Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 623
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Chemosphere ; 353: 141573, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428532

RESUMO

Over the last two decades, Taiwan has effectively diminished atmospheric concentrations of polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs) through the adept utilization of advanced technologies and the implementation of air pollution control devices. Despite this success, there exists a dearth of data regarding the levels of other PM2.5-bound organic pollutants and their associated health risks. To address this gap, our study comprehensively investigates the spatial and seasonal variations, potential sources, and health risks of PCDD/Fs, Polychlorinated biphenyls (PCBs), and Polychlorinated naphthalene (PCNs) in Northern and Central Taiwan. Sampling collections were conducted at three specific locations, including six municipal waste incinerators in Northern Taiwan, as well as a traffic and an industrial site in Central Taiwan. As a result, the highest mean values of PM2.5 (20.3-39.6 µg/m3) were observed at traffic sites, followed by industrial sites (14.4-39.3 µg/m3), and the vicinity of the municipal waste incinerator (12.4-29.4 µg/m3). Additionally, PCDD/Fs and PCBs exhibited discernible seasonal fluctuations, displaying higher concentrations in winter (7.53-11.9 and 0.09-0.12 fg I-TEQWHO/m3) and spring (7.02-13.7 and 0.11-0.16 fg I-TEQWHO/m3) compared to summer and autumn. Conversely, PCNs displayed no significant seasonal variations, with peak values observed in winter (0.05-0.10 fg I-TEQWHO/m3) and spring (0.03-0.08 fg I-TEQWHO/m3). Utilizing a Positive Matrix Factorization (PMF) model, sintering plants emerged as the predominant contributors to PCDD/Fs, constituting 77.9% of emissions. Woodchip boilers (68.3%) and municipal waste incinerators (21.0%) were identified as primary contributors to PCBs, while municipal waste incinerators (64.6%) along with a secondary copper and a copper sludge smelter (22.1%) were the principal sources of PCNs. Moreover, the study specified that individuals aged 19-70 in Northern Taiwan and those under the age of 12 years in Central Taiwan were found to have a significantly higher cancer risk, with values ranging from 9.26 x 10-9-1.12 x 10-7 and from 2.50 x 10-8-2.08 x 10-7respectively.


Assuntos
Poluentes Atmosféricos , Bifenilos Policlorados , Dibenzodioxinas Policloradas , Humanos , Dibenzodioxinas Policloradas/análise , Bifenilos Policlorados/análise , Poluentes Orgânicos Persistentes , Poluentes Atmosféricos/análise , Dibenzofuranos , Taiwan , Cobre , Monitoramento Ambiental , Incineração , Material Particulado , Dibenzofuranos Policlorados/análise
2.
Ecotoxicol Environ Saf ; 274: 116203, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38479313

RESUMO

PCDD/Fs are dioxins produced by waste incineration and pose risks to human health. We aimed to detail the health risks of airborne and soil PCDD/Fs near a municipal solid-waste incinerator (MSWI) for the surrounding population and develop a new model that improves upon existing methods. Thus, we conducted field sampling and then investigated a MSWI in the Pearl River Delta (2016-2018). Our results showed that the carcinogenic and non-carcinogenic risk values of PCDD/Fs exposed to residents in nearby areas were acceptable, with hazard index (HI) values lower than 1.0 and a total carcinogenic risk lower than 1.0E-6. Notably, the results raised concerns regarding higher non-carcinogenic risks in children than in adults. Comparative analysis of the frequency accumulation diagram, accumulated probability risk, and the absolute value of error (δ) between the 95% confidence interval (CI) and the 90% CI of the Monte Carlo stochastic simulation-triangular fuzzy number (MCSS-TFN) and the MCSS model, respectively, demonstrated that the MCSS-TFN exhibited less uncertainty than the MCSS model, regardless of the health risk value of PCDD/Fs in ambient air or in soil. This observation underscores the superiority of the MCSS-TFN model over other models in assessing the health risks associated with PCDD/Fs in situations with limited data. Our new method overcomes the limited dataset size and high uncertainty in assessing the health risks of dioxin substances, providing a more comprehensive understanding of their associated health risks than MCSS models.


Assuntos
Poluentes Atmosféricos , Dioxinas , Dibenzodioxinas Policloradas , Adulto , Criança , Humanos , Resíduos Sólidos , Monitoramento Ambiental/métodos , Dibenzodioxinas Policloradas/toxicidade , Dibenzodioxinas Policloradas/análise , Dibenzofuranos , Poluentes Atmosféricos/análise , Incineração , Dioxinas/toxicidade , Medição de Risco , Dibenzofuranos Policlorados/análise , Solo
3.
Waste Manag ; 177: 211-231, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38342059

RESUMO

In line with the objectives of the circular economy, the conversion of waste streams to useful and valuable side streams is a central goal. Ash represents one of the main industrial side-products, and using ashes in other than the present landfilling applications is, therefore, a high priority. This paper reviews the properties and utilization of ashes of different biomass power plants and waste incinerations, with a focus on the past decade. Possibilities for ash utilization are of uttermost importance in terms of circular economy and disposal of landfills. However, considering its applicability, ash originating from the heat treatment of chemically complex fuels, such as biomass and waste poses several challenges such as high heavy metal content and the presence of toxic and/or corrosive species. Furthermore, the physical properties of the ash might limit its usability. Nevertheless, numerous studies addressing the utilization possibilities of challenging ash in various applications have been carried out over the past decade. This review, with over 300 references, surveys the field of research, focusing on the utilization of biomass and municipal solid waste (MSW) ashes. Also, metal and phosphorus recovery from different ashes is addressed. It can be concluded that the key beneficial properties of the ash types addressed in this review are based on their i) alkaline nature suitable for neutralization reactions, ii) high adsorption capabilities to be used in CO2 capture and waste treatment, and iii) large surface area and appropriate chemical composition for the catalyst industry. Especially, ashes rich in Al2O3 and SiO2 have proven to be promising alternative catalysts in various industrial processes and as precursors for synthetic zeolites.


Assuntos
Incineração , Dióxido de Silício , Adsorção , Biomassa , Indústrias
4.
Braz J Biol ; 83: e279565, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38422257

RESUMO

In order to evaluate the level of sustainability of an integrated waste management system (IWMS), it is necessary to analyze the impact criteria. Therefore, the purpose of this study is to provide a model for IWMS optimization with the two goals of minimizing the cost and the emission of greenhouse gases of the entire system. Environmental and health problems caused by the lack of proper waste management include the increase in disease, increase in stray animals, pollution of air, water, land, etc. Therefore, it is very important to identify the indicators and improve the efficiency of the waste management system. In the present research, with descriptive-analytical approach, it has been tried to clarify and evaluate the effective indicators in two dimensions of production-segregation and collection-transportation, and find ways to improve the efficiency of the system. In this article, five waste management systems including, incineration, landfill without gas extraction system, plasma incineration, recycling and aerobic decomposition are introduced and their performance in energy production and emission reduction are compared. The results of the evaluation of the basic waste management system (b) show that the amount of pollution is equivalent to 850 kg CO2 per ton of waste. While the amount of emission in the fifth comprehensive management system is reduced to 450 kg CO2 per ton of waste. According to the results obtained in this study, in all the management systems presented, the process of burying waste in sanitary landfills has the greatest effect in increasing pollution. This means that the pollution caused by burying the waste in the sanitary landfill will be reduced with the construction of the gas extraction system and the plasma method and use in electricity production. Despite the increase in initial costs, using the right technology and using the right waste system based on the type of waste and waste recycling has an effect on the efficiency of the system.


Assuntos
Eliminação de Resíduos , Gerenciamento de Resíduos , Eliminação de Resíduos/métodos , Dióxido de Carbono , Efeito Estufa , Gerenciamento de Resíduos/métodos , Incineração
5.
Environ Pollut ; 345: 123361, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38228264

RESUMO

Fly ash from municipal solid waste incineration (MSWIFA) contains leachable heavy metals (HMs), and the environmental risk of contained HMs is an important concern for its safe treatment and disposal. This paper presents a dynamic leaching test of fly ash-based cementitious materials containing arsenic (FCAC) in three particle sizes based on an innovative simulation of two acid rainfall conditions to investigate the long-term stability of FCAC under acid rain conditions. As well as semi-dynamic leaching test by simulating FCAC in three scenarios. Furthermore, the long-term stability risk of FCAC is evaluated using a sequential extraction procedure (SEP) and the potential risk assessment index. Results showed that the Al3+ in the FCAC dissolved and reacted with the OH- in solution to form Al(OH)3 colloids as the leaching time increased. Moreover, the oxidation of sulfide minerals in the slag produced oxidants, such as H2SO4 and Fe2(SO4)3, which further aggravated the oxidative dissolution of sulfides, thereby resulting in an overall decreasing pH value of the leachate. In addition, due to the varying particle sizes of the FCAC, surface area size, and adsorption site changes, the arsenic leaching process showed three stages of leaching characteristics, namely, initial, rapid, and slow release, with a maximum leaching concentration of 2.42 mg/L, the cumulative release of 133.78 mg/kg, and the cumulative release rate of 2.32%. The SEP test revealed that the reduced state of HMs in the raw slag was lowered substantially, and the acid extractable state and residual state of HMs were increased, which was conducive to lessening the risk of FCAC. Overall, the geological polymerization reaction of MSWIFA is a viable and promising solution to stabilize mining and industrial wastes and repurpose the wastes into construction materials.


Assuntos
Arsênio , Metais Pesados , Eliminação de Resíduos , Cinza de Carvão , Eliminação de Resíduos/métodos , Carbono , Metais Pesados/análise , Incineração , Resíduos Sólidos/análise , Medição de Risco , Material Particulado
6.
Waste Manag ; 174: 203-217, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38061188

RESUMO

Medical waste (MW) is exploding due to the COVID-19 pandemic, posing a significant environmental threat, and leading to the urgent requirement for affordable and environmentally friendly MW disposal technologies. Prior research on individual MW disposal plants is region-specific, applying these results to other regions may introduce bias. In this study, major MW disposal technologies in China, i.e., incineration technologies (pyrolysis incineration and rotary kiln incineration), and sterilization technologies (steam sterilization, microwave sterilization, and chemical disinfection) with residue landfill or incineration were analyzed from an industry-level perspective via life cycle assessment (LCA), life cycle costing (LCC) and net present value (NPV) methods. Life cycle inventories and economic cost data for 4-5 typical companies were selected from 128 distinct enterprises and academic sources for each technology. LCA results show that microwave sterilization with residue incineration has the lowest environmental impact, emitting only 480 kg CO2 eq. LCC and NPV analyses indicate that steam sterilization with landfilling is the most economical, yielding revenues of 1,210 CNY/t and breaking even in the first year. Conversely, pyrolysis and rotary kiln incineration break even between the 4th and 5th years. Greenhouse gas emissions from the MW disposal in ten cities with the largest MW production in 2020 increased by 7% over 2019 to 43,800 tons and other pollutants increased by 6% to 12%. Economically, Shanghai exhibits the highest cost-effectiveness, while Nanjing delivers the lowest. It can be observed that the adoption of optimal environmental technologies has resulted in a diminution of greenhouse gas emissions by 279,000 tons and energy conservation of 1.76 billion MJ.


Assuntos
Gases de Efeito Estufa , Eliminação de Resíduos de Serviços de Saúde , Resíduos de Serviços de Saúde , Eliminação de Resíduos , Gerenciamento de Resíduos , Humanos , Eliminação de Resíduos de Serviços de Saúde/métodos , Cidades , Vapor , Análise Custo-Benefício , Pandemias , China , Incineração/métodos , Instalações de Eliminação de Resíduos , Eliminação de Resíduos/métodos , Gerenciamento de Resíduos/métodos
7.
Environ Sci Pollut Res Int ; 31(7): 9992-10012, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37697196

RESUMO

Analysing municipal solid waste (MSW) management scenarios is relevant for planning future policies and actions toward a circular economy. Life cycle assessment (LCA) is appropriate for evaluating technologies of MSW treatment and their environmental impacts. However, in developing countries, advanced assessments are difficult to introduce due to the lack of technical knowledge, data and financial support. This research aims to assess the main potentialities of the introduction of waste-to-energy (WtE) systems in a developing Argentinean urban area considering the existing regulations about MSW recycling goals. The study was conducted with WRATE software and the proposed scenarios were current management, grate incineration of raw MSW and incineration of solid recovered fuel (SRF). In addition, a sensitivity analysis on the energy matrix was included. It was found that the production of SRF allows increasing the energy generation from waste by 200% and reducing the environmental impact of about 10% regarding the current MSW management system. Acidification Potential and Abiotic Depletion Potential were sensitive to changes in electricity mix. Results showed that if MSW reduction goals are achieved, changes in MSW composition will affect the performance of WtE plants and, in some cases, they will be not technically feasible. The outcomes of this study can be of interest for developing countries stakeholders and practitioners interested in LCA and sustainable MSW management.


Assuntos
Eliminação de Resíduos , Gerenciamento de Resíduos , Animais , Resíduos Sólidos , Eliminação de Resíduos/métodos , Argentina , Gerenciamento de Resíduos/métodos , Incineração , Conservação dos Recursos Naturais , Estágios do Ciclo de Vida
8.
Bioresour Technol ; 394: 130020, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37979882

RESUMO

The study assessed a co-processing system segregating food waste (FW) with different impurities into liquid (slurry) and solid fractions and treated using anaerobic digestion (AD) and pyrolysis (Py), respectively, which is defined as ADCo-Py. Biomethane potential tests showed higher methane yield from the FW slurry fraction (572.88 mL/gVSFW) compared to the whole FW (294.37 mL/gVSFW). Pyrolyzing the FW solid fraction reduced nitrogen compounds in bio-oil by 62 % compared to the whole FW. The energy balance and economic feasibility of ADCo-Py were compared with stand-alone AD, Py, and AD integrated with incineration (ADCo-INC). While all systems required extra energy, stand-alone Py and ADCo-INC needed 3.8 and 2.8 times more energy than ADCo-Py, respectively. Techno-economic analysis favored ADCo-Py, with a net present value (NPV) of $15 million and an internal rate of return (IRR) of 34 %. These findings highlighted FW separation as a promising approach, aligning with energy and economic goals in sustainable FW management.


Assuntos
Eliminação de Resíduos , Gerenciamento de Resíduos , Perda e Desperdício de Alimentos , Alimentos , Incineração , Metano , Anaerobiose , Reatores Biológicos
9.
J Air Waste Manag Assoc ; 74(1): 1-10, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37967101

RESUMO

Herein, a novel oxygen- enriched melting process for fly ash, which uses the biogas produced from the leachate of municipal solid waste incineration (MSWI) plants, is proposed to reduce the high cost of conventional fly ash - melting technology. The fly ash composition was estimated via X-ray fluorescence analysis; the six constituent elements detected in fly ash in the decreasing order of their content were calcium, chlorine, silicon, sulfur, sodium, and potassium. Based on literature and actual production data, the average yield of the leachate was 15% of the total waste entering the MSWI plants and the COD of leachate was 30,000-75,000 mg/L. The amount of biogas that can be used per ton of fly ash was calculated to be 62.0-157.0 m3. The analysis of melting thermal equilibrium revealed the amount of biogas required per ton of fly ash as 57.8 m3. The aforementioned research findings indicate that the biogas produced by MSWI plants can successfully meet the demands of the oxygen- enriched melting of fly ash produced in these plants. By establishing an oxygen- enriched- melting pilot platform, the pilot tests of melting were conducted on fly ash; the results revealed the good melting effects of fly ash. The X-ray diffraction analysis of the slag demonstrated that the content of the vitreous body met the technical requirements for glassy substances. Furthermore, the leaching toxicity test results revealed that heavy metals were well solidified in the slag. This study presents a novel fly ash - melting scheme for MSWI fly ash, namely, biogas oxygen- enriched melting strategy, which has the advantages of technical feasibility and cost- effectiveness. The proposed technique exhibits considerable prospects for widespread application in MSWI plants in China and can play an important role in the safe disposal of fly ash.Implications: In this paper, a low- cost melting method of municipal solid waste incineration(MSWI) fly ash is proposed. This method uses the biogas generated by MSWI plant itself as fuel for melting. Through research, it has been found that the production of biogas can meet the demand for fly ash melting. Adopting biogas as a molten fuel can significantly reduce the cost of melting, thereby significantly reducing the cost of fly ash melting. This study established a pilot scale platform for the melting of biogas and conducted pilot scale experiments on fly ash and additives. The experimental results showed that the melting system operated well and achieved the vitrification of fly ash. The leaching test results of the molten slag showed that heavy metals were well solidified in the slag. The research results can be extended to the MSWI plant for application, which can significantly reduce the cost of fly ash melting disposal, and has broad application prospects.


Assuntos
Metais Pesados , Eliminação de Resíduos , Cinza de Carvão , Resíduos Sólidos , Eliminação de Resíduos/métodos , Material Particulado , Oxigênio , Biocombustíveis , Análise Custo-Benefício , Carbono , Incineração , Metais Pesados/análise
10.
Waste Manag ; 175: 1-11, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38103434

RESUMO

Pharmaceutical packaging waste has increased due to a higher global demand for pharmaceutical products, leading to more waste generation and associated environmental impacts. The main goal of this article is to present a cradle-to-grave life cycle assessment of pharmaceutical packaging, evaluating end-of-life (EoL) alternatives, aiming to identify hotspots and opportunities for improvement. A life cycle model was implemented for three types of pharmaceutical packaging (blisters, sachets, bottles; 23 packaging). The functional unit is the storage and delivery of medicines containing the same active pharmaceutical ingredient, dosage, and amount of medicines. Two EoL analyses were performed: 1) compare take-back (recycling and incineration) with domestic waste collection (landfill or incineration); and 2) assess different EoL situations of pharmaceutical packaging in Europe. A life cycle impact assessment was performed for 13 categories. Analysis 1 shows that take-back presents lower environmental impacts than domestic waste collection for seven out of 13 categories due to paper and glass recycling benefits. Analysis 2 shows that in the take-back, higher amounts of packaging are recycled or incinerated, which leads to lower EoL impacts. A sensitivity analysis was performed to evaluate the influence of parameters and assumptions in packaging EoL impacts. Packaging production contributes significantly to life cycle impacts, followed by transportation, EoL, and packing process. Ecodesign initiatives are recommended, such as packaging with less material and volume, using materials with lower impacts to significantly reduce the impacts of pharmaceutical packaging.


Assuntos
Eliminação de Resíduos , Gerenciamento de Resíduos , Animais , Preparações Farmacêuticas , Reciclagem , Instalações de Eliminação de Resíduos , Incineração , Embalagem de Produtos , Estágios do Ciclo de Vida
11.
Chemosphere ; 346: 140409, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37832893

RESUMO

Biomass, including municipal solid waste, and solar energy are two of the inevitable sources for future decarbonized energy systems. Fresnel lens thermal collectors using cheap micro-structured foils is an interesting emerging medium-temperature solar thermal design that might be of high practical value, provided that its fluctuating output is managed. This study proposes a hybrid solar-waste solution using this type of collector for multi-generation via an Organic Rankine Cycle. The cycle is specially designed for supplying low-grade heat, power, and industrial heat (which is a very critical sector to be decarbonized) taking advantage of the generated stable solar-waste medium-temperature heat at zero emission level. To achieve this optimal design, the article conducts a thorough energy-exergy-economic-environment (4E) analysis of the system and employs the non-dominated sorting genetic algorithm (NSGA II) for the optimizations. A benchmarking analysis is also conducted to show the importance of industrial heat supply in this cycle. The results show that this hybridization, owing to the cheap and flexible heat delivery of the waste incinerator as well as the low cost of the solar collectors, is very effective for efficient and cheap multi-generation. Especially for industrial heat supply, the competitive levelized cost of energy (LCOE) of 23.96 €/MWh is obtained, which is way lower than today's achievable costs in the industry.


Assuntos
Incineração , Energia Solar , Incineração/métodos , Temperatura Alta , Resíduos Sólidos/análise , Temperatura
12.
Environ Sci Technol ; 57(49): 20571-20582, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38016278

RESUMO

The chemical industry is a major and growing source of CO2 emissions. Here, we extend the principal U.S.-based integrated assessment model, GCAM, to include a representation of steam cracking, the dominant process in the organic chemical industry today, and a suite of emerging decarbonization strategies, including catalytic cracking, lower-carbon process heat, and feedstock switching. We find that emerging catalytic production technologies only have a small impact on midcentury emissions mitigation. In contrast, process heat generation could achieve strong mitigation, reducing associated CO2 emissions by ∼76% by 2050. Process heat generation is diversified to include carbon capture and storage (CCS), hydrogen, and electrification. A sensitivity analysis reveals that our results for future net CO2 emissions are most sensitive to the amount of CCS deployed globally. The system as defined cannot reach net-zero emissions if the share of incineration increases as projected without coupling incineration with CCS. Less organic chemicals are produced in a net-zero CO2 future than those in a no-policy scenario. Mitigation of feedstock emissions relies heavily on biogenic carbon used as an alternative feedstock and waste treatment of plastics. The only scenario that delivers net-negative CO2 emissions from the organic chemical sector (by 2070) combines greater use of biogenic feedstocks with a continued reliance on landfilling of waste plastic, versus recycling or incineration, which has trade-offs.


Assuntos
Dióxido de Carbono , Incineração , Dióxido de Carbono/análise , Incineração/métodos , Indústrias , Compostos Orgânicos , Carbono , Plásticos
13.
Waste Manag ; 172: 320-325, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37939603

RESUMO

In this study, we simulated the actual landfill disposal process using accelerated carbonization experiments, based on the leaching characteristics of heavy metals from "alkaline" fly ash, and used the LandSim-HELP coupling model to assess the environmental risk of the leaching. The results showed that the leaching data of "alkaline" fly ash before carbonization showed the illusion of admission to landfill with only a small amount of chemical addition or even without curing/stabilization. The leached concentrations of Zn and Cd from "alkaline" fly ash after carbonation were significantly higher. The risk assessment of the leakage of heavy metals in the case of a single artificial composite liner system showed that the exposure concentrations of Pb, Zn, and Cd in samples exceeded Standard for groundwater quality (GB/T 14848-2017) the Class III permissible limits after carbonation; exposure risk for Cd was exceeded in all samples. However, although the use of a double-layer artificial composite liner to improve the level of impermeability effectively reduced the risk of Cd leaching, so that none of the non-carcinogenic risks exceeded the standard, the carcinogenic risk of Cd in the carbonized samples exceeded the factor of 1.1-4.5 of the acceptable hazard quotient, and the contamination characteristics of the alkaline fly ash still need to be kept in view.


Assuntos
Metais Pesados , Eliminação de Resíduos , Cinza de Carvão , Cádmio , Incineração , Medição de Risco , Instalações de Eliminação de Resíduos , Carbono , Material Particulado , Eliminação de Resíduos/métodos
14.
J Environ Manage ; 344: 118691, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37536239

RESUMO

Incineration is a promising disposal method for sewage sludge (SS), enriching more than 90% of phosphorus (P) in the influent into the powdered product, sewage sludge ash (SSA), which is convenient for further P recovery. Due to insufficient bioavailable P and enriched heavy metals (HMs) in SSA, it is limited to be used directly as fertilizer. Hence, this paper provides an overview of P transformation in SS incineration, characterization of SSA components, and wet-chemical and thermochemical processes for P recovery with a comprehensive technical, economic, and environmental assessment. P extraction and purification is an important technical step to achieve P recovery from SSA, where the key to all technologies is how to achieve efficient separation of P and HMs at a low economic and environmental cost. It can be clear seen from the review that the economics of P recovery from SSA are often weak due to many factors. For example, the cost of wet-chemical methods is approximately 5∼6 €/kg P, while the cost of recovering P by thermochemical methods is about 2∼3 €/kg P, which is slightly higher than the current P fertilizer (1 €/kg P). So, for now, legislation is significant for promoting P recovery from SSA. In this regard, the relevant experience in Europe is worth learning from countries that have not yet carried out P recovery from SSA, and to develop appropriate policies and legislation according to their own national conditions.


Assuntos
Metais Pesados , Fósforo , Fósforo/análise , Esgotos/química , Fertilizantes , Incineração , Europa (Continente) , Metais Pesados/química
15.
Environ Geochem Health ; 45(11): 8243-8255, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37578561

RESUMO

Small-scale Solid Waste Thermal Treatment (SSWTT) is prevalent in remote Chinese locations. However, the ecological threats associated with heavy metals in resultant bottom ash remain undefined. This research study scrutinized such ash from eight differing sites, assessing heavy metal content, chemical form, and leaching toxicity. Most bottom ash samples met soil contamination standards for development land (GB36600-2018). However, levels of As, Cd, Cr, Cu, Ni, Pb, and Zn in some samples exceeded agricultural land standards GB15618-2018) by 1591%, 64,478%, 1880%, 3886%, 963%, 1110%, and 2011% respectively. Additionally, the As and Cd contents surpassed the construction land control limit value by 383% and 13% respectively. The mean values of the combined oxidizable and residual fraction (F3 + F4) for each heavy metal in all samples exceeded 65%, with Cr, Cu, Ni, and Pb reaching over 95%. All sample leaching concentrations, obtained via the HJ/T 299 procedure, were less than limits set by the identification standards for hazardous wastes (GB5085.3-2007). However, only the leaching concentrations of three samples via the leaching procedure HJ/T 300 met the "Solid Waste Landfill Pollution Control Standard" (GB 16889-2008). The results indicate that the location and type of SSWTT equipment play a crucial role in determining an appropriate solution for bottom ash management.


Assuntos
Cinza de Carvão , Metais Pesados , Cinza de Carvão/análise , Resíduos Sólidos , Cidades , Cádmio , Chumbo , Metais Pesados/análise , Medição de Risco , China , Incineração
16.
J Environ Manage ; 344: 118470, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37399626

RESUMO

Sustainable valorization of tannery sludge (TS) is vital for achieving several sustainable development goals (SDGs) in the tannery industry. TS is considered a hazardous waste by-product posing a significant environmental challenge. However, TS can be utilized for energy or resource recovery by considering it as biomass and implementing the circular economy (CE) concept. Therefore, this study aims to develop an innovative DPSIR (Driver, Pressure, State, Impact, and Response) framework for promoting sustainable valorization of TS. Further, the study extends to quantify the importance of subjective DPSIR factors by offering interval-valued intuitionistic fuzzy number-based best worst method (IVIFN-BWM), which is relatively new in the literature and able to deal with the uncertainty, inconsistency, imprecise, and vagueness in the decision-making process. The study also investigates the most appropriate TS valorization technologies concerning identified DPSIR factors using a novel IVIFN-combined compromise solution (CoCoSo) approach. This research contributes to the literature by developing a comprehensive solution approach that combines the DPSIR framework, IVIFN-BWM, and IVIFN-CoCoSo method in addressing sustainability and resource recovery challenges for the tannery industry. The research findings highlight the potential of sustainable valorization of TS in reducing the waste amount and promoting sustainability and CE practices in the tannery industry. The findings indicated that response factors 'creation of national-level policies and awareness campaign' and 'facilitating financial support to adopt waste valorization technologies' received the highest priority among other DPSIR factors for managing and fostering sustainable valorization of TS. The IVIFN-CoCoSo analysis confirmed that the most promising TS valorization technology is 'gasification', which is followed by pyrolysis, anaerobic digestion, and incineration. The study's implications extend to policymakers, industrial practitioners, and researchers, who can leverage the research findings to develop more sustainable TS management practices in the tannery industry.


Assuntos
Resíduos Perigosos , Esgotos , Incineração , Incerteza , Desenvolvimento Sustentável
17.
Sci Total Environ ; 900: 165894, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37524176

RESUMO

Leachate from Municipal Solid Waste (MSW) incineration plants contains multiple antibiotics. However, current knowledge of antibiotics in such leachate is very limited compared to landfill leachate. In this study, the distribution, removal and ecological risks of 8 sulfonamides (SAs), 4 quinolones (FQs), and 4 macrolides (MLs) antibiotics in leachate from three MSW incineration plants in Shanghai were investigated. The results showed that 12 types of target antibiotics were detected at high concentrations (7737.3-13,758.7 ng/L) in the fresh leachate, exceeding the concentrations reported for landfill leachate. FQs were the dominant antibiotics detected in all three fresh leachates, accounting for >60 % of the total detected concentrations. The typical "anaerobic-anoxic/aerobic-anoxic/aerobic-ultrafiltration" treatment process removed the target antibiotics effectively (89.0 %-93.4 %), of which the anaerobic unit and the primary anoxic/aerobic unit were the most important antibiotic removal units. Biodegradation was considered to be the dominant removal mechanism, removing 78.11 %-92.37 % of antibiotics, whereas sludge adsorption only removed 1.02 %-10.89 %. Antibiotic removal was significantly correlated with leachate COD, pH, TN, and NH3-N, indicating that they may be influential factors for antibiotic removal. Ecological risk assessment revealed that ofloxacin (OFX) and enrofloxacin (EFX) in the treated leachate still posed high risks to algae and crustaceans. This research provides insights into the fate of antibiotics in leachate.


Assuntos
Eliminação de Resíduos , Poluentes Químicos da Água , Resíduos Sólidos/análise , Incineração , Antibacterianos , Poluentes Químicos da Água/análise , China , Medição de Risco , Instalações de Eliminação de Resíduos , Eliminação de Resíduos/métodos
18.
Bull Environ Contam Toxicol ; 111(2): 18, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37466742

RESUMO

A comprehensive research of the polycyclic aromatic hydrocarbons (PAHs) emission from domestic waste incinerators in northern areas of Vietnam, were investigated. Sixty-four samples from two domestic waste incinerators were collected and analyzed for PAHs. The PAHs concentrations in the samples were determined using gas chromatography coupled with mass spectrometry. In April, June, September, and November 2021, Σ16PAHs mean concentrations in chimney air samples were 970.9 ± 57.4, 1061.9 ± 49.8, 1070.7 ± 41.3 and 1136.1 ± 136.5 µg m-3, respectively. The mean emission factors of Σ16PAHs were 7.5 mg/kg. The mean percentages of low molecular weight PAHs were predominant in the analyzed air samples. The toxic equivalent quotient of samples ranged from 30.7 to 41.7 mg/kg, whereas the incremental lifetime cancer risk exceeded 10- 3. This results implied a high level of concern with potentially negative health consequences. The four diagnostic ratios of PAHs were found and can be used for identification of sources markers from domestic waste incinerators.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Resíduos Sólidos , Humanos , Resíduos Sólidos/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Vietnã , Cromatografia Gasosa-Espectrometria de Massas , Incineração , Medição de Risco , Monitoramento Ambiental/métodos
19.
J Environ Manage ; 344: 118513, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37418917

RESUMO

The assessment of waste ecotoxicity (hazardous property HP14 in the European Union) is fundamental for proper waste classification and safe application/disposal. Biotests are relevant for evaluating waste complex matrices, but their efficiency is crucial to encourage their adoption at the industrial level. This work aims at evaluating possibilities of improving the efficiency of a biotest battery previously suggested in the literature, regarding test selection, duration, and/or laboratory resources optimization. Fresh incineration bottom ash (IBA) was the case study. The test battery analysed included standard aquatic (bacteria, microalgae, macrophytes, daphnids, rotifers, fairy shrimp) and terrestrial (bacteria, plants, earthworms, collembolans) organisms. The assessment followed an Extended Limit Test design (three dilutions of eluate or solid IBA) and the Lowest Ineffective Dilution (LID-approach) for ecotoxicity classification. The results emphasize the importance of testing different species. It was also evidenced that tests with daphnids and earthworms may be shortened to 24 h; the miniaturization of tests is suitable as e.g. differential sensitivity of microalgae and macrophytes was captured with low variability; alternative testing kits can be used when methodological difficulties are found. Microalgae were more sensitive than macrophytes. Similar results were found for the Thamnotoxkit and daphnids test for eluates with natural pH, so the former may be used as an alternative. B. rapa was the most sensitive organism, suggesting that it may be tested as the only terrestrial plant species and that minimum test duration is appropriate. F. candida does not appear to add information to the battery. The differences in sensitivity of A. fischeri and E. fetida compared to the remaining species were not significant enough to exclude them from the battery. Thus, this work suggests a biotest battery to test IBA comprising aquatic tests - Aliivibrio fischeri, Raphidocelis subcapitata (miniaturised test), and Daphnia magna (24 h when clear deleterious effects are observed) or Thamnocephalus platyurus (toxkit) - and terrestrial tests - Arthrobacter globiformis, Brassica rapa (14 d), and Eisenia fetida (24 h). Testing waste with natural pH is also recommended. The Extended Limit Test design considering the LID-approach seems useful in waste testing, particularly for the industry, involving low effort, test material requirements, and few laboratory resources. The LID-approach allowed for differentiating ecotoxic from non-ecotoxic effects and captured different sensitivities between species. Ecotoxicological assessment of other waste may benefit from these recommendations, but caution should be taken given the properties of each waste type.


Assuntos
Cinza de Carvão , Incineração , União Europeia , Plantas
20.
Sci Total Environ ; 897: 165372, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37419356

RESUMO

Extensive agricultural activities have been shown to degrade soils, promoting research into improving soil quality. One such method is to increase the amount of organic matter in the soil, and domestic organic residues (DOR) are commonly used for this purpose. The environmental impact of DOR-derived products, from production to agricultural application, remains unclear in current research. With the aim to have a more comprehensive understanding of the challenges and opportunities in DOR management and reuse, this study extended the boundaries of Life Cycle Assessment (LCA) to include the transport, treatment, and application of treated DOR on a national level while also quantifying soil carbon sequestration that has been less addressed in relevant LCA studies. This study focuses on The Netherlands, where incineration predominates, as a representative case to explore the benefits and trade-offs of moving towards more biotreatment for DOR. Two main biotreatments were considered, composting and anaerobic digestion. The results indicate that biotreatment of kitchen and yard residues generally has higher environmental impacts than incineration, including increased global warming and fine particulate matter formation. However, biotreatment of sewage sludge has lower environmental impacts than incineration. Substitution of nitrogen and phosphorus fertilisers with compost reduces mineral and fossil resource scarcity. In fossil-based energy systems like The Netherlands, replacing incineration with anaerobic digestion yields the highest benefit for fossil resource scarcity (61.93 %) due to energy recovery from biogas and the predominant use of fossil resources in the Dutch energy system. These findings indicate that replacing incineration with biotreatment of DOR may not benefit all impact categories in LCA. The environmental performance of substituted products can significantly influence the environmental benefits of increased biotreatment. Future studies or implementation of increased biotreatment should consider trade-offs and local context.


Assuntos
Meio Ambiente , Solo , Animais , Agricultura/métodos , Incineração , Esgotos , Estágios do Ciclo de Vida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA