Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Biochem Mol Toxicol ; 37(11): e23465, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37462216

RESUMO

The cytotoxic activities of the compounds were determined by the 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) method in human breast cancer (MCF-7), human cervical cancer (HeLa), and mouse fibroblast (L929) cell lines. The compounds MAAS-5 and four modified the supercoiled tertiary structure of pBR322 plasmid DNA. MAAS-5 showed the highest cytotoxic activity in HeLa, MCF-7, and L929 cells with IC50 values of 16.76 ± 3.22, 28.83 ± 5.61, and 2.18 ± 1.22 µM, respectively. MAAS-3 was found to have almost the lowest cytotoxic activities with the IC50 values of 93.17 ± 9.28, 181.07 ± 11.54, and 16.86 ± 6.42 µM in HeLa, MCF-7, and L929 cells respectively at 24 h. Moreover, the antiepileptic potentials of these compounds were investigated in this study. To this end, the effect of newly synthesized Schiff base derivatives on the enzyme activities of carbonic anhydrase I and II isozymes (human carbonic anhydrase [hCA] I and hCA II) was evaluated spectrophotometrically. The target compounds demonstrated high inhibitory activities compared with standard inhibitors with Ki values in the range of 4.54 ± 0.86-15.46 ± 8.65 nM for hCA I (Ki value for standard inhibitor = 12.08 ± 2.00 nM), 1.09 ± 0.32-29.94 ± 0.82 nM for hCA II (Ki value for standard inhibitor = 18.22 ± 4.90 nM). Finally, the activities of the compounds were compared with the Gaussian programme in the B3lyp, HF, M062X base sets with 6-31++G (d,p) levels. In addition, the activities of five compounds against various breast cancer proteins and hCA I and II were compared with molecular docking calculations. Also, absorption, distribution, metabolism, excretion, and toxicity analysis was performed to investigate the possibility of using five compounds as drug candidates.


Assuntos
Antineoplásicos , Neoplasias da Mama , Camundongos , Animais , Humanos , Feminino , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/química , Bases de Schiff/farmacologia , Anidrase Carbônica I , Antineoplásicos/farmacologia , Antineoplásicos/química
2.
Molecules ; 27(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36432129

RESUMO

A novel series of twenty-five rhodamine-linked benzenesulfonamide derivatives (7a-u and 9a-d) were synthesized and screened for their inhibitory action against four physiologically relevant human (h) carbonic anhydrase (CA) isoforms, namely hCA I, hCA II, hCA IX, and hCA XII. All the synthesized molecules showed good to excellent inhibition against all the tested isoforms in the nanomolar range due to the presence of the sulfonamide as a zinc binding group. The target compounds were developed from indol-3-ylchalcone-linked benzenesulfonamide where the indol-3-ylchalcone moiety was replaced with rhodanine-linked aldehydes or isatins to improve the inhibition. Interestingly, the molecules were slightly more selective towards hCA IX and XII compared to hCA I and II. The most potent and efficient ones against hCA I were 7h (KI 22.4 nM) and 9d (KI 35.8 nM) compared to the standard drug AAZ (KI 250.0 nM), whereas in case of hCA II inhibition, the derivatives containing the isatin nucleus as a tail were preferred. Collectively, all compounds were endowed with better inhibition against hCA IX compared to AAZ (KI 25.8 nM) as well as strong potency against hCA XII. Finally, these newly synthesized molecules could be taken as potential leads for the development of isoform selective hCA IX and XII inhibitors.


Assuntos
Inibidores da Anidrase Carbônica , Rodanina , Humanos , Inibidores da Anidrase Carbônica/química , Rodanina/farmacologia , Relação Estrutura-Atividade , Estrutura Molecular , Isoenzimas/metabolismo , Sulfonamidas/química , Benzenossulfonamidas
3.
J Enzyme Inhib Med Chem ; 37(1): 2256-2264, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36000171

RESUMO

In searching for new molecular drug targets, Carbonic Anhydrases (CAs) have emerged as valuable targets in diverse diseases. CAs play critical functions in maintaining pH and CO2 homeostasis, metabolic pathways, and much more. So, it is becoming attractive for medicinal chemists to design novel inhibitors for this class of enzymes with improved potency and selectivity towards the different isoforms. In the present study, three sets of carboxylic acid derivatives 5a-q, 7a-b and 12a-c were designed, developed and evaluated for the hCA inhibitory effects against hCA I, II, IX and XII. Compounds 5l, 5m, and 5q elicited the highest inhibitory activities against hCA II, IX and XII. In summary, structural rigidification, regioisomerism and structural extension, all played obvious roles in the degree of hCA inhibition. This present work could be a good starting point for the design of more non-classical selective hCA inhibitors as potential targets for several diseases.


Assuntos
Inibidores da Anidrase Carbônica , Anidrases Carbônicas , Antígenos de Neoplasias/metabolismo , Anidrase Carbônica IX/metabolismo , Inibidores da Anidrase Carbônica/química , Anidrases Carbônicas/metabolismo , Ácidos Carboxílicos/farmacologia , Estrutura Molecular , Relação Estrutura-Atividade
4.
ChemMedChem ; 15(21): 2052-2057, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-32744806

RESUMO

We report novel molecules incorporating the nontoxic squalene scaffold and different carbonic anhydrase inhibitors (CAIs). Potent inhibitory action, in the low-nanomolar range, was detected against isoforms hCA II for sulfonamide derivatives, which proved to be selective against this isoform over the tumor-associate hCA IX and XII isoforms. On the other hand, coumarin derivatives showed weak potency but high selectivity against the tumor-associated isoform CA IX. These compounds are interesting candidates for preclinical evaluation in glaucoma or various tumors in which the two enzymes are involved. In addition, an in silico study of inhibitor-bound hCA II revealed extensive interactions with the hydrophobic pocket of the active site and provided molecular insights into the binding properties of these new inhibitors.


Assuntos
Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Esqualeno/farmacologia , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Modelos Moleculares , Estrutura Molecular , Esqualeno/análogos & derivados , Esqualeno/química
5.
J Enzyme Inhib Med Chem ; 35(1): 1442-1449, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32614678

RESUMO

Coumarins are widely diffused secondary metabolites possessing a plethora of biological activities. It has been established that coumarins represent a peculiar class of human carbonic anhydrase (hCA) inhibitors having a distinct mechanism of action involving a non-classical binding with amino acid residues paving the entrance of hCA catalytic site. Herein, we report the synthesis of a small series of new coumarin derivatives 7-11, 15, 17 prepared via classical Pechmann condensation starting from resorcinol derivatives and suitable ß-ketoesters. The evaluation of inhibitory activity revealed that these compounds possessed nanomolar affinity and high selectivity towards tumour-associated hCA IX and XII over cytosolic hCA I and hCA II isoforms. To investigate the binding mode of these new coumarin-inspired inhibitors, the most active compounds 10 and 17 were docked within hCA XII catalytic cleft.


Assuntos
Anidrase Carbônica IX/antagonistas & inibidores , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Simulação de Acoplamento Molecular , Neoplasias/enzimologia , Umbeliferonas/farmacologia , Antígenos de Neoplasias/metabolismo , Anidrase Carbônica IX/metabolismo , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Umbeliferonas/síntese química , Umbeliferonas/química
6.
Angew Chem Int Ed Engl ; 59(16): 6535-6539, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32022355

RESUMO

Structure-based drug development is often hampered by the lack of in vivo activity of promising compounds screened in vitro, due to low membrane permeability or poor intracellular binding selectivity. Herein, we show that ligand screening can be performed in living human cells by "intracellular protein-observed" NMR spectroscopy, without requiring enzymatic activity measurements or other cellular assays. Quantitative binding information is obtained by fast, inexpensive 1 H NMR experiments, providing intracellular dose- and time-dependent ligand binding curves, from which kinetic and thermodynamic parameters linked to cell permeability and binding affinity and selectivity are obtained. The approach was applied to carbonic anhydrase and, in principle, can be extended to any NMR-observable intracellular target. The results obtained are directly related to the potency of candidate drugs, that is, the required dose. The application of this approach at an early stage of the drug design pipeline could greatly increase the low success rate of modern drug development.


Assuntos
Desenho de Fármacos , Espectroscopia de Ressonância Magnética , Preparações Farmacêuticas/química , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/metabolismo , Anidrases Carbônicas/química , Anidrases Carbônicas/metabolismo , Linhagem Celular , Humanos , Ligantes , Preparações Farmacêuticas/metabolismo , Sulfonamidas/química , Sulfonamidas/metabolismo , Termodinâmica
7.
Eur J Med Chem ; 181: 111573, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31394463

RESUMO

The carbonic anhydrase (CA) inhibitory activity of newly synthesized compounds 4-21 against the human CA (hCA) isoforms I, II, IX, and XII was measured and compared to that of standard sulfonamide inhibitors, acetazolamide (AAZ) and SLC-0111. Among this series; benzensulfonamides 6-11 gave the best potent hCA inhibitors with inhibition constants (KIs) ranging from 81.9 to 456.6 nM (AAZ and SLC-0111: KIs, 250.0 and 5080 nM, respectively). Compounds 6-11 proved to be effective hCA II inhibitors (KIs, 8.9-51.5 nM); they were almost equally potent to AAZ (KI, 12.0 nM) and had superior potency to SLC-0111 (KI, 960.0 nM). For hCA IX inhibition, compounds 6-11 proved to be potent inhibitors, with KI values of 3.9-36.0 nM, which were greater than or equal to that of AAZ and greater than that of SLC-0111 (KIs, 25.0 and 45.0 nM, respectively). For hCA XII inhibitory activity, compounds 6-11 displayed effective inhibition with KI values ranging from 4.6 to 86.3 nM and were therefore comparable to AAZ and SLC-0111 (KIs, 5.7 and 4.5 nM, respectively). Molecular docking studies of compounds 6, 7, 10, and 11 were conducted using the crystal structures of hCA isozymes I, II, IX, and XII to study their binding interactions for further lead optimization.


Assuntos
Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/farmacologia , Sulfonamidas/química , Sulfonamidas/farmacologia , Derivados de Benzeno/síntese química , Derivados de Benzeno/química , Derivados de Benzeno/farmacologia , Anidrase Carbônica I/antagonistas & inibidores , Anidrase Carbônica I/metabolismo , Anidrase Carbônica II/antagonistas & inibidores , Anidrase Carbônica II/metabolismo , Anidrase Carbônica IX/antagonistas & inibidores , Anidrase Carbônica IX/metabolismo , Inibidores da Anidrase Carbônica/síntese química , Anidrases Carbônicas/metabolismo , Humanos , Simulação de Acoplamento Molecular , Sulfonamidas/síntese química
8.
J Enzyme Inhib Med Chem ; 34(1): 75-86, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30362386

RESUMO

Carbonic anhydrase IX (CA IX) has recently been validated as an antitumor/antimetastatic drug target. In this study, we examined the underlying molecular mechanisms and the anticancer activity of sulfonamide CA IX inhibitors against cervical cancer cell lines. The effects of several sulfonamides on HeLa, MDA-MB-231, HT-29 cancer cell lines, and normal cell lines (HEK-293, PNT-1A) viability were determined. The compounds showed high cytotoxic and apoptotic activities, mainly against HeLa cells overexpressing CA IX. We were also examined for intracellular reactive oxygen species (ROS) production; intra-/extracellular pH changes, for inhibition of cell proliferation, cellular mitochondrial membrane potential change and for the detection of caspase 3, 8, 9, and CA IX protein levels. Of the investigated sulfonamides, one compound was found to possess high cytotoxic and anti-proliferative effects in HeLa cells. The cytotoxic effect occurred via apoptosis, being accompanied by a return of pHe/pHi towards normal values as for other CA IX inhibitors investigated earlier.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Anidrase Carbônica IX/antagonistas & inibidores , Inibidores da Anidrase Carbônica/farmacologia , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/química , Anidrase Carbônica IX/genética , Anidrase Carbônica IX/metabolismo , Inibidores da Anidrase Carbônica/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estrutura Molecular , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade
9.
Med Res Rev ; 38(6): 1799-1836, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29635752

RESUMO

Human carbonic anhydrase (CA) IX is a tumor-associated protein, since it is scarcely present in normal tissues, but highly overexpressed in a large number of solid tumors, where it actively contributes to survival and metastatic spread of tumor cells. Due to these features, the characterization of its biochemical, structural, and functional features for drug design purposes has been extensively carried out, with consequent development of several highly selective small molecule inhibitors and monoclonal antibodies to be used for different purposes. Aim of this review is to provide a comprehensive state-of-the-art of studies performed on this enzyme, regarding structural, functional, and biomedical aspects, as well as the development of molecules with diagnostic and therapeutic applications for cancer treatment. A brief description of additional pharmacologic applications for CA IX inhibition in other diseases, such as arthritis and ischemia, is also provided.


Assuntos
Anidrase Carbônica IX/antagonistas & inibidores , Inibidores da Anidrase Carbônica/uso terapêutico , Terapia de Alvo Molecular , Metástase Neoplásica/tratamento farmacológico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Células-Tronco Neoplásicas/patologia , Anidrase Carbônica IX/química , Anidrase Carbônica IX/metabolismo , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/farmacologia , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos
10.
J Enzyme Inhib Med Chem ; 32(1): 1079-1090, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28783982

RESUMO

Carbonic anhydrase IX (CA IX) is an important orchestrator of hypoxic tumour environment, associated with tumour progression, high incidence of metastasis and poor response to therapy. Due to its tumour specificity and involvement in associated pathological processes: tumourigenesis, angiogenesis, inhibiting CA IX enzymatic activity has become a valid therapeutic option. Dynamic cell-based biosensing platforms can complement cell-free and end-point analyses and supports the process of design and selection of potent and selective inhibitors. In this context, we assess the effectiveness of recently emerged CA IX inhibitors (sulphonamides and sulphocoumarins) and their antitumour potential using an electrical impedance spectroscopy biosensing platform. The analysis allows discriminating between the inhibitory capacities of the compounds and their inhibition mechanisms. Microscopy and biochemical assays complemented the analysis and validated impedance findings establishing a powerful biosensing tool for the evaluation of carbonic anhydrase inhibitors potency, effective for the screening and design of anticancer pharmacological agents.


Assuntos
Antineoplásicos/farmacologia , Anidrase Carbônica IX/antagonistas & inibidores , Inibidores da Anidrase Carbônica/farmacologia , Cumarínicos/farmacologia , Impedância Elétrica , Sulfonamidas/farmacologia , Hipóxia Tumoral/efeitos dos fármacos , Antineoplásicos/síntese química , Antineoplásicos/química , Anidrase Carbônica IX/metabolismo , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cumarínicos/síntese química , Cumarínicos/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HT29 , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química , Células Tumorais Cultivadas
11.
J Med Chem ; 60(6): 2456-2469, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28253618

RESUMO

We report two series of novel benzenesulfonamide derivatives acting as effective carbonic anhydrase (CA, EC 4.2.1.1) inhibitors. The synthesized compounds were tested against human (h) isoforms hCA I, hCA II, hCA VII, and hCA XII. The first series of compounds, 4-(3-(2-(4-substitued piperazin-1-yl)ethyl)ureido)benzenesulfonamides, showed low nanomolar inhibitory action against hCA II, being less effective against the other isoforms. The second series, 2-(4-substitued piperazin-1-yl)-N-(4-sulfamoylphenyl)acetamide derivatives, showed low nanomolar inhibitory activity against hCA II and hCA VII, isoforms involved in epileptogenesis. Some of these derivatives were evaluated for their anticonvulsant activity and displayed effective seizure protection against MES and scPTZ induced seizures in Swiss Albino mice. These sulfonamides were also found effective upon oral administration to Wistar rats and inhibited MES induced seizure episodes in this animal model of the disease. Some of the new compounds showed a long duration of action in the performed time course anticonvulsant studies, being nontoxic in subacute toxicity studies.


Assuntos
Anticonvulsivantes/química , Anticonvulsivantes/uso terapêutico , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/uso terapêutico , Convulsões/tratamento farmacológico , Sulfonamidas/química , Sulfonamidas/uso terapêutico , Animais , Anticonvulsivantes/farmacologia , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Desenho de Fármacos , Humanos , Masculino , Camundongos , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/metabolismo , Ratos Wistar , Convulsões/metabolismo , Relação Estrutura-Atividade , Sulfonamidas/farmacologia , Benzenossulfonamidas
12.
Mol Inform ; 36(4)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27860295

RESUMO

Due to its physiological and clinical roles, carbonic anhydrase (CA) is one of the most interesting case studies. There are different classes of CAinhibitors including sulfonamides, polyamines, coumarins and dithiocarbamates (DTCs). However, many of them hardly act as a selective inhibitor against a specific isoform. Therefore, finding highly selective inhibitors for different isoforms of CA is still an ongoing project. Proteochemometrics modeling (PCM) is able to model the bioactivity of multiple compounds against different isoforms of a protein. Therefore, it would be extremely applicable when investigating the selectivity of different ligands towards different receptors. Given the facts, we applied PCM to investigate the interaction space and structural properties that lead to the selective inhibition of CA isoforms by some dithiocarbamates. Our models have provided interesting structural information that can be considered to design compounds capable of inhibiting different isoforms of CA in an improved selective manner. Validity and predictivity of the models were confirmed by both internal and external validation methods; while Y-scrambling approach was applied to assess the robustness of the models. To prove the reliability and the applicability of our findings, we showed how ligands-receptors selectivity can be affected by removing any of these critical findings from the modeling process.


Assuntos
Inibidores da Anidrase Carbônica/metabolismo , Anidrases Carbônicas/metabolismo , Algoritmos , Sequência de Aminoácidos , Sítios de Ligação , Inibidores da Anidrase Carbônica/química , Anidrases Carbônicas/química , Isoenzimas/química , Isoenzimas/metabolismo , Cinética , Estrutura Terciária de Proteína , Relação Quantitativa Estrutura-Atividade , Alinhamento de Sequência
13.
Med Chem ; 11(4): 336-41, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25470505

RESUMO

A library of twenty-five derivatives of 2-substituted quinazolin-4(3H)-ones 1-25 was synthesized and evaluated against phosphodiesterase-I (PDE) and carbonic anhydrase-II (CA). Compounds 17 (IC50 = 210.7 ± 2.62 µM), 16 (IC50 = 301.6 ± 1.18 µM), and 13 (IC50 = 458.13 ± 3.60 µM), selectively exhibited PDE inhibition while compounds 22 (IC50 = 61.33 ± 2.38 µM), 1 (IC50 = 108.30 ± 0.93 µM), and 21 (IC50 = 191.93 ± 2.72 µM), discriminatingly exhibited CA inhibition as compared to standards EDTA (IC50 = 277.69 ± 2.52 µM) and acetazolamide (IC50 = 0.12 ± 0.03 µM), for PDE and CA inhibitions, respectively. However, compound 15 was found to be active against both enzymes with the IC50 values 344.33 ± 4.32 µM and 20.94 ± 0.58 µM, for PDE and CA inhibitions, respectively. Remaining compounds were found to be inactive against both the enzymes. Structure-activity relationship studies are discussed herein.


Assuntos
Anidrase Carbônica II/antagonistas & inibidores , Inibidores da Anidrase Carbônica/síntese química , Fosfodiesterase I/antagonistas & inibidores , Inibidores de Fosfodiesterase/síntese química , Quinazolinonas/síntese química , Bibliotecas de Moléculas Pequenas/síntese química , Acetazolamida/química , Animais , Anidrase Carbônica II/química , Anidrase Carbônica II/isolamento & purificação , Inibidores da Anidrase Carbônica/química , Desenho de Fármacos , Ácido Edético/química , Ensaios Enzimáticos , Estrutura Molecular , Fosfodiesterase I/química , Fosfodiesterase I/isolamento & purificação , Inibidores de Fosfodiesterase/química , Quinazolinonas/química , Bibliotecas de Moléculas Pequenas/química , Serpentes/metabolismo , Soluções , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA