Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 275
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Diabetes ; 73(4): 554-564, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38266068

RESUMO

Assessment of pancreas cell type composition is crucial to the understanding of the genesis of diabetes. Current approaches use immunodetection of protein markers, for example, insulin as a marker of ß-cells. A major limitation of these methods is that protein content varies in physiological and pathological conditions, complicating the extrapolation to actual cell number. Here, we demonstrate the use of cell type-specific DNA methylation markers for determining the fraction of specific cell types in human islet and pancreas specimens. We identified genomic loci that are uniquely demethylated in specific pancreatic cell types and applied targeted PCR to assess the methylation status of these loci in tissue samples, enabling inference of cell type composition. In islet preparations, normalization of insulin secretion to ß-cell DNA revealed similar ß-cell function in pre-type 1 diabetes (T1D), T1D, and type 2 diabetes (T2D), which was significantly lower than in donors without diabetes. In histological pancreas specimens from recent-onset T1D, this assay showed ß-cell fraction within the normal range, suggesting a significant contribution of ß-cell dysfunction. In T2D pancreata, we observed increased α-cell fraction and normal ß-cell fraction. Methylation-based analysis provides an accurate molecular alternative to immune detection of cell types in the human pancreas, with utility in the interpretation of insulin secretion assays and the assessment of pancreas cell composition in health and disease.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Células Secretoras de Glucagon , Células Secretoras de Insulina , Ilhotas Pancreáticas , Humanos , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Ilhotas Pancreáticas/metabolismo , Metilação de DNA , Pâncreas/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Glucagon/metabolismo
2.
Lab Chip ; 24(6): 1557-1572, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38205530

RESUMO

Enzymatically isolated pancreatic islets are the most commonly used ex vivo testbeds for diabetes research. Recently, precision-cut living slices of human pancreas are emerging as an exciting alternative because they maintain the complex architecture of the endocrine and exocrine tissues, and do not suffer from the mechanical and chemical stress of enzymatic isolation. We report a fluidic pancreatic SliceChip platform with dynamic environmental controls that generates a warm, oxygenated, and bubble-free fluidic pathway across singular immobilized slices with continuous deliver of fresh media and the ability to perform repeat serial perfusion assessments. A degasser ensures the system remains bubble-free while systemic pressurization with compressed oxygen ensures slice medium remains adequately oxygenated. Computational modeling of perfusion and oxygen dynamics within SliceChip guide the system's physiomimetic culture conditions. Maintenance of the physiological glucose dependent insulin secretion profile across repeat perfusion assessments of individual pancreatic slices kept under physiological oxygen levels demonstrated the culture capacity of our platform. Fluorescent images acquired every 4 hours of transgenic murine pancreatic slices were reliably stable and recoverable over a 5 day period due to the inclusion of a 3D-printed bioinert metallic anchor that maintained slice position within the SliceChip. Our slice on a chip platform has the potential to expand the useability of human pancreatic slices for diabetes pathogenesis and the development of new therapeutic approaches, while also enabling organotypic culture and assessment of other tissue slices such as brain and patient tumors.


Assuntos
Diabetes Mellitus , Ilhotas Pancreáticas , Humanos , Camundongos , Animais , Sistemas Microfisiológicos , Pâncreas , Ilhotas Pancreáticas/metabolismo , Oxigênio/metabolismo
3.
Cell Rep Methods ; 3(11): 100642, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37963464

RESUMO

To address the needs of the life sciences community and the pharmaceutical industry in pre-clinical drug development to both maintain and continuously assess tissue metabolism and function with simple and rapid systems, we improved on the initial BaroFuse to develop it into a fully functional, pumpless, scalable multi-channel fluidics instrument that continuously measures changes in oxygen consumption and other endpoints in response to test compounds. We and several other laboratories assessed it with a wide range of tissue types including retina, pancreatic islets, liver, and hypothalamus with both aqueous and gaseous test compounds. The setup time was less than an hour for all collaborating groups, and there was close agreement between data obtained from the different laboratories. This easy-to-use system reliably generates real-time metabolic and functional data from tissue and cells in response to test compounds that will address a critical need in basic and applied research.


Assuntos
Ilhotas Pancreáticas , Ilhotas Pancreáticas/metabolismo , Secreção de Insulina , Oxigênio/metabolismo , Consumo de Oxigênio , Gases/metabolismo
4.
J Vis Exp ; (201)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37982512

RESUMO

The pancreatic islets of Langerhans, which are small 3D collections of specialized endocrine and supporting cells interspersed throughout the pancreas, have a central role in the control of glucose homeostasis through the secretion of insulin by beta cells, which lowers blood glucose, and glucagon by alpha cells, which raises blood glucose. Intracellular signaling pathways, including those mediated by cAMP, are key for regulated alpha and beta cell hormone secretion. The 3D islet structure, while essential for coordinated islet function, presents experimental challenges for mechanistic studies of the intracellular signaling pathways in primary human islet cells. To overcome these challenges and limitations, this protocol describes an integrated live-cell imaging and microfluidic platform using primary human pseudoislets generated from donors without diabetes that resemble native islets in their morphology, composition, and function. These pseudoislets are size-controlled through the dispersion and reaggregation process of primary human islet cells. In the dispersed state, islet cell gene expression can be manipulated; for example, biosensors such as the genetically encoded cAMP biosensor, cADDis, can be introduced. Once formed, pseudoislets expressing a genetically encoded biosensor, in combination with confocal microscopy and a microperifusion platform, allow for the synchronous assessment of fluorescent biosensor dynamics and alpha and beta cell hormone secretory profiles to provide more insight into cellular processes and function.


Assuntos
Células Secretoras de Insulina , Ilhotas Pancreáticas , Humanos , Glicemia , Transporte Biológico , Insulina , Corantes
5.
Transpl Int ; 36: 11512, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37885808

RESUMO

Islet transplantation improves metabolic control in patients with unstable type 1 diabetes. Clinical outcomes have been improving over the last decade, and the widely used beta-score allows the evaluation of transplantation results. However, predictive pre-transplantation criteria of islet quality for clinical outcomes are lacking. In this proof-of-concept study, we examined whether characterization of the electrical activity of donor islets could provide a criterion. Aliquots of 8 human donor islets from the STABILOT study, sampled from islet preparations before transplantation, were characterized for purity and split for glucose-induced insulin secretion and electrical activity using multi-electrode-arrays. The latter tests glucose concentration dependencies, biphasic activity, hormones, and drug effects (adrenalin, GLP-1, glibenclamide) and provides a ranking of CHIP-scores from 1 to 6 (best) based on electrical islet activity. The analysis was performed online in real time using a dedicated board or offline. Grouping of beta-scores and CHIP-scores with high, intermediate, and low values was observed. Further analysis indicated correlation between CHIP-score and beta-score, although significance was not attained (R = 0.51, p = 0.1). This novel approach is easily implantable in islet isolation units and might provide means for the prediction of clinical outcomes. We acknowledge the small cohort size as the limitation of this pilot study.


Assuntos
Diabetes Mellitus Tipo 1 , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Humanos , Insulina/metabolismo , Glicemia/análise , Projetos Piloto , Transplante das Ilhotas Pancreáticas/métodos , Diabetes Mellitus Tipo 1/cirurgia , Glucose/metabolismo , Glucose/farmacologia
6.
Cells ; 12(18)2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37759524

RESUMO

Islets prepared for transplantation into type 1 diabetes patients are exposed to compromising intrinsic and extrinsic factors that contribute to early graft failure, necessitating repeated islet infusions for clinical insulin independence. A lack of reliable pre-transplant measures to determine islet viability severely limits the success of islet transplantation and will limit future beta cell replacement strategies. We applied hyperspectral fluorescent microscopy to determine whether we could non-invasively detect islet damage induced by oxidative stress, hypoxia, cytokine injury, and warm ischaemia, and so predict transplant outcomes in a mouse model. In assessing islet spectral signals for NAD(P)H, flavins, collagen-I, and cytochrome-C in intact islets, we distinguished islets compromised by oxidative stress (ROS) (AUC = 1.00), hypoxia (AUC = 0.69), cytokine exposure (AUC = 0.94), and warm ischaemia (AUC = 0.94) compared to islets harvested from pristine anaesthetised heart-beating mouse donors. Significantly, with unsupervised assessment we defined an autofluorescent score for ischaemic islets that accurately predicted the restoration of glucose control in diabetic recipients following transplantation. Similar results were obtained for islet single cell suspensions, suggesting translational utility in the context of emerging beta cell replacement strategies. These data show that the pre-transplant hyperspectral imaging of islet autofluorescence has promise for predicting islet viability and transplant success.


Assuntos
Células Secretoras de Insulina , Ilhotas Pancreáticas , Humanos , Animais , Camundongos , Imageamento Hiperespectral , Ilhotas Pancreáticas/diagnóstico por imagem , Citocinas , Hipóxia
7.
Cell Rep ; 42(6): 112615, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37294632

RESUMO

Type 2 diabetes is characterized by insulin hypersecretion followed by reduced glucose-stimulated insulin secretion (GSIS). Here we show that acute stimulation of pancreatic islets with the insulin secretagogue dextrorphan (DXO) or glibenclamide enhances GSIS, whereas chronic treatment with high concentrations of these drugs reduce GSIS but protect islets from cell death. Bulk RNA sequencing of islets shows increased expression of genes for serine-linked mitochondrial one-carbon metabolism (OCM) after chronic, but not acute, stimulation. In chronically stimulated islets, more glucose is metabolized to serine than to citrate, and the mitochondrial ATP/ADP ratio decreases, whereas the NADPH/NADP+ ratio increases. Activating transcription factor-4 (Atf4) is required and sufficient to activate serine-linked mitochondrial OCM genes in islets, with gain- and loss-of-function experiments showing that Atf4 reduces GSIS and is required, but not sufficient, for full DXO-mediated islet protection. In sum, we identify a reversible metabolic pathway that provides islet protection at the expense of secretory function.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Ilhotas Pancreáticas/metabolismo , Insulina/metabolismo , Glucose/metabolismo , Carbono/metabolismo , Células Secretoras de Insulina/metabolismo
8.
Diabetes Res Clin Pract ; 197: 110568, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36738836

RESUMO

Islet ß-cell dysfunction is a basic pathophysiological characteristic of type 2 diabetes mellitus (T2DM). Appropriate assessment of islet ß-cell function is beneficial to better management of T2DM. Protecting islet ß-cell function is vital to delay the progress of type 2 diabetes mellitus. Therefore, the Pancreatic Islet ß-cell Expert Panel of the Chinese Diabetes Society and Endocrinology Society of Jiangsu Medical Association organized experts to draft the "Clinical expert consensus on the assessment and protection of pancreatic islet ß-cell function in type 2 diabetes mellitus." This consensus suggests that ß-cell function can be clinically assessed using blood glucose-based methods or methods that combine blood glucose and endogenous insulin or C-peptide levels. Some measures, including weight loss and early and sustained euglycemia control, could effectively protect islet ß-cell function, and some newly developed drugs, such as Sodium-glucose cotransporter-2 inhibitor and Glucagon-like peptide-1 receptor agonists, could improve islet ß-cell function, independent of glycemic control.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Glicemia , Consenso , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Insulina/farmacologia , Ilhotas Pancreáticas/fisiologia
9.
Molecules ; 28(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36770608

RESUMO

Numerous food organizations have identified excessive calorie consumption and accompanying ailments as significant health risks associated with high sugar consumption. Administering stevioside (ST), sucralose (SU), and the two synergically (SU+ST) affected normal rats' weight gain. In the current study, SU showed the highest undesired effect. Indeed, administering the three treatments to diabetic rats (DR) did not improve the rats' weight gain. Although, insulin injection synergically with the treatments improved the weight gain, as recorded after three weeks. The best-improving rate was observed in the ST group. After the administration of ST and ST+SU to the DR, the blood glucose level (GL) was positively affected, with SU having no effects on reducing the GL. A considerable reduction in serum insulin (SIL) was noted in the DR+SU group. On the contrary, ST did not negatively affect the SIL, rather an improvement was recorded. In addition, giving SU did not significantly affect the ALT level in the DR or normal rats (NR). A significant improvement in total bilirubin (TBILI) was observed when insulin was injected with ST or SU in DR groups. Further, triglycerides (TG) after administering ST, SU, or ST+SU to NR had no significant difference compared to the control group (NR). Although, the three treatments markedly but not significantly lowered TG in the DR. For total cholesterol (CHO), both DR and NR had no significant effect after the three treatments. No histopathological alterations were recorded in the NR group. Diffuse and severe atrophy of the islands of Langerhans due to depletion of their cells and mild papillary hyperplasia of the pancreatic ducts were represented by a slightly folded ductal basement membrane and newly formed ductules in STZ-DR. Simultaneous atrophy and absence of the cells of islands of Langerhans besides ductal hyperplasia were evident in DR+SU. Hyperplastic ductal epithelium and atrophic Langerhans cells were seen in DR+SU+In. Degeneration and mild atrophy were observed in the islands of Langerhans structures. There was essentially no noticeable change after utilizing ST. A slight shrinkage of the Langerhans' islets was detected in DR+ST. In DR+ST+In, no histopathological alterations in the islands of Langerhans were recorded. Congestion in the stromal blood vessels associated with degenerative and necrotic changes in the cells of the islands of Langerhans in DR+SU+ST was observed. In NR+SU, congestion of the blood vessels associated with mild atrophy in the islands of Langerhans and dilatation in stromal blood vessels was noticed. In conclusion, ST is safe, and SU should be taken cautiously, such as mixing with ST and/or taken at a very low concentration to avoid its drastic effect on the human body.


Assuntos
Diabetes Mellitus Experimental , Resistência à Insulina , Ilhotas Pancreáticas , Ratos , Animais , Humanos , Glicemia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Hiperplasia/patologia , Sacarose/farmacologia , Insulina , Aumento de Peso
10.
HPB (Oxford) ; 24(11): 2013-2021, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35927127

RESUMO

BACKGROUND: Total pancreatectomy and islet cell autotransplantation (TPIAT) offers an effective, lasting solution for the management of chronic pancreatitis up to 5-years post-operatively. Our aim was to assess durability of TPIAT at 10-years. METHODS: Patients undergoing TPIAT for chronic pancreatitis eligible for 10-year follow-up were included. Primary outcomes, including endocrine function and narcotic requirements, were reported at 5-, 7.5-, and 10-years post-operatively. RESULTS: Of the 231 patients who underwent TPIAT, 142 met inclusion criteria. All patients underwent successful TPIAT with an average of 5680.3 islet equivalents per body weight. While insulin independence tended to decrease over time (25.7% vs. 16.0% vs. 10.9%, p = 0.11) with an increase in HbA1C (7.6% vs. 8.2% vs. 8.4%, p = 0.09), partial islet function persisted (64.9% vs. 68.0% vs. 67.4%, p = 0.93). Opioid independence was achieved and remained durable in the majority (73.3% vs. 72.2% vs. 75.5%, p = 0.93). Quality of life improvements persisted, with 85% reporting improvement from baseline at 10-years. Estimated median overall survival was 202.7 months. CONCLUSION: This study represents one of the largest series reporting on long-term outcomes after TPIAT, demonstrating excellent long-term pain control and durable improvements in quality of life. Islet cell function declines over time however stable glycemic control is maintained.


Assuntos
Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Pancreatite Crônica , Humanos , Pancreatectomia/efeitos adversos , Transplante Autólogo , Transplante das Ilhotas Pancreáticas/efeitos adversos , Qualidade de Vida , Resultado do Tratamento , Pancreatite Crônica/cirurgia , Ilhotas Pancreáticas/cirurgia
11.
Cell Transplant ; 31: 9636897221086966, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35343264

RESUMO

Islet culture before clinical transplantation has been adopted by various centers, but its effect on the survival and function of islets relative to the culture conditions and media needs further assessment. Human islets were cultured or preserved under four different conditions and three media options. Parameters such as recovery, viability, function, islet damage, and gene expressions for markers of hypoxia, and inflammation were assessed after 48-h culture or preservation. Preservation of islets was performed at 4°C in Connaught's Medical Research Lab (CMRL) and University of Wisconsin (UW) media. Islets were cultured at 22°C, 37°C, and 37°C-22°C in CMRL and PRODO culture media. Islets preserved in UW solution had visually good morphology and exhibited higher recovery with less islet damage compared with the rest of the groups, whereas islets preserved in CMRL at 4°C resulted in poor morphology, recovery, viability, and function compared with the rest of the treatment conditions. Culture at 22°C and 37°C demonstrated an increase in the expression of inflammatory and hypoxia-related genes. In conclusion, islets preserved at 4°C in UW solution showed the best overall outcomes after 48 h compared with islets cultured at 22°C, 37°C, or 37°C-22°C in PRODO. Advancement in islet culture media is warranted to reduce inflammatory gene activation and improve recovery of islets for transplantation.


Assuntos
Ilhotas Pancreáticas , Soluções para Preservação de Órgãos , Adenosina , Alopurinol , Glutationa , Humanos , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Rafinose
12.
Cell Death Dis ; 13(1): 67, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-35046383

RESUMO

Short-chain fatty acids (SCFAs) produced by the gut microbiota have been well demonstrated to improve metabolic homeostasis. However, the role of SCFAs in islet function remains controversial. In the present study, none of the sodium acetate, sodium propionate, and sodium butyrate (SB) displayed acute impacts on insulin secretion from rat islets, whereas long-term incubation of the three SCFAs significantly potentiated pancreatic ß cell function. RNA sequencing (RNA-seq) revealed an unusual transcriptome change in SB-treated rat islets, with the downregulation of insulin secretion pathway and ß cell identity genes, including Pdx1, MafA, NeuroD1, Gck, and Slc2a2. But these ß cell identity genes were not governed by the pan-HDAC inhibitor trichostatin A. Overlapping analysis of H3K27Ac ChIP-seq and RNA-seq showed that the inhibitory effect of SB on the expression of multiple ß cell identity genes was independent of H3K27Ac. SB treatment increased basal oxygen consumption rate (OCR), but attenuated glucose-stimulated OCR in rat islets, without altering the expressions of genes involved in glycolysis and tricarboxylic acid cycle. SB reduced the expression of Kcnj11 (encoding KATP channel) and elevated basal intracellular calcium concentration. On the other hand, SB elicited insulin gene expression in rat islets through increasing H3K18bu occupation in its promoter, without stimulating CREB phosphorylation. These findings indicate that SB potentiates islet function as a lipid molecule at the expense of compromised expression of islet ß cell identity genes.


Assuntos
Células Secretoras de Insulina , Ilhotas Pancreáticas , Animais , Ácido Butírico/farmacologia , Ácidos Graxos Voláteis/metabolismo , Glucose/metabolismo , Glucose/farmacologia , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Ratos
13.
Braz. J. Pharm. Sci. (Online) ; 58: e20065, 2022. graf
Artigo em Inglês | LILACS | ID: biblio-1403720

RESUMO

Abstract Glucose exposure induces toxic effects on the function of the pancreatic islets. Moreover, myricitrin as a flavonoid glycoside may have favorable effects on insulin secretion of Langerhans islets. The present study aimed to investigate the effect of Myricitrin and its solid lipid nanoparticles (SLN) on the insulin secretion as well as the content of isolated pancreatic islets from male mice. In this experimental study, Langerhans islets were separated from adult male NMRI mice using the collagenase method. The insulin secretion and content of islets were assessed in glucose-containing medium (2.8, 5.6, and 16.7mM). Further, islets treated were prepared by the administration of Myricitrin and its SLN (1, 3 and 10µM). Myricitrin 3µM, and SLN containing Myricitrin 3 and 10µM increased insulin secretion in medium containing glucose concentration 2.8mM. Accordingly, this variable increased in Myricitrin 3 and 10µM, SLN containing Myricitrin 1, 3, and 10µM utilization as well as glucose concentration 5.6mM. Afterward, the insulin secretion increased in medium containing 16.7mM glucose after the addition of Myricitrin and SLN containing Myricitrin 1, 3, and 10µM. Also, the insulin content increased in Myricitrin and SLN containing Myricitrin 1, 3, and 10µM administered groups in all medium containing glucose concentrations. Myricitrin and its SLN increased islets insulin secretion and content in low, moderate, and high glucose concentration mediums


Assuntos
Animais , Masculino , Camundongos , Pâncreas/efeitos dos fármacos , Ilhotas Pancreáticas/anormalidades , Secreção de Insulina/imunologia , Organização e Administração , Nanopartículas , Insulina/efeitos adversos
14.
J Proteome Res ; 20(9): 4507-4517, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34423991

RESUMO

To characterize the impact of metabolic disease on the peptidome of human and mouse pancreatic islets, LC-MS was used to analyze extracts of human and mouse islets, purified mouse alpha, beta, and delta cells, supernatants from mouse islet incubations, and plasma from patients with type 2 diabetes. Islets were obtained from healthy and type 2 diabetic human donors, and mice on chow or high fat diet. All major islet hormones were detected in lysed islets as well as numerous peptides from vesicular proteins including granins and processing enzymes. Glucose-dependent insulinotropic peptide (GIP) was not detectable. High fat diet modestly increased islet content of proinsulin-derived peptides in mice. Human diabetic islets contained increased content of proglucagon-derived peptides at the expense of insulin, but no evident prohormone processing defects. Diabetic plasma, however, contained increased ratios of proinsulin and des-31,32-proinsulin to insulin. Active GLP-1 was detectable in human and mouse islets but 100-1000-fold less abundant than glucagon. LC-MS offers advantages over antibody-based approaches for identifying exact peptide sequences, and revealed a shift toward islet insulin production in high fat fed mice, and toward proglucagon production in type 2 diabetes, with no evidence of systematic defective prohormone processing.


Assuntos
Diabetes Mellitus Tipo 2 , Ilhotas Pancreáticas , Animais , Glucagon , Peptídeo 1 Semelhante ao Glucagon , Humanos , Insulina , Camundongos , Obesidade
15.
Biologicals ; 71: 1-8, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34039532

RESUMO

Xenogenic cell-based therapeutic products are expected to alleviate the chronic shortage of human donor organs. For example, porcine islet cell products are currently under development for the treatment of human diabetes. As porcine cells possess endogenous retrovirus (PERV), which can replicate in human cells in vitro, the potential transmission of PERV has raised concerns in the case of products that use living pig cells as raw materials. Although several PERV sequences exist in the porcine genome, not all have the ability to infect human cells. Therefore, polymerase chain reaction analysis, which amplifies a portion of the target gene, may not accurately assess the infection risk. Here, we determined porcine genome sequences and evaluated the infectivity of PERVs using high-throughput sequencing technologies. RNA sequencing was performed on both PERV-infected human cells and porcine cells, and reads mapped to PERV sequences were examined. The normalized number of the reads mapped to PERV regions was able to predict the infectivity of PERVs, indicating that it would be useful for evaluation of the PERV infection risk prior to transplantation of porcine products.


Assuntos
Retrovirus Endógenos , Gammaretrovirus , Sequenciamento de Nucleotídeos em Larga Escala , Animais , Retrovirus Endógenos/genética , Retrovirus Endógenos/patogenicidade , Gammaretrovirus/genética , Gammaretrovirus/patogenicidade , Ilhotas Pancreáticas/virologia , Suínos , Transplante Heterólogo
17.
Methods Mol Biol ; 2346: 151-164, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33319334

RESUMO

Islets of Langerhans, found in the pancreas, are microorgans essential for glucose homeostasis within the body. Many cells are found with an islet, such as beta cells (~70%), alpha cells (~20%), delta cells (~5%), F cells (~4%), and epsilon cells (1%), each with its own unique function. To better understand the roles of these cells and how cell communication alters their function, several techniques have been established such as islet isolation and beta cell dispersion. Here we describe how to isolate primary rodent islets, disperse pancreatic islets, measure intracellular calcium, and use immunofluorescent staining to distinguish beta cells and alpha cells.


Assuntos
Comunicação Celular , Separação Celular , Células Secretoras de Insulina/citologia , Ilhotas Pancreáticas/citologia , Animais , Cálcio/análise , Imunofluorescência , Ratos , Coloração e Rotulagem
18.
Cell Immunol ; 358: 104224, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33068914

RESUMO

Type 1 Diabetes (T1D) is an autoimmune disease marked by direct elimination of insulin-producing ß cells by autoreactive T effectors. Recent T1D clinical trials utilizing autologous Tregs transfers to restore immune balance and improve disease has prompted us to design a novel Tregs-based antigen-specific T1D immunotherapy. We engineered a Chimeric Antigen Receptor (CAR) expressing a single-chain Fv recognizing the human pancreatic endocrine marker, HPi2. Human T cells, transduced with the resultant HPi2-CAR, proliferated and amplified Granzyme B accumulation when co-cultured with human, but not mouse ß cells. Furthermore, following exposure of HPi2-CAR transduced cells to islets, CD8+ lymphocytes demonstrated enhanced CD107a (LAMP-1) expression, while CD4+ cells produced increased levels of IL-2. HPi2-CAR Tregs failed to maintain expansion due to a persistent tonic signaling from the CAR engagement to unexpectantly HPi2 antigen present on Tregs. Overall, we show lack of functionality of HPi2-CAR and highlight the importance of careful selection of CAR recognition driver for the sustainable activity and expandability of engineered T cells.


Assuntos
Diabetes Mellitus Tipo 1/imunologia , Protaminas/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T CD4-Positivos/imunologia , Linhagem Celular , Humanos , Tolerância Imunológica/imunologia , Imunoterapia Adotiva/métodos , Ilhotas Pancreáticas , Pâncreas/citologia , Pâncreas/metabolismo , Protaminas/metabolismo , Engenharia de Proteínas/métodos , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/metabolismo
19.
Ecotoxicol Environ Saf ; 201: 110802, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32531573

RESUMO

Extended exposure to inorganic arsenic through contaminated drinking water has been linked with increased incidence of diabetes mellitus. The most common exposure occurs through the consumption of contaminated drinking water mainly through geogenic sources of inorganic arsenic. Epigenetic modifications are important mechanisms through which environmental pollutants could exert their toxic effects. Bisulfite sequencing polymerase chain reaction method followed by Sanger sequencing was performed for DNA methylation analysis. Our results showed that sodium arsenite treatment significantly reduced insulin secretion in pancreatic islets. It was revealed that the methylation of glucose transporter 2 (Glut2) gene was changed at two cytosine-phosphate-guanine (CpG) sites (-1743, -1734) in the promoter region of the sodium arsenite-treated group comparing to the control. No changes were observed in the methylation status of peroxisome proliferator-activated receptor-gamma (PPARγ), pancreatic and duodenal homeobox 1 (Pdx1) and insulin 2 (Ins2) CpG sites in the targeted regions. Measuring the gene expression level showed increase in Glut2 expression, while the expression of insulin (INS) and Pdx1 were significantly affected by sodium arsenite treatment. This study revealed that exposure to sodium arsenite changed the DNA methylation pattern of Glut2, a key transporter of glucose entry into the pancreatic beta cells (ß-cells). Our data suggested possible epigenetic-mediated toxicity mechanism for arsenite-induced ß-cells dysfunction. Further studies are needed to dissect the precise epigenetic modulatory activity of sodium arsenite that affect the biogenesis of insulin.


Assuntos
Arsenitos/toxicidade , Metilação de DNA/efeitos dos fármacos , Transportador de Glucose Tipo 2/genética , Insulina/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Compostos de Sódio/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Epigênese Genética/efeitos dos fármacos , Proteínas de Homeodomínio/genética , Técnicas In Vitro , Insulina/genética , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Masculino , Regiões Promotoras Genéticas , Ratos , Ratos Wistar , Transativadores/genética
20.
Biomed Microdevices ; 21(4): 91, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31686215

RESUMO

Transplantation of pancreatic islets is becoming a promising therapy for people with type I diabetes. In this study, we present a compact fluidic system that enables assessment of islet functionality ex vivo for efficient islet transplantation. The fluidic system includes a micromesh sheet-embedded chip. Islets can be loaded easily on the micromesh sheet and observed clearly by microscopy. Islets on the mesh sheet mainly remained in place during perfusion and did not get damaged by hydraulic pressure because of high porosity of the micromesh sheet. The fluidic system was assembled with a sample fraction chip of polydimethylsiloxane. The chip includes a channel and columns, both having surfaces that were super-hydrophilized so that solutions could flow smoothly within the chip by gravity. Using mouse pancreatic islets, a dynamic glucose-stimulated insulin secretion test was performed to examine the performance of the fluidic system. The system successfully analyzed levels and patterns of insulin secretion upon exposure of the islets to low- and high-glucose solutions in turns, thus demonstrating its capacity to assess islet functions more easily and cost-effectively.


Assuntos
Ilhotas Pancreáticas/fisiologia , Dispositivos Lab-On-A-Chip , Animais , Dimetilpolisiloxanos , Desenho de Equipamento , Glucose/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Camundongos , Nylons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA