Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 434
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 19(5): e0287088, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38771771

RESUMO

A variety of costly research-grade imaging devices are available for the detection of spectroscopic features. Here we present an affordable, open-source and versatile device, suitable for a range of applications. We provide the files to print the imaging chamber with commonly available 3D printers and instructions to assemble it with easily available hardware. The imager is suitable for rapid sample screening in research, as well as for educational purposes. We provide details and results for an already proven set-up which suits the needs of a research group and students interested in UV-induced near-infrared fluorescence detection of microbial colonies grown on Petri dishes. The fluorescence signal confirms the presence of bacteriochlorophyll a in aerobic anoxygenic phototrophic bacteria (AAPB). The imager allows for the rapid detection and subsequent isolation of AAPB colonies on Petri dishes with diverse environmental samples. To this date, 15 devices have been build and more than 7000 Petri dishes have been analyzed for AAPB, leading to over 1000 new AAPB isolates. Parts can be modified depending on needs and budget. The latest version with automated switches and double band pass filters costs around 350€ in materials and resolves bacterial colonies with diameters of 0.5 mm and larger. The low cost and modular build allow for the integration in high school classes to educate students on light properties, fluorescence and microbiology. Computer-aided design of 3D-printed parts and programming of the employed Raspberry Pi computer could be incorporated in computer sciences classes. Students have been also inspired to do agar art with microbes. The device is currently used in seven different high schools in Finland. Additionally, a science education network of Finnish universities has incorporated it in its program for high school students. Video guides have been produced to facilitate easy operation and accessibility of the device.


Assuntos
Espectroscopia de Luz Próxima ao Infravermelho , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Fluorescência , Processos Fototróficos , Imagem Óptica/métodos , Imagem Óptica/instrumentação
2.
Anal Chim Acta ; 1308: 342611, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38740450

RESUMO

BACKGROUND: Acute kidney injury (AKI) poses a severe risk to public health, mostly manifested by damage and death of renal tubular epithelial cells. However, routine blood examination, a conventional approach for clinical detection of AKI, is not available for identifying early-stage AKI. Plenty of reported methods were lack of early biomarkers and real time evaluation tools, which resulted in a vital challenge for early diagnosis of AKI. Therefore, developing novel probes for early detection and assessment of AKI is exceedingly crucial. RESULTS: Based on ESIPT mechanism, a new fluorescent probe (MEO-NO) with 2-(2'-hydroxyphenyl) benzothiazole (HBT) derivatives as fluorophore has been synthesized for dynamic imaging peroxynitrite (ONOO-) levels in ferroptosis-mediated AKI. Upon the addition of ONOO-, MEO-NO exhibited obvious fluorescence changes, a significant Stokes shift (130 nm) and rapid response (approximately 45 s), and featured exceptional sensitivity (LOD = 7.28 nM) as well as high selectivity from the competitive species at physiological pH. In addition, MEO-NO was conducive to the biological depth imaging ONOO- in cells, zebrafish, and mice. Importantly, MEO-NO could monitor ONOO- levels during sorafenib-induced ferroptosis and CP-induced AKI. With the assistance of MEO-NO, we successfully visualized and tracked ONOO- variations for early detection and assessment of ferroptosis-mediated AKI in cells, zebrafish and mice models. SIGNIFICANCE AND NOVELTY: Benefiting from the superior performance of MEO-NO, experimental results further demonstrated that the levels of ONOO- was overexpressed during ferroptosis-mediated AKI in cells, zebrafish, and mice models. The developed novel probe MEO-NO provided a strong visualization tool for imagining ONOO-, which might be a potential method for the prevention, diagnosis, and treatment of ferroptosis-mediated AKI.


Assuntos
Injúria Renal Aguda , Ferroptose , Corantes Fluorescentes , Ácido Peroxinitroso , Peixe-Zebra , Ferroptose/efeitos dos fármacos , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Ácido Peroxinitroso/metabolismo , Injúria Renal Aguda/induzido quimicamente , Animais , Camundongos , Humanos , Imagem Óptica , Estrutura Molecular , Diagnóstico Precoce
3.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731956

RESUMO

X-ray fluorescence imaging (XFI) can localize diagnostic or theranostic entities utilizing nanoparticle (NP)-based probes at high resolution in vivo, in vitro, and ex vivo. However, small-animal benchtop XFI systems demonstrating high spatial resolution (variable from sub-millimeter to millimeter range) in vivo are still limited to lighter elements (i.e., atomic number Z≤45). This study investigates the feasibility of focusing hard X-rays from solid-target tubes using ellipsoidal lens systems composed of mosaic graphite crystals with the aim of enabling high-resolution in vivo XFI applications with mid-Z (42≤Z≤64) elements. Monte Carlo simulations are performed to characterize the proposed focusing-optics concept and provide quantitative predictions of the XFI sensitivity, in silico tumor-bearing mice models loaded with palladium (Pd) and barium (Ba) NPs. Based on simulation results, the minimum detectable total mass of PdNPs per scan position is expected to be on the order of a few hundred nanograms under in vivo conform conditions. PdNP masses as low as 150 ng to 50 ng could be detectable with a resolution of 600 µm when imaging abdominal tumor lesions across a range of low-dose (0.8 µGy) to high-dose (8 µGy) exposure scenarios. The proposed focusing-optics concept presents a potential step toward realizing XFI with conventional X-ray tubes for high-resolution applications involving interesting NP formulations.


Assuntos
Grafite , Grafite/química , Animais , Camundongos , Imagem Óptica/métodos , Método de Monte Carlo , Nanopartículas/química , Paládio/química , Simulação por Computador , Espectrometria por Raios X/métodos
4.
Anal Chem ; 96(18): 6968-6977, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38662948

RESUMO

The assessment of atherosclerosis (AS) progression has emerged as a prominent area of research. Monitoring various pathological features of foam cell (FC) formation is imperative to comprehensively assess AS progression. Herein, a simple benzospiropyran-julolidine-based probe, BSJD, with switchable dual-color imaging ability was developed. This probe can dynamically and reversibly adjust its molecular structure and fluorescent properties in different polar and pH environments. Such a polarity and pH dual-responsive characteristic makes it superior to single-responsive probes in dual-color imaging of lipid droplets (LDs) and lysosomes as well as monitoring their interaction. By simultaneously tracking various pathological features, including LD accumulation and size changes, lysosome dysfunction, and dynamically regulated lipophagy, more comprehensive information can be obtained for multiparameter assessment of FC formation progression. Using BSJD, not only the activation of lipophagy in the early stages and inhibition in the later phases during FC formation are clearly observed but also the important roles of lipophagy in regulating lipid metabolism and alleviating FC formation are demonstrated. Furthermore, BSJD is demonstrated to be capable of rapidly imaging FC plaque sites in AS mice with fast pharmacokinetics. Altogether, BSJD holds great promise as a dual-color organelle-imaging tool for investigating disease-related LD and lysosome changes and their interactions.


Assuntos
Corantes Fluorescentes , Células Espumosas , Gotículas Lipídicas , Corantes Fluorescentes/química , Células Espumosas/metabolismo , Células Espumosas/patologia , Animais , Camundongos , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/química , Lisossomos/metabolismo , Aterosclerose/metabolismo , Aterosclerose/diagnóstico por imagem , Aterosclerose/patologia , Imagem Óptica , Humanos , Células RAW 264.7 , Concentração de Íons de Hidrogênio , Cor
5.
JAMA Netw Open ; 7(4): e246548, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38639939

RESUMO

Importance: Unintended tumor-positive resection margins occur frequently during minimally invasive surgery for colorectal liver metastases and potentially negatively influence oncologic outcomes. Objective: To assess whether indocyanine green (ICG)-fluorescence-guided surgery is associated with achieving a higher radical resection rate in minimally invasive colorectal liver metastasis surgery and to assess the accuracy of ICG fluorescence for predicting the resection margin status. Design, Setting, and Participants: The MIMIC (Minimally Invasive, Indocyanine-Guided Metastasectomy in Patients With Colorectal Liver Metastases) trial was designed as a prospective single-arm multicenter cohort study in 8 Dutch liver surgery centers. Patients were scheduled to undergo minimally invasive (laparoscopic or robot-assisted) resections of colorectal liver metastases between September 1, 2018, and June 30, 2021. Exposures: All patients received a single intravenous bolus of 10 mg of ICG 24 hours prior to surgery. During surgery, ICG-fluorescence imaging was used as an adjunct to ultrasonography and regular laparoscopy to guide and assess the resection margin in real time. The ICG-fluorescence imaging was performed during and after liver parenchymal transection to enable real-time assessment of the tumor margin. Absence of ICG fluorescence was favorable both during transection and in the tumor bed directly after resection. Main Outcomes and Measures: The primary outcome measure was the radical (R0) resection rate, defined by the percentage of colorectal liver metastases resected with at least a 1 mm distance between the tumor and resection plane. Secondary outcomes were the accuracy of ICG fluorescence in detecting margin-positive (R1; <1 mm margin) resections and the change in surgical management. Results: In total, 225 patients were enrolled, of whom 201 (116 [57.7%] male; median age, 65 [IQR, 57-72] years) with 316 histologically proven colorectal liver metastases were included in the final analysis. The overall R0 resection rate was 92.4%. Re-resection of ICG-fluorescent tissue in the resection cavity was associated with a 5.0% increase in the R0 percentage (from 87.4% to 92.4%; P < .001). The sensitivity and specificity for real-time resection margin assessment were 60% and 90%, respectively (area under the receiver operating characteristic curve, 0.751; 95% CI, 0.668-0.833), with a positive predictive value of 54% and a negative predictive value of 92%. After training and proctoring of the first procedures, participating centers that were new to the technique had a comparable false-positive rate for predicting R1 resections during the first 10 procedures (odds ratio, 1.36; 95% CI, 0.44-4.24). The ICG-fluorescence imaging was associated with changes in intraoperative surgical management in 56 (27.9%) of the patients. Conclusions and Relevance: In this multicenter prospective cohort study, ICG-fluorescence imaging was associated with an increased rate of tumor margin-negative resection and changes in surgical management in more than one-quarter of the patients. The absence of ICG fluorescence during liver parenchymal transection predicted an R0 resection with 92% accuracy. These results suggest that use of ICG fluorescence may provide real-time feedback of the tumor margin and a higher rate of complete oncologic resection.


Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Idoso , Feminino , Humanos , Masculino , Estudos de Coortes , Neoplasias Colorretais/cirurgia , Neoplasias Colorretais/patologia , Verde de Indocianina , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/cirurgia , Neoplasias Hepáticas/patologia , Margens de Excisão , Imagem Óptica/métodos , Estudos Prospectivos , Pessoa de Meia-Idade
6.
ACS Nano ; 18(11): 8437-8451, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501308

RESUMO

Molecular imaging in the second near-infrared window (NIR-II) provides high-fidelity visualization of biopathological events in deep tissue. However, most NIR-II probes produce "always-on" output and demonstrate poor signal specificity toward biomarkers. Herein, we report a series of hemicyanine reporters (HBCs) with tunable emission to NIR-II window (715-1188 nm) and structurally amenable to constructing activatable probes. Such manipulation of emission wavelengths relies on rational molecular engineering by integrating benz[c,d]indolium, benzo[b]xanthonium, and thiophene moieties to a conventional hemicyanine skeleton. In particular, HBC4 and HBC5 possess bright and record long emission over 1050 nm, enabling improved tissue penetration depth and superior signal to background ratio for intestinal tract mapping than NIR-I fluorophore HC1. An activatable inflammatory reporter (AIR-PE) is further constructed for pH-triggered site-specific release in colon. Due to minimized background interference, oral gavage of AIR-PE allows clear delineation of irritated intestines and assessment of therapeutic responses in a mouse model of inflammatory bowel disease (IBD) through real-time NIRF-II imaging. Benefiting from its high fecal clearance efficiency (>90%), AIR-PE can also detect IBD and evaluate the effectiveness of colitis treatments via in vitro optical fecalysis, which outperforms typical clinical assays including fecal occult blood testing and histological examination. This study thus presents NIR-II molecular scaffolds that are not only applicable to developing versatile activatable probes for early diagnosis and prognostic monitoring of deeply seated diseases but also hold promise for future clinical translations.


Assuntos
Carbocianinas , Doenças Inflamatórias Intestinais , Imagem Óptica , Animais , Camundongos , Prognóstico , Imagem Óptica/métodos , Corantes Fluorescentes , Doenças Inflamatórias Intestinais/diagnóstico por imagem , Diagnóstico Precoce
8.
J Biomed Opt ; 29(2): 020901, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38361506

RESUMO

Significance: Over the past decade, machine learning (ML) algorithms have rapidly become much more widespread for numerous biomedical applications, including the diagnosis and categorization of disease and injury. Aim: Here, we seek to characterize the recent growth of ML techniques that use imaging data to classify burn wound severity and report on the accuracies of different approaches. Approach: To this end, we present a comprehensive literature review of preclinical and clinical studies using ML techniques to classify the severity of burn wounds. Results: The majority of these reports used digital color photographs as input data to the classification algorithms, but recently there has been an increasing prevalence of the use of ML approaches using input data from more advanced optical imaging modalities (e.g., multispectral and hyperspectral imaging, optical coherence tomography), in addition to multimodal techniques. The classification accuracy of the different methods is reported; it typically ranges from ∼70% to 90% relative to the current gold standard of clinical judgment. Conclusions: The field would benefit from systematic analysis of the effects of different input data modalities, training/testing sets, and ML classifiers on the reported accuracy. Despite this current limitation, ML-based algorithms show significant promise for assisting in objectively classifying burn wound severity.


Assuntos
Queimaduras , Pele , Humanos , Imagem Óptica/métodos , Aprendizado de Máquina , Algoritmos , Queimaduras/diagnóstico por imagem
9.
J Biomed Opt ; 29(1): 016004, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38235320

RESUMO

Significance: Fluorescence guidance is used clinically by surgeons to visualize anatomical and/or physiological phenomena in the surgical field that are difficult or impossible to detect by the naked eye. Such phenomena include tissue perfusion or molecular phenotypic information about the disease being resected. Conventional fluorescence-guided surgery relies on long, microsecond scale laser pulses to excite fluorescent probes. However, this technique only provides two-dimensional information; crucial depth information, such as the location of malignancy below the tissue surface, is not provided. Aim: We developed a depth sensing imaging technique using light detection and ranging (LiDAR) time-of-flight (TOF) technology to sense the depth of target tissue while overcoming the influence of tissue optical properties and fluorescent probe concentration. Approach: The technology is based on a large-format (512×512 pixel), binary, gated, single-photon avalanche diode (SPAD) sensor with an 18 ps time-gate step, synchronized with a picosecond pulsed laser. The fast response of the sensor was developed and tested for its ability to quantify fluorescent inclusions at depth and optical properties in tissue-like phantoms through analytical model fitting of the fast temporal remission data. Results: After calibration and algorithmic extraction of the data, the SPAD LiDAR technique allowed for sub-mm resolution depth sensing of fluorescent inclusions embedded in tissue-like phantoms, up to a maximum of 5 mm in depth. The approach provides robust depth sensing even in the presence of variable tissue optical properties and separates the effects of fluorescence depth from absorption and scattering variations. Conclusions: LiDAR TOF fluorescence imaging using an SPAD camera provides both fluorescence intensity images and the temporal profile of fluorescence, which can be used to determine the depth at which the signal is emitted over a wide field of view. The proposed tool enables fluorescence imaging at a higher depth in tissue and with higher spatial precision than standard, steady-state fluorescence imaging tools, such as intensity-based near-infrared fluorescence imaging, optical coherence tomography, Raman spectroscopy, or confocal microscopy. Integration of this technique into a standard surgical tool could enable rapid, more accurate estimation of resection boundaries, thereby improving the surgeon's efficacy and efficiency, and ultimately improving patient outcomes.


Assuntos
Neoplasias , Humanos , Neoplasias/diagnóstico por imagem , Imagens de Fantasmas , Imagem Óptica , Análise Espectral Raman/métodos , Corantes Fluorescentes
10.
Med Phys ; 51(1): 509-521, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37672219

RESUMO

BACKGROUND: Evaluation of the boron dose is essential for boron neutron capture therapy (BNCT). Nevertheless, a direct evaluation method for the boron-dose distribution has not yet been established in the clinical BNCT field. To date, even in quality assurance (QA) measurements, the boron dose has been indirectly evaluated from the thermal neutron flux measured using the activation method with gold foil or wire and an assumed boron concentration in the QA procedure. Recently, we successfully conducted optical imaging of the boron-dose distribution using a cooled charge-coupled device (CCD) camera and a boron-added liquid scintillator at the E-3 port facility of the Kyoto University Research Reactor (KUR), which supplies an almost pure thermal neutron beam with very low gamma-ray contamination. However, in a clinical accelerator-based BNCT facility, there is a concern that the boron-dose distribution may not be accurately extracted because the unwanted luminescence intensity, which is irrelevant to the boron dose is expected to increase owing to the contamination of fast neutrons and gamma rays. PURPOSE: The purpose of this research was to study the validity of a newly proposed method using a boron-added liquid scintillator and a cooled CCD camera to directly observe the boron-dose distribution in a clinical accelerator-based BNCT field. METHOD: A liquid scintillator phantom with 10 B was prepared by filling a small quartz glass container with a commercial liquid scintillator and boron-containing material (trimethyl borate); its natural boron concentration was 1 wt%. Luminescence images of the boron-neutron capture reaction were obtained in a water tank at several different depths using a CCD camera. The contribution of background luminescence, mainly due to gamma rays, was removed by subtracting the luminescence images obtained using another sole liquid scintillator phantom (natural boron concentration of 0 wt%) at each corresponding depth, and a depth profile of the boron dose with several discrete points was obtained. The obtained depth profile was compared with that of calculated boron dose, and those of thermal neutron flux which were experimentally measured or calculated using a Monte Carlo code. RESULTS: The depth profile evaluated from the subtracted images indicated reasonable agreement with the calculated boron-dose profile and thermal neutron flux profiles, except for the shallow region. This discrepancy is thought to be due to the contribution of light reflected from the tank wall. The simulation results also demonstrated that the thermal neutron flux would be severely perturbed by the 10 B-containing phantom if a relatively larger container was used to evaluate a wide range of boron-dose distributions in a single shot. This indicates a trade-off between the luminescence intensity of the 10 B-added phantom and its perturbation effect on the thermal neutron flux. CONCLUSIONS: Although a partial discrepancy was observed, the validity of the newly proposed boron-dose evaluation method using liquid-scintillator phantoms with and without 10 B was experimentally confirmed in the neutron field of an accelerator-based clinical BNCT facility. However, this study has some limitations, including the trade-off problem stated above. Therefore, further studies are required to address these limitations.


Assuntos
Terapia por Captura de Nêutron de Boro , Boro , Humanos , Terapia por Captura de Nêutron de Boro/métodos , Estudos de Viabilidade , Nêutrons , Imagens de Fantasmas , Método de Monte Carlo , Imagem Óptica , Dosagem Radioterapêutica
11.
J Biomed Opt ; 28(9): 096007, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37745774

RESUMO

Significance: Fluorescence guided surgery (FGS) has demonstrated improvements in decision making and patient outcomes for a wide range of surgical procedures. Not only can FGS systems provide a higher level of structural perfusion accuracy in tissue reconstruction cases but they can also serve for real-time functional characterization. Multiple FGS devices have been Food and Drug administration (FDA) cleared for use in open and laparoscopic surgery. Despite the rapid growth of the field, there has been a lack standardization methods. Aim: This work overviews commonalities inherent to optical imaging methods that can be exploited to produce such a standardization procedure. Furthermore, a system evaluation pipeline is proposed and executed through the use of photo-stable indocyanine green fluorescence phantoms. Five different FDA-approved open-field FGS systems are used and evaluated with the proposed method. Approach: The proposed pipeline encompasses the following characterization: (1) imaging spatial resolution and sharpness, (2) sensitivity and linearity, (3) imaging depth into tissue, (4) imaging system DOF, (5) uniformity of illumination, (6) spatial distortion, (7) signal to background ratio, (8) excitation bands, and (9) illumination wavelength and power. Results: The results highlight how such a standardization approach can be successfully implemented for inter-system comparisons as well as how to better understand essential features within each FGS setup. Conclusions: Despite clinical use being the end goal, a robust yet simple standardization pipeline before clinical trials, such as the one presented herein, should benefit regulatory agencies, manufacturers, and end-users to better assess basic performance and improvements to be made in next generation FGS systems.


Assuntos
Cirurgia Assistida por Computador , Estados Unidos , Humanos , Verde de Indocianina , Iluminação , Imagem Óptica , Perfusão
12.
ACS Nano ; 17(19): 19265-19274, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37728982

RESUMO

The dysfunction of the blood circulation system typically induces acute or chronic ischemia in limbs and vital organs, with high disability and mortality. While conventional tomographic imaging modalities have shown good performance in the diagnosis of circulatory diseases, multiple limitations remain for real-time and precise hemodynamic evaluation. Recently, fluorescence imaging in the second region of the near-infrared (NIR-II, 1000-1700 nm) has garnered great attention in monitoring and tracing various biological processes in vivo due to its advantages of high spatial-temporal resolution and real-time feature. Herein, we employed NIR-II imaging to carry out a blood circulation assessment by aggregation-induced emission fluorescent aggregates (AIE nano contrast agent, AIE NPs). Thanks to the longer excited wavelength, enhanced absorptivity, higher brightness in the NIR-II region, and broader optimal imaging window of the AIE NPs, we have realized a multidirectional assessment for blood circulation in mice with a single NIR-II imaging modality. Thus, our work provides a fluorescence contrast agent platform for accurate hemodynamic assessment.


Assuntos
Corantes Fluorescentes , Imagem Óptica , Animais , Camundongos , Imagem Óptica/métodos , Espectroscopia de Luz Próxima ao Infravermelho
13.
Theranostics ; 13(10): 3346-3367, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37351178

RESUMO

Hypoxia causes the expression of signaling molecules which regulate cell division, lead to angiogenesis, and further, in the tumor microenvironment, promote resistance to chemotherapy and radiotherapy, and induce metastasis. Photoacoustic imaging (PAI) takes advantage of unique absorption characteristics of chromophores in tissues and provides the opportunity to construct images with a high degree of spatial and temporal resolution. In this review, we discuss the physiologic characteristics of tumor hypoxia, and current applications of PAI using endogenous (label free imaging) and exogenous (organic and inorganic) contrast agents. Features of various methods in terms of their efficacy for determining physiologic and proteomic phenomena are analyzed. This review demonstrates that PAI has the potential to understand tumor growth and metastasis development through measurement of regulatory molecule concentrations, oxygen gradients, and vascular distribution.


Assuntos
Neoplasias , Técnicas Fotoacústicas , Humanos , Técnicas Fotoacústicas/métodos , Proteômica , Hipóxia Tumoral , Neoplasias/diagnóstico por imagem , Imagem Óptica/métodos , Microambiente Tumoral
14.
Ann Surg ; 278(4): e688-e694, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37218517

RESUMO

OBJECTIVE: The aim of the present randomized controlled trial was to evaluate the superiority of indocyanine green fluorescence imaging (ICG-FI) in reducing the rate of anastomotic leakage in minimally invasive rectal cancer surgery. BACKGROUND: The role of ICG-FI in anastomotic leakage in minimally invasive rectal cancer surgery is controversial according to the published literature. METHODS: This randomized, open-label, phase 3, trial was performed at 41 hospitals in Japan. Patients with clinically stage 0-III rectal carcinoma less than 12 cm from the anal verge, scheduled for minimally invasive sphincter-preserving surgery were preoperatively randomly assigned to receive a blood flow evaluation by ICG-FI (ICG+ group) or no blood flow evaluation by ICG-FI (ICG- group). The primary endpoint was the anastomotic leakage rate (grade A+B+C, expected reduction rate of 6%) analyzed in the modified intention-to-treat population. RESULTS: Between December 2018 and February 2021, a total of 850 patients were enrolled and randomized. After the exclusion of 11 patients, 839 were subject to the modified intention-to-treat population (422 in the ICG+ group and 417 in the ICG- group). The rate of anastomotic leakage (grade A+B+C) was significantly lower in the ICG+ group (7.6%) than in the ICG- group (11.8%) (relative risk, 0.645; 95% confidence interval 0.422-0.987; P =0.041). The rate of anastomotic leakage (grade B+C) was 4.7% in the ICG+ group and 8.2% in the ICG- group ( P =0.044), and the respective reoperation rates were 0.5% and 2.4% ( P =0.021). CONCLUSIONS: Although the actual reduction rate of anastomotic leakage in the ICG+ group was lower than the expected reduction rate and ICG-FI was not superior to white light, ICG-FI significantly reduced the anastomotic leakage rate by 4.2%.


Assuntos
Verde de Indocianina , Neoplasias Retais , Humanos , Fístula Anastomótica/prevenção & controle , Neoplasias Retais/diagnóstico por imagem , Neoplasias Retais/cirurgia , Perfusão , Imagem Óptica/métodos , Anastomose Cirúrgica/métodos
15.
Adv Sci (Weinh) ; 10(18): e2300564, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37083262

RESUMO

Optoacoustic imaging (OAI) enables microscale imaging of endogenous chromophores such as hemoglobin at significantly higher penetration depths compared to other optical imaging technologies. Raster-scanning optoacoustic mesoscopy (RSOM) has recently been shown to identify superficial microvascular changes associated with human skin pathologies. In animal models, the imaging depth afforded by RSOM can enable entirely new capabilities for noninvasive imaging of vascular structures in the gastrointestinal tract, but exact localization of intra-abdominal organs is still elusive. Herein the development and application of a novel transrectal absorber guide for RSOM (TAG-RSOM) is presented to enable accurate transabdominal localization and assessment of colonic vascular networks in vivo. The potential of TAG-RSOM is demonstrated through application during mild and severe acute colitis in mice. TAG-RSOM enables visualization of transmural vascular networks, with changes in colon wall thickness, blood volume, and OAI signal intensities corresponding to colitis-associated inflammatory changes. These findings suggest TAG-RSOM can provide a novel monitoring tool in preclinical IBD models, refining animal procedures and underlines the capabilities of such technologies to address inflammatory bowel diseases in humans.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Técnicas Fotoacústicas , Humanos , Animais , Camundongos , Técnicas Fotoacústicas/métodos , Pele , Imagem Óptica , Doenças Inflamatórias Intestinais/diagnóstico por imagem , Colite/diagnóstico por imagem
16.
J Fluoresc ; 33(5): 2099-2103, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36988781

RESUMO

INTRODUCTION: Indocyanine green is a fluorescent dye, the use of which is becoming more and more widespread in different areas of surgery. Several international studies deal with the dye's usefulness in intraoperative angiography, the localization of tumors, the more precise identification of anatomical structures, the detection of lymph nodes and lymph ducts, etc. The application of the dye is safe, but a suitable equipment park is required for its use, which entails relatively high costs. OBJECTIVES: The aim of our research is to create a detector system on a low budget, to be used safely in everyday practice and to illustrate its operation with practical examples at our own institute. METHODS: By modifying a web camera, using filter lenses and special LEDs, we created a device suitable for exciting and detecting indocyanine green fluorescence. We prove its excellent versatility during the following procedures at our institute: breast tumor surgery, kidney transplantation, bowel resection, parathyroid surgery and liver tumor resection. RESULTS: The finished camera has an LED light source with a peak wavelength of 780 nm, and the incoming light is filtered by a bandpass filter with a center wavelength of 832 nm. A low budget ($112), easy-to-use tool was created, which is suitable for taking advantage of the opportunities provided by indocyanine green.


Assuntos
Verde de Indocianina , Neoplasias , Humanos , Linfonodos/patologia , Linfonodos/cirurgia , Angiografia/métodos , Corantes Fluorescentes , Neoplasias/patologia , Imagem Óptica/métodos
17.
Photodiagnosis Photodyn Ther ; 42: 103507, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36940788

RESUMO

INTRODUCTION: Tissue-preserving surgery is utilized progressively in cancer therapy, where a clear surgical margin is critical to avoid cancer recurrence, specifically in breast cancer (BC) surgery. The Intraoperative pathologic approaches that rely on tissue segmenting and staining have been recognized as the ground truth for BC diagnosis. Nevertheless, these methods are constrained by its complication and timewasting for tissue preparation. OBJECTIVE: We present a non-invasive optical imaging system incorporating a hyperspectral (HS) camera to discriminate between cancerous and non-cancerous tissues in ex-vivo breast specimens, which could be an intraoperative diagnostic technique to aid surgeons during surgery and later a valuable tool to assist pathologists. METHODS: We have established a hyperspectral Imaging (HSI) system comprising a push-broom HS camera at wavelength 380∼1050 nm with source light 390∼980 nm. We have measured the investigated samples' diffuse reflectance (Rd), fixed on slides from 30 distinct patients incorporating mutually normal and ductal carcinoma tissue. The samples were divided into two groups, stained tissues during the surgery (control group) and unstained samples (test group), both captured with the HSI system in the visible and near-infrared (VIS-NIR) range. Then, to address the problem of the spectral nonuniformity of the illumination device and the influence of the dark current, the radiance data were normalized to yield the radiance of the specimen and neutralize the intensity effect to focus on the spectral reflectance shift for each tissue. The selection of the threshold window from the measured Rd is carried out by exploiting the statistical analysis by calculating each region's mean and standard deviation. Afterward, we selected the optimum spectral images from the HS data cube to apply a custom K-means algorithm and contour delineation to identify the regular districts from the BC regions. RESULTS: We noticed that the measured spectral Rd for the malignant tissues of the investigated case studies versus the reference source light varies regarding the cancer stage, as sometimes the Rd is higher for the tumor or vice versa for the normal tissue. Later, from the analysis of the whole samples, we found that the most appropriate wavelength for the BC tissues was 447 nm, which was highly reflected versus the normal tissue. However, the most convenient one for the normal tissue was at 545 nm with high reflection versus the BC tissue. Finally, we implement a moving average filter for noise reduction and a custom K-means clustering algorithm on the selected two spectral images (447, 551 nm) to identify the various regions and effectively-identified spectral tissue variations with a sensitivity of 98.95%, and specificity of 98.44%. A pathologist later confirmed these outcomes as the ground truth for the tissue sample investigations. CONCLUSIONS: The proposed system could help the surgeon and the pathologist identify the cancerous tissue margins from the non-cancerous tissue with a non-invasive, rapid, and minimum time method achieving high sensitivity up to 98.95%.


Assuntos
Neoplasias da Mama , Fotoquimioterapia , Humanos , Feminino , Mastectomia Segmentar , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes , Recidiva Local de Neoplasia , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/cirurgia , Imagem Óptica , Margens de Excisão
18.
Colloids Surf B Biointerfaces ; 223: 113155, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36724563

RESUMO

Assessment of lactic acid bacteria (LAB) activity plays a key role in the fermented food industry. Fluorescence imaging method based on dye is facile to detect LAB viability. However, it is difficult to obtain stable fluorescence, non-toxic and low-cost dyes. In this study, we prepare P- and N-doped carbon dots (PN-CDs) via microwave-assisted hydrothermal synthesis. The properties of high quantum yield (60.36%) and excitation dependence allowed for multicolor imaging of LAB (Lactobacillus plantarum [L.p] and Streptococcus thermophilus [S.t]). The abundant functional groups and positive charges (+2.34 mV) on the surface of PN-CDs facilitated their quickly integrated into cell wall of live LAB with obvious fluorescence or into dead cells. As a result, PN-CDs can not only be used to rapidly and efficiently monitor bacterial viability (one minute), but can also be used to visualize LAB division using fluorescence imaging. Importantly, the PN-CDs have potential to rapidly detect LAB activity in LAB-fermented juices.


Assuntos
Lactobacillales , Pontos Quânticos , Carbono , Corantes Fluorescentes , Imagem Óptica , Nitrogênio
19.
JAMA Otolaryngol Head Neck Surg ; 149(3): 253-260, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36633855

RESUMO

Importance: Identification and preservation of parathyroid glands (PGs) remain challenging despite advances in surgical techniques. Considerable morbidity and even mortality result from hypoparathyroidism caused by devascularization or inadvertent removal of PGs. Emerging imaging technologies hold promise to improve identification and preservation of PGs during thyroid surgery. Observation: This narrative review (1) comprehensively reviews PG identification and vascular assessment using near-infrared autofluorescence (NIRAF)-both label free and in combination with indocyanine green-based on a comprehensive literature review and (2) offers a manual for possible implementation these emerging technologies in thyroid surgery. Conclusions and Relevance: Emerging technologies hold promise to improve PG identification and preservation during thyroidectomy. Future research should address variables affecting the degree of fluorescence in NIRAF, standardization of signal quantification, definitions and standardization of parameters of indocyanine green injection that correlate with postoperative PG function, the financial effect of these emerging technologies on near-term and longer-term costs, the adoption learning curve and effect on surgical training, and long-term outcomes of key quality metrics in adequately powered randomized clinical trials evaluating PG preservation.


Assuntos
Hipoparatireoidismo , Glândulas Paratireoides , Humanos , Glândulas Paratireoides/diagnóstico por imagem , Glândulas Paratireoides/cirurgia , Glândula Tireoide/diagnóstico por imagem , Glândula Tireoide/cirurgia , Verde de Indocianina , Imagem Óptica/efeitos adversos , Imagem Óptica/métodos , Tireoidectomia/métodos , Hipoparatireoidismo/etiologia
20.
Int J Colorectal Dis ; 38(1): 7, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36625972

RESUMO

PURPOSE: The purpose of this study was to clarify the usefulness of indocyanine green fluorescence imaging (ICG-FI) in the assessment of intestinal vascular perfusion in patients who receive intracorporeal anastomosis (IA) in colon cancer surgery. METHODS: This was a single-center, retrospective study using propensity score matching. We compared the surgical outcomes of colon cancer patients who underwent laparoscopic colonic resection with IA or external anastomosis (EA) with the intraoperative evaluation of anastomotic perfusion using ICG-FI from January 2019 to July 2021. The detection rate of poor anastomotic perfusion by ICG-FI was examined. RESULTS: A total of 223 patients were enrolled. After matching, 69 patients each were classified into the IA and EA groups. There were no significant differences in age, sex, body mass index, tumor localization, or progression between the two groups. The operation time was similar (172 min vs. 171 min, p = 0.62) and the amount of bleeding was significantly lower (0 ml vs. 2 ml, p = 0.0023) in the IA group. The complication rates (grade ≥ 2) of the two groups were similar (14.5% vs. 11.6%, p = 0.59). ICG-FI identified four patients (5.8%) with poor anastomotic perfusion in the IA group, but none in the EA group (p = 0.046). All four patients with poor perfusion in the IA group underwent additional resection; none of these patients developed postoperative complications. CONCLUSION: Poor anastomotic perfusion was detected in 5.8% of cases who underwent laparoscopic colon cancer surgery with IA. ICG-FI is useful for evaluating anastomotic perfusion in IA in order to prevent AL.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Laparoscopia , Humanos , Verde de Indocianina , Neoplasias Colorretais/cirurgia , Estudos Retrospectivos , Fístula Anastomótica/etiologia , Neoplasias do Colo/diagnóstico por imagem , Neoplasias do Colo/cirurgia , Neoplasias do Colo/complicações , Anastomose Cirúrgica/efeitos adversos , Laparoscopia/efeitos adversos , Perfusão/efeitos adversos , Imagem Óptica/efeitos adversos , Imagem Óptica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA