Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Fish Physiol Biochem ; 47(2): 265-279, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33405060

RESUMO

Biological organisms are constantly challenged by xenobiotics and have evolved mechanisms to reduce, neutralize, or repair toxic outcomes. The various chemical defenses all utilize energy, but their specific costs and impacts on energy budgets are currently unknown. In this study, the energetic costs associated with the induction and substrate transport of the efflux transporter P-glycoprotein (P-gp [ABCB1, MDR1]) were examined in rainbow trout. An intraperitoneal injection of the P-gp inducer clotrimazole (0, 0.1, 1.0, and 10 mg/kg) increased P-gp activity (as measured by a competitive rhodamine 123 transport assay in hepatocytes) in a dose-dependent manner reaching a maximum induction of 2.8-fold. Maximum P-gp induction occurred at 50 h post-administration with the highest dose; significant induction of P-gp activity remained elevated over constitutive values until the last sampling time point (168 h). In vitro measurements of hepatocyte respiration indicated that basal P-gp activity transporting R123 as a substrate did not significantly increase respiration rates (range 18.0 to 23.2 ng O2/min/106 cells); however, following the induction of P-gp by clotrimazole and exposure to the P-gp substrate R123, respiration rates increased significantly (3.52-fold) over baseline values. Using whole animal respirometry, it was shown that respiration rates in fish exposed to R123 only or induced with clotrimazole were not different from controls (range 1.2 to 2.1 mg O2/kg/min); however, respiration rates were significantly increased in fish with induced P-gp levels and also exposed to R123. This work indicates that basal and induced levels of P-gp activity do not incur significant energetic costs to fish; however, upon induction of P-gp and concomitant substrate exposures, energetic costs can increase and could pose challenges to organisms facing limited energy resources.


Assuntos
Inibidores de 14-alfa Desmetilase/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Clotrimazol/farmacologia , Metabolismo Energético/fisiologia , Oncorhynchus mykiss/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Animais , Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/fisiologia , Consumo de Oxigênio
2.
Biochim Biophys Acta Proteins Proteom ; 1868(3): 140206, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-30851431

RESUMO

The cytochrome P450 enzyme lanosterol 14α-demethylase (LDM) is the target of the azole antifungals used widely in medicine and agriculture as prophylaxis or treatments of infections or diseases caused by fungal pathogens. These drugs and agrochemicals contain an imidazole, triazole or tetrazole substituent, with one of the nitrogens in the azole ring coordinating as the sixth axial ligand to the LDM heme iron. Structural studies show that this membrane bound enzyme contains a relatively rigid ligand binding pocket comprised of a deeply buried heme-containing active site together with a substrate entry channel and putative product exit channel that reach to the membrane. Within the ligand binding pocket the azole antifungals have additional affinity determining interactions with hydrophobic side-chains, the polypeptide backbone and via water-mediated hydrogen bond networks. This review will describe the tools that can be used to identify and characterise the next generation of antifungals targeting LDM, with the goal of obtaining highly potent broad-spectrum fungicides that will be able to avoid target and drug efflux mediated antifungal resistance.


Assuntos
Inibidores de 14-alfa Desmetilase/farmacologia , Antifúngicos/farmacologia , Esterol 14-Desmetilase/química , Inibidores de 14-alfa Desmetilase/química , Inibidores de 14-alfa Desmetilase/economia , Inibidores de 14-alfa Desmetilase/uso terapêutico , Agroquímicos/química , Animais , Antifúngicos/química , Antifúngicos/economia , Antifúngicos/uso terapêutico , Azóis/química , Azóis/economia , Azóis/farmacologia , Azóis/uso terapêutico , Descoberta de Drogas , Ecossistema , Abastecimento de Alimentos , Humanos , Camundongos , Micoses/tratamento farmacológico , Esterol 14-Desmetilase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA