HDAC function could be used to enhance metabolic health in chronic diseases driven by physical inactivity.


Assuntos
Proteínas Correpressoras/metabolismo , Metabolismo Energético , Histona Desacetilases/metabolismo , Metabolismo dos Lipídeos , Animais , Domínio Catalítico , Linhagem Celular , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Hidroxilaminas/administração & dosagem , Hidroxilaminas/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Camundongos , Mutação/genética , Oxirredução , Condicionamento Físico Animal , Ligação Proteica/efeitos dos fármacos , Quinolinas/administração & dosagem , Quinolinas/farmacologia , Transcrição Gênica/efeitos dos fármacos
15.
Org Biomol Chem ; 14(8): 2537-49, 2016 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-26822143

RESUMO

The synthesis of novel isoform-selective HDAC inhibitors is considered to be an important, emerging field in medicinal chemistry. In this paper, the preparation and assessment of thirteen selective HDAC6 inhibitors is disclosed, elaborating on a previously developed thiaheterocyclic Tubathian series. All compounds were evaluated in vitro for their ability to inhibit HDAC6, and a selection of five potent compounds was further screened toward all HDAC isoforms (HDAC1-11). The capability of these Tubathian analogs to inhibit α-tubulin deacetylation was assessed as well, and ADME/Tox data were collected. This thorough SAR evaluation revealed that the oxidized, para-substituted hydroxamic acids can be recognized as valuable lead structures in the pursuit of novel potent and selective HDAC6 inhibitors.


Assuntos
Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Ácidos Hidroxâmicos/farmacologia , Indóis/farmacologia , Relação Dose-Resposta a Droga , Desacetilase 6 de Histona , Inibidores de Histona Desacetilases/síntese química , Humanos , Ácidos Hidroxâmicos/química , Indóis/química , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
16.
Biochim Biophys Acta ; 1859(2): 294-305, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26619800

RESUMO

Metabolic homeostasis is achieved through balanced energy storage and output. Impairment of energy expenditure is a hallmark event in patients with obesity and type 2 diabetes. Previously we have shown that the pro-inflammatory cytokine interferon gamma (IFN-γ) disrupts energy expenditure in skeletal muscle cells via hypermethylated in cancer 1 (HIC1)-class II transactivator (CIITA) dependent repression of SIRT1 transcription. Here we report that repression of SIRT1 transcription by IFN-γ paralleled loss of histone acetylation on the SIRT1 promoter region with simultaneous recruitment of histone deacetylase 4 (HDAC4). IFN-γ activated HDAC4 in vitro and in vivo by up-regulating its expression and stimulating its nuclear accumulation. HIC1 and CIITA recruited HDAC4 to the SIRT1 promoter and cooperated with HDAC4 to repress SIRT1 transcription. HDAC4 depletion by small interfering RNA or pharmaceutical inhibition normalized histone acetylation on the SIRT1 promoter and restored SIRT1 expression in the presence of IFN-γ. Over-expression of HDAC4 suppressed the transcription of genes involved in energy expenditure in a SIRT1-dependent manner. In contrast, HDAC4 knockdown/inhibition neutralized the effect of IFN-γ on cellular metabolism by normalizing SIRT1 expression. Therefore, our data reveal a role for HDAC4 in regulating cellular energy output and as such provide insights into rationalized design of novel anti-diabetic therapeutics.


Assuntos
Histona Desacetilases/genética , Interferon gama/genética , Proteínas Repressoras/genética , Sirtuína 1/genética , Transcrição Gênica , Acetilação , Animais , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Metabolismo Energético/genética , Regulação da Expressão Gênica , Histona Desacetilases/biossíntese , Humanos , Interferon gama/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Proteínas Nucleares/genética , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia , Regiões Promotoras Genéticas , Proteínas Repressoras/biossíntese , Sirtuína 1/biossíntese , Transativadores/genética , Ativação Transcricional/genética
17.
J Chem Inf Model ; 56(1): 54-72, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26682916

RESUMO

Molecular docking is a widely used technique in drug design to predict the binding pose of a candidate compound in a defined therapeutic target. Numerous docking protocols are available, each characterized by different search methods and scoring functions, thus providing variable predictive capability on a same ligand-protein system. To validate a docking protocol, it is necessary to determine a priori the ability to reproduce the experimental binding pose (i.e., by determining the docking accuracy (DA)) in order to select the most appropriate docking procedure and thus estimate the rate of success in docking novel compounds. As common docking programs use generally different root-mean-square deviation (RMSD) formulas, scoring functions, and format results, it is both difficult and time-consuming to consistently determine and compare their predictive capabilities in order to identify the best protocol to use for the target of interest and to extrapolate the binding poses (i.e., best-docked (BD), best-cluster (BC), and best-fit (BF) poses) when applying a given docking program over thousands/millions of molecules during virtual screening. To reduce this difficulty, two new procedures called Clusterizer and DockAccessor have been developed and implemented for use with some common and "free-for-academics" programs such as AutoDock4, AutoDock4(Zn), AutoDock Vina, DOCK, MpSDockZn, PLANTS, and Surflex-Dock to automatically extrapolate BD, BC, and BF poses as well as to perform consistent cluster and DA analyses. Clusterizer and DockAccessor (code available over the Internet) represent two novel tools to collect computationally determined poses and detect the most predictive docking approach. Herein an application to human lysine deacetylase (hKDAC) inhibitors is illustrated.


Assuntos
Desenho de Fármacos , Simulação de Acoplamento Molecular , Automação , Análise Discriminante , Inibidores de Histona Desacetilases/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/química , Histona Desacetilases/metabolismo , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/química , Isoenzimas/metabolismo , Conformação Proteica
18.
Cell Metab ; 22(6): 997-1008, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26525534

RESUMO

Catecholamines promote lipolysis both in brown and white adipocytes, whereas the same stimuli preferentially activate thermogenesis in brown adipocytes. Molecular mechanisms for the adipose-selective activation of thermogenesis remain poorly understood. Here, we employed quantitative phosphoproteomics to map global and temporal phosphorylation profiles in brown, beige, and white adipocytes under ß3-adrenenoceptor activation and identified kinases responsible for the adipose-selective phosphorylation profiles. We found that casein kinase2 (CK2) activity is preferentially higher in white adipocytes than brown/beige adipocytes. Genetic or pharmacological blockade of CK2 in white adipocytes activates the thermogenic program in response to cAMP stimuli. Such activation is largely through reduced CK2-mediated phosphorylation of class I HDACs. Notably, inhibition of CK2 promotes beige adipocyte biogenesis and leads to an increase in whole-body energy expenditure and ameliorates diet-induced obesity and insulin resistance. These results indicate that CK2 is a plausible target to rewire the ß3-adrenenoceptor signaling cascade that promotes thermogenesis in adipocytes.


Assuntos
Tecido Adiposo Marrom/metabolismo , Caseína Quinase II/metabolismo , Metabolismo Energético , Fosfopeptídeos/análise , Proteômica , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Animais , Caseína Quinase II/antagonistas & inibidores , Caseína Quinase II/genética , AMP Cíclico/metabolismo , Metabolismo Energético/efeitos dos fármacos , Histona Desacetilases/química , Histona Desacetilases/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Naftiridinas/farmacologia , Norepinefrina/farmacologia , Obesidade/etiologia , Óxidos/farmacologia , Fenazinas , Receptores Adrenérgicos beta 3/metabolismo , Transdução de Sinais , Termogênese/efeitos dos fármacos , Proteína Desacopladora 1 , Compostos de Vanádio/farmacologia
19.
Rev. paul. pediatr ; 33(1): 63-71, Jan-Mar/2015. tab
Artigo em Inglês | LILACS | ID: lil-744703

RESUMO

OBJECTIVE : To verify the correlation between body fat location measurements with the body mass index (BMI), body fat percentage (BF%) and height, according to the nutritional status in female adolescents. METHODS : A controlled cross-sectional study was carried out with 113 adolescents (G1: 38 with normal weight, but with high body fat level, G2: 40 with normal weight and G3: 35 overweight) from public schools in Viçosa-MG, Brazil. The following measures were assessed: weight, height, waist circumference (WC), umbilical circumference (UC), hip circumference (HC), thigh circumference, waist-to-hip ratio (WHR), waist-to-height ratio (WHtR), waist-to-thigh ratio (WTR), conicity index (CI), sagittal abdominal diameter (SAD), coronal diameter (CD), central (CS) and peripheral skinfolds (PS). The BF% was assessed by tetrapolar electric bioimpedance. RESULTS : The increase in central fat, represented by WC, UC, WHtR, SAD, CD and CS, and the increase in peripheral fat indicated by HC and thigh circumference were proportional to the increase in BMI and BF%. WC and especially the UC showed the strongest correlations with adiposity. Weak correlation between WHR, WTR, CI and CS/PS with adiposity were observed. The height showed correlation with almost all the fat location measures, being fair or weak with waist measurements. CONCLUSIONS : The results indicate colinearity between body mass and total adiposity with central and peripheral adipose tissue. We recommend the use of UC for assessing nutritional status of adolescents, as it showed the highest capacity to predict adiposity in each group, and also showed fair or weak correlation with height. .


OBJETIVO: Verificar a correlação entre medidas de localização da gordura corporal com índice de massa corporal (IMC), percentual de gordura corporal (%GC) e estatura, de acordo com o estado nutricional em adolescentes do sexo feminino. MÉTODOS: Realizou-se estudo transversal controlado, com 113 adolescentes (G1: 38 eutróficas mas com gordura corporal elevada; G2: 40 eutróficas e G3: 35 com excesso de peso), de 14 a 19 anos, de escolas públicas de Viçosa-MG. Aferiu-se peso, estatura, circunferência da cintura (CC), circunferência umbilical (CUm), circunferência do quadril (CQ), circunferência da coxa, relação cintura/quadril (RCQ), relação cintura/estatura (RCE), relação cintura/coxa (RCC), índice de conicidade (IC), diâmetro abdominal sagital (DAS), diâmetro coronal (DC), pregas cutâneas centrais (PCC) e periféricas (PCP). Avaliou-se o %GC por bioimpedância elétrica tetrapolar. RESULTADOS: O aumento da gordura central, representada pela CC, CUm, RCE, DAS, DC e PCC, e o aumento da gordura periférica indicado pela CQ e da coxa foram proporcionais ao aumento do IMC e %GC. A CC e principalmente CUm apresentaram as correlações mais fortes com a adiposidade, enquanto RCQ, RCC, IC e PCC/PCP as mais fracas. A estatura apresentou correlação com praticamente todas as medidas de localização de gordura, sendo de fraca a regular com as medidas da cintura. CONCLUSÕES: Os resultados indicam colinearidade entre massa corporal e adiposidade total com tecido adiposo central e periférico. Recomenda-se o emprego da CUm na avaliação do estado nutricional de adolescentes, pois ela apresentou maior capacidade para predizer adiposidade em cada grupo, além de correlação fraca a regular com a estatura. .


Assuntos
Animais , Ratos , Desenho de Fármacos , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Ácidos Hidroxâmicos/farmacologia , Relação Dose-Resposta a Droga , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/síntese química , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/síntese química , Fígado/enzimologia , Estrutura Molecular , Relação Estrutura-Atividade
20.
J Hepatol ; 60(1): 127-34, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24012616

RESUMO

BACKGROUND & AIMS: Recent evidence suggests that hepatocellular carcinoma can be classified into certain molecular subtypes with distinct prognoses based on the stem/maturational status of the tumor. We investigated the transcription program deregulated in hepatocellular carcinomas with stem cell features. METHODS: Gene and protein expression profiles were obtained from 238 (analyzed by microarray), 144 (analyzed by immunohistochemistry), and 61 (analyzed by qRT-PCR) hepatocellular carcinoma cases. Activation/suppression of an identified transcription factor was used to evaluate its role in cell lines. The relationship of the transcription factor and prognosis was statistically examined. RESULTS: The transcription factor SALL4, known to regulate stemness in embryonic and hematopoietic stem cells, was found to be activated in a hepatocellular carcinoma subtype with stem cell features. SALL4-positive hepatocellular carcinoma patients were associated with high values of serum alpha fetoprotein, high frequency of hepatitis B virus infection, and poor prognosis after surgery compared with SALL4-negative patients. Activation of SALL4 enhanced spheroid formation and invasion capacities, key characteristics of cancer stem cells, and up-regulated the hepatic stem cell markers KRT19, EPCAM, and CD44 in cell lines. Knockdown of SALL4 resulted in the down-regulation of these stem cell markers, together with attenuation of the invasion capacity. The SALL4 expression status was associated with histone deacetylase activity in cell lines, and the histone deacetylase inhibitor successfully suppressed proliferation of SALL4-positive hepatocellular carcinoma cells. CONCLUSIONS: SALL4 is a valuable biomarker and therapeutic target for the diagnosis and treatment of hepatocellular carcinoma with stem cell features.


Assuntos
Antígenos de Neoplasias/análise , Carcinoma Hepatocelular/patologia , Moléculas de Adesão Celular/análise , Neoplasias Hepáticas/patologia , Células-Tronco Neoplásicas/química , Fatores de Transcrição/fisiologia , Idoso , Carcinoma Hepatocelular/química , Molécula de Adesão da Célula Epitelial , Feminino , Histona Desacetilases/fisiologia , Humanos , Imuno-Histoquímica , Neoplasias Hepáticas/química , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Fatores de Transcrição/análise , alfa-Fetoproteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA