Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 394
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell Biochem Funct ; 42(4): e4038, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38736214

RESUMO

The generation of insulin-producing cells (IPCs) is an attractive approach for replacing damaged ß cells in diabetic patients. In the present work, we introduced a hybrid platform of decellularized amniotic membrane (dAM) and fibrin encapsulation for differentiating adipose tissue-derived stem cells (ASCs) into IPCs. ASCs were isolated from healthy donors and characterized. Human AM was decellularized, and its morphology, DNA, collagen, glycosaminoglycan (GAG) contents, and biocompatibility were evaluated. ASCs were subjected to four IPC differentiation methods, and the most efficient method was selected for the experiment. ASCs were seeded onto dAM, alone or encapsulated in fibrin gel with various thrombin concentrations, and differentiated into IPCs according to a method applying serum-free media containing 2-mercaptoethanol, nicotinamide, and exendin-4. PDX-1, GLUT-2 and insulin expression were evaluated in differentiated cells using real-time PCR. Structural integrity and collagen and GAG contents of AM were preserved after decellularization, while DNA content was minimized. Cultivating ASCs on dAM augmented their attachment, proliferation, and viability and enhanced the expression of PDX-1, GLUT-2, and insulin in differentiated cells. Encapsulating ASCs in fibrin gel containing 2 mg/ml fibrinogen and 10 units/ml thrombin increased their differentiation into IPCs. dAM and fibrin gel synergistically enhanced the differentiation of ASCs into IPCs, which could be considered an appropriate strategy for replacing damaged ß cells.


Assuntos
Tecido Adiposo , Diferenciação Celular , Fibrina , Insulina , Células-Tronco , Humanos , Diferenciação Celular/efeitos dos fármacos , Fibrina/química , Fibrina/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Células-Tronco/metabolismo , Células-Tronco/citologia , Insulina/metabolismo , Células Cultivadas , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/citologia , Matriz Extracelular Descelularizada/química , Matriz Extracelular Descelularizada/metabolismo , Matriz Extracelular Descelularizada/farmacologia , Âmnio/citologia , Âmnio/metabolismo , Âmnio/química
2.
Artif Intell Med ; 151: 102868, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38632030

RESUMO

Proper insulin management is vital for maintaining stable blood sugar levels and preventing complications associated with diabetes. However, the soaring costs of insulin present significant challenges to ensuring affordable management. This paper conducts a comprehensive review of current literature on the application of machine learning (ML) in insulin management for diabetes patients, particularly focusing on enhancing affordability and accessibility within the United States. The review encompasses various facets of insulin management, including dosage calculation and response, prediction of blood glucose and insulin sensitivity, initial insulin estimation, resistance prediction, treatment adherence, complications, hypoglycemia prediction, and lifestyle modifications. Additionally, the study identifies key limitations in the utilization of ML within the insulin management literature and suggests future research directions aimed at furthering accessible and affordable insulin treatments. These proposed directions include exploring insurance coverage, optimizing insulin type selection, assessing the impact of biosimilar insulin and market competition, considering mental health factors, evaluating insulin delivery options, addressing cost-related issues affecting insulin usage and adherence, and selecting appropriate patient cost-sharing programs. By examining the potential of ML in addressing insulin management affordability and accessibility, this work aims to envision improved and cost-effective insulin management practices. It not only highlights existing research gaps but also offers insights into future directions, guiding the development of innovative solutions that have the potential to revolutionize insulin management and benefit patients reliant on this life-saving treatment.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Insulina , Aprendizado de Máquina , Humanos , Glicemia/metabolismo , Glicemia/análise , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/economia , Insulina/economia , Insulina/metabolismo , Insulina/uso terapêutico
3.
Diabetes ; 73(4): 554-564, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38266068

RESUMO

Assessment of pancreas cell type composition is crucial to the understanding of the genesis of diabetes. Current approaches use immunodetection of protein markers, for example, insulin as a marker of ß-cells. A major limitation of these methods is that protein content varies in physiological and pathological conditions, complicating the extrapolation to actual cell number. Here, we demonstrate the use of cell type-specific DNA methylation markers for determining the fraction of specific cell types in human islet and pancreas specimens. We identified genomic loci that are uniquely demethylated in specific pancreatic cell types and applied targeted PCR to assess the methylation status of these loci in tissue samples, enabling inference of cell type composition. In islet preparations, normalization of insulin secretion to ß-cell DNA revealed similar ß-cell function in pre-type 1 diabetes (T1D), T1D, and type 2 diabetes (T2D), which was significantly lower than in donors without diabetes. In histological pancreas specimens from recent-onset T1D, this assay showed ß-cell fraction within the normal range, suggesting a significant contribution of ß-cell dysfunction. In T2D pancreata, we observed increased α-cell fraction and normal ß-cell fraction. Methylation-based analysis provides an accurate molecular alternative to immune detection of cell types in the human pancreas, with utility in the interpretation of insulin secretion assays and the assessment of pancreas cell composition in health and disease.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Células Secretoras de Glucagon , Células Secretoras de Insulina , Ilhotas Pancreáticas , Humanos , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Ilhotas Pancreáticas/metabolismo , Metilação de DNA , Pâncreas/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Glucagon/metabolismo
4.
Nat Rev Endocrinol ; 20(4): 239-251, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38225400

RESUMO

In eukaryotic cells, the mammalian target of rapamycin complex 1 (sometimes referred to as the mechanistic target of rapamycin complex 1; mTORC1) orchestrates cellular metabolism in response to environmental energy availability. As a result, at the organismal level, mTORC1 signalling regulates the intake, storage and use of energy by acting as a hub for the actions of nutrients and hormones, such as leptin and insulin, in different cell types. It is therefore unsurprising that deregulated mTORC1 signalling is associated with obesity. Strategies that increase energy expenditure offer therapeutic promise for the treatment of obesity. Here we review current evidence illustrating the critical role of mTORC1 signalling in the regulation of energy expenditure and adaptive thermogenesis through its various effects in neuronal circuits, adipose tissue and skeletal muscle. Understanding how mTORC1 signalling in one organ and cell type affects responses in other organs and cell types could be key to developing better, safer treatments targeting this pathway in obesity.


Assuntos
Obesidade , Transdução de Sinais , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Obesidade/metabolismo , Transdução de Sinais/fisiologia , Insulina/metabolismo , Metabolismo Energético/fisiologia
5.
J Endocrinol ; 260(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38198372

RESUMO

Metabolic tests are vital to determine in vivo insulin sensitivity and glucose metabolism in preclinical models, usually rodents. Such tests include glucose tolerance tests, insulin tolerance tests, and glucose clamps. Although these tests are not standardized, there are general guidelines for their completion and analysis that are constantly being refined. In this review, we describe metabolic tests in rodents as well as factors to consider when designing and performing these tests.


Assuntos
Resistência à Insulina , Humanos , Glicemia/metabolismo , Teste de Tolerância a Glucose , Técnica Clamp de Glucose , Insulina/metabolismo
6.
Transpl Int ; 36: 11512, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37885808

RESUMO

Islet transplantation improves metabolic control in patients with unstable type 1 diabetes. Clinical outcomes have been improving over the last decade, and the widely used beta-score allows the evaluation of transplantation results. However, predictive pre-transplantation criteria of islet quality for clinical outcomes are lacking. In this proof-of-concept study, we examined whether characterization of the electrical activity of donor islets could provide a criterion. Aliquots of 8 human donor islets from the STABILOT study, sampled from islet preparations before transplantation, were characterized for purity and split for glucose-induced insulin secretion and electrical activity using multi-electrode-arrays. The latter tests glucose concentration dependencies, biphasic activity, hormones, and drug effects (adrenalin, GLP-1, glibenclamide) and provides a ranking of CHIP-scores from 1 to 6 (best) based on electrical islet activity. The analysis was performed online in real time using a dedicated board or offline. Grouping of beta-scores and CHIP-scores with high, intermediate, and low values was observed. Further analysis indicated correlation between CHIP-score and beta-score, although significance was not attained (R = 0.51, p = 0.1). This novel approach is easily implantable in islet isolation units and might provide means for the prediction of clinical outcomes. We acknowledge the small cohort size as the limitation of this pilot study.


Assuntos
Diabetes Mellitus Tipo 1 , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Humanos , Insulina/metabolismo , Glicemia/análise , Projetos Piloto , Transplante das Ilhotas Pancreáticas/métodos , Diabetes Mellitus Tipo 1/cirurgia , Glucose/metabolismo , Glucose/farmacologia
7.
PLoS One ; 18(10): e0293217, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37862340

RESUMO

BACKGROUND: Epigenetic modifications, particularly histone acetylation-deacetylation and its related enzymes, such as sirtuin 1 (SIRT1) deacetylase, may have substantial roles in the pathogenesis of obesity and its associated health issues. This study aimed to evaluate global histone acetylation status and SIRT1 gene expression in children and adolescents with obesity and their association with metabolic and anthropometric parameters. METHODS: This study included 60 children and adolescents, 30 with obesity and 30 normal-weight. The evaluation consisted of the analysis of global histone acetylation levels and the expression of the SIRT1 gene in peripheral blood mononuclear cells, by specific antibody and real-time PCR, respectively. Additionally, insulin, fasting plasma glucose, lipid profile and tumor necrosis factor α (TNF-α) levels were measured. Insulin resistance was assessed using the homeostasis model assessment of insulin resistance (HOMA-IR). Metabolic syndrome was determined based on the diagnostic criteria established by IDF. RESULTS: Individuals with obesity, particularly those with insulin resistance, had significantly higher histone acetylation levels compared to control group. Histone acetylation was positively correlated with obesity indices, TNF-α, insulin, and HOMA-IR. Additionally, a significant decrease in SIRT1 gene expression was found among obese individuals, which was negatively correlated with the histone acetylation level. Furthermore, SIRT1 expression levels showed a negative correlation with various anthropometric and metabolic parameters. CONCLUSION: Histone acetylation was enhanced in children and adolescents with obesity, potentially resulting from down-regulation of SIRT1, and could play a role in the obesity-associated metabolic abnormalities and insulin resistance. Targeting global histone acetylation modulation might be considered as an epigenetic approach for early obesity management.


Assuntos
Resistência à Insulina , Obesidade Infantil , Humanos , Adolescente , Criança , Obesidade Infantil/genética , Resistência à Insulina/fisiologia , Sirtuína 1/genética , Sirtuína 1/metabolismo , Histonas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Acetilação , Leucócitos Mononucleares/metabolismo , Insulina/metabolismo , Índice de Massa Corporal
8.
Cell Rep ; 42(6): 112615, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37294632

RESUMO

Type 2 diabetes is characterized by insulin hypersecretion followed by reduced glucose-stimulated insulin secretion (GSIS). Here we show that acute stimulation of pancreatic islets with the insulin secretagogue dextrorphan (DXO) or glibenclamide enhances GSIS, whereas chronic treatment with high concentrations of these drugs reduce GSIS but protect islets from cell death. Bulk RNA sequencing of islets shows increased expression of genes for serine-linked mitochondrial one-carbon metabolism (OCM) after chronic, but not acute, stimulation. In chronically stimulated islets, more glucose is metabolized to serine than to citrate, and the mitochondrial ATP/ADP ratio decreases, whereas the NADPH/NADP+ ratio increases. Activating transcription factor-4 (Atf4) is required and sufficient to activate serine-linked mitochondrial OCM genes in islets, with gain- and loss-of-function experiments showing that Atf4 reduces GSIS and is required, but not sufficient, for full DXO-mediated islet protection. In sum, we identify a reversible metabolic pathway that provides islet protection at the expense of secretory function.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Ilhotas Pancreáticas/metabolismo , Insulina/metabolismo , Glucose/metabolismo , Carbono/metabolismo , Células Secretoras de Insulina/metabolismo
9.
STAR Protoc ; 4(1): 102133, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36861836

RESUMO

Mouse hyperglycemia model and islet function assessment are essential in diabetes research. Here, we provide a protocol to evaluate glucose homeostasis and islet functions in diabetic mice and isolated islets. We describe steps for establishing type 1 and 2 diabetes, glucose tolerance test, insulin tolerance test, glucose stimulated insulin secretion (GSIS) assay, and histological analysis for islet number and insulin expression in vivo. We then detail islet isolation, islet GSIS, ß-cell proliferation, apoptosis, and programming assays ex vivo. For complete details on the use and execution of this protocol, please refer to Zhang et al. (2022).1.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Hiperglicemia , Células Secretoras de Insulina , Camundongos , Animais , Células Secretoras de Insulina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Hiperglicemia/diagnóstico , Hiperglicemia/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Modelos Animais de Doenças
10.
J Agric Food Chem ; 71(14): 5547-5553, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36989115

RESUMO

Dipeptidyl peptidase-IV (DPP-IV) is an exopeptidase mainly present in epithelial tissues of the liver, kidney, and intestine. It is involved in the cleavage of a variety of substrates including the incretin hormones like glucagon-like peptide-1 (GLP-1). GLP-1 binds to the GLP-1 receptors of pancreatic ß-cells and leads to ß-cell proliferation and increases insulin secretion through associated gene expression. In diabetes, a constant increase in the glucose level leads to glucotoxicity, which destroys pancreatic ß-cells, decreases the insulin level, and further increases the blood glucose level. Inhibition of DPP-IV is one of the strategies for the treatment of type 2 diabetes. In recent years, peptides derived from a variety of dietary proteins have been reported to exhibit inhibitory activity against the DPP-IV enzyme. Such peptides should also be protected from the action of digestive enzymes to keep their bioactivity intact. Therefore, the present investigation was aimed to evaluate the in vitro DPP-IV inhibition potential and in vivo antidiabetic potential of α-lactalbumin in non-encapsulated hydrolysate (NEH), freeze-dried encapsulated hydrolysate (FDEH), and emulsified encapsulated hydrolysate (EEH) forms. Percent DPP-IV inhibition by the NEH, FDEH, and EEH after simulated gastrointestinal digestion was 36 ± 2.28, 54 ± 2.02, and 64 ± 2.02, respectively. The oral administration of the NEH, FDEH, and EEH at a dose of 300 mg/kg body weight was evaluated in nicotinamide-streptozotocin-induced type 2 diabetic experimental rats in a study of 30 days. Rats in the diabetic control group showed an increase in the blood glucose level and liver function enzymes and a decrease in GLP-1, insulin, and antioxidative enzymes. Administration of hydrolysates reversed the parameters by lowering the blood glucose level and increasing GLP-1 and insulin levels in plasma. The blood lipid profile, liver enzyme (ALT, AST, and AP) levels, and catalase and superoxide dismutase activity were also found to be normalized and better managed in experimental diabetic rats.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV , Ratos , Animais , Hipoglicemiantes/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Lactalbumina , Glicemia/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Inibidores da Dipeptidil Peptidase IV/metabolismo , Insulina/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeos
11.
Life Sci ; 315: 121357, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36634864

RESUMO

AIMS: Although the benefits of exercise can be potentiated by fasting in healthy subjects, few studies evaluated the effects of this intervention on the metabolism of obese subjects. This study investigated the immediate effects of a single moderate-intensity exercise bout performed in fast or fed states on the metabolism of gastrocnemius and soleus of lean and obese rats. MAIN METHODS: Male rats received a high-fat diet (HFD) for twelve weeks to induce obesity or were fed standard diet (SD). After this period, the animals were subdivided in groups: fed and rest (FER), fed and exercise (30 min treadmill, FEE), 8 h fasted and rest (FAR) and fasted and exercise (FAE). Muscle samples were used to investigate the oxidative capacity and gene expression of AMPK, PGC1α, SIRT1, HSF1 and HSP70. KEY FINDINGS: In relation to lean animals, obese animals' gastrocnemius glycogen decreased 60 %, triglycerides increased 31 %; glucose and alanine oxidation decreased 26 % and 38 %, respectively; in soleus, triglycerides reduced 46 % and glucose oxidation decreased 37 %. Exercise and fasting induced different effects in glycolytic and oxidative muscles of obese rats. In soleus, fasting exercise spared glycogen and increased palmitate oxidation, while in gastrocnemius, glucose oxidation increased. In obese animals' gastrocnemius, AMPK expression decreased 29 % and SIRT1 increased 28 % in relation to lean. The AMPK response was more sensitive to exercise and fasting in lean than obese rats. SIGNIFICANCE: Exercise and fasting induced different effects on the metabolism of glycolytic and oxidative muscles of obese rats that can promote health benefits in these animals.


Assuntos
Proteínas Quinases Ativadas por AMP , Sirtuína 1 , Animais , Masculino , Ratos , Proteínas Quinases Ativadas por AMP/metabolismo , Glucose/metabolismo , Glicogênio/metabolismo , Promoção da Saúde , Insulina/metabolismo , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Sirtuína 1/metabolismo , Triglicerídeos/metabolismo
12.
J Dairy Sci ; 106(2): 807-821, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36460514

RESUMO

The purpose of this article is to review body condition scoring and the role of body fat reserves in relation to insulin sensitivity and metabolic phenotyping. This article summarizes body condition scoring assessment methods and the differences between subcutaneous and visceral fat depots in dairy cows. The mass of subcutaneous and visceral adipose tissue (AT) changes significantly during the transition period; however, metabolism and intensity of lipolysis differ between subcutaneous and visceral AT depots of dairy cows. The majority of studies on AT have focused on subcutaneous AT, and few have explored visceral AT using noninvasive methods. In this systematic review, we summarize the relationship between body fat reserves and insulin sensitivity and integrate omics research (e.g., metabolomics, proteomics, lipidomics) for metabolic phenotyping of cows, particularly overconditioned cows. Several studies have shown that AT insulin resistance develops during the prepartum period, especially in overconditioned cows. We discuss the role of AT lipolysis, fatty acid oxidation, mitochondrial function, acylcarnitines, and lipid insulin antagonists, including ceramide and glycerophospholipids, in cows with different body condition scoring. Nonoptimal body conditions (under- or overconditioned cows) exhibit marked abnormalities in metabolic and endocrine function. Overall, reducing the number of cows with nonoptimal body conditions in herds seems to be the most practical solution to improve profitability, and dairy farmers should adjust their management practices accordingly.


Assuntos
Doenças dos Bovinos , Resistência à Insulina , Feminino , Bovinos , Animais , Insulina/metabolismo , Lactação , Tecido Adiposo/metabolismo , Lipólise , Dieta/veterinária , Doenças dos Bovinos/metabolismo
13.
Biomolecules ; 12(12)2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36551260

RESUMO

The number of patients with type 2 diabetes mellitus (T2DM), which is mainly characterized by insulin resistance and insulin secretion deficiency, has been soaring in recent years. Accompanied by many other metabolic syndromes, such as cardiovascular diseases, T2DM represents a big challenge to public health and economic development. Peroxisome proliferator-activated receptor γ (PPARγ), a ligand-activated nuclear receptor that is critical in regulating glucose and lipid metabolism, has been developed as a powerful drug target for T2DM, such as thiazolidinediones (TZDs). Despite thiazolidinediones (TZDs), a class of PPARγ agonists, having been proven to be potent insulin sensitizers, their use is restricted in the treatment of diabetes for their adverse effects. Post-translational modifications (PTMs) have shed light on the selective activation of PPARγ, which shows great potential to circumvent TZDs' side effects while maintaining insulin sensitization. In this review, we will focus on the potential effects of PTMs of PPARγ on treating T2DM in terms of phosphorylation, acetylation, ubiquitination, SUMOylation, O-GlcNAcylation, and S-nitrosylation. A better understanding of PTMs of PPARγ will help to design a new generation of safer compounds targeting PPARγ to treat type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Hipoglicemiantes , PPAR gama , Processamento de Proteína Pós-Traducional , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , PPAR gama/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Tiazolidinedionas/efeitos adversos , Tiazolidinedionas/uso terapêutico , Resistência à Insulina , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Desenho de Fármacos , Terapia de Alvo Molecular
14.
Nat Commun ; 13(1): 6339, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36284093

RESUMO

Twenty-nine years following the breakthrough discovery that a single-gene mutation of daf-2 doubles Caenorhabditis elegans lifespan, it remains unclear where this insulin/IGF-1 receptor gene is expressed and where it acts to regulate ageing. Using knock-in fluorescent reporters, we determined that daf-2 and its downstream transcription factor daf-16 are expressed ubiquitously. Using tissue-specific targeted protein degradation, we determined that intracellular DAF-2-to-DAF-16 signaling in the intestine plays a major role in lifespan regulation, while that in the hypodermis, neurons, and germline plays a minor role. Notably, intestine-specific loss of DAF-2 activates DAF-16 in and outside the intestine, causes almost no adverse effects on development and reproduction, and extends lifespan by 94% in a way that partly requires non-intestinal DAF-16. Consistent with intestine supplying nutrients to the entire body, evidence from this and other studies suggests that altered metabolism, particularly down-regulation of protein and RNA synthesis, mediates longevity by reduction of insulin/IGF-1 signaling.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Longevidade/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Insulina/metabolismo , Mutação , Intestinos , RNA/metabolismo
15.
Pancreas ; 51(6): 634-641, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36099527

RESUMO

OBJECTIVES: Delta C-peptide derived by the glucagon stimulation test is a reliable value for the evaluation of the pancreatic endocrine function after pancreas transplantation. We examined the associations between delta C-peptide as pancreatic graft endocrine function and donor background factors. METHODS: Sixty-five cases of pancreatic transplantation from brain-dead donors, which were performed in our facility, were enrolled in this study. Enrolled recipients underwent a glucagon stimulation test within 1 to 3 months after transplantation to evaluate the pancreatic graft endocrine function with delta C-peptide to compare donor background factors. RESULTS: The following factors were associated with significant deterioration of the delta C-peptide: age of 50 years or greater, death from cerebrovascular accident, hemoglobin A1c level of 5.6% or greater, creatinine level of 1.0 mg/dL or greater, C-reactive protein level of 25 mg/dL or greater, and sodium level of 150 mmol/L or greater. In addition, increased numbers of these donor factors indicated significantly greater deterioration of the posttransplant pancreatic endocrine function ( P < 0.001). CONCLUSIONS: To secure insulin independence after pancreas transplantation, which means maintaining a delta C-peptide level of 1.0 ng/mL or greater on a glucagon stimulation test, the utilization of donors, who possesses more than equal to 3 of the donor factors identified in this study, should be carefully considered.


Assuntos
Proteína C-Reativa , Glucagon , Peptídeo C , Creatinina , Hemoglobinas Glicadas , Humanos , Insulina/metabolismo , Pessoa de Meia-Idade , Sódio
16.
Cell Transplant ; 31: 9636897221086966, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35343264

RESUMO

Islet culture before clinical transplantation has been adopted by various centers, but its effect on the survival and function of islets relative to the culture conditions and media needs further assessment. Human islets were cultured or preserved under four different conditions and three media options. Parameters such as recovery, viability, function, islet damage, and gene expressions for markers of hypoxia, and inflammation were assessed after 48-h culture or preservation. Preservation of islets was performed at 4°C in Connaught's Medical Research Lab (CMRL) and University of Wisconsin (UW) media. Islets were cultured at 22°C, 37°C, and 37°C-22°C in CMRL and PRODO culture media. Islets preserved in UW solution had visually good morphology and exhibited higher recovery with less islet damage compared with the rest of the groups, whereas islets preserved in CMRL at 4°C resulted in poor morphology, recovery, viability, and function compared with the rest of the treatment conditions. Culture at 22°C and 37°C demonstrated an increase in the expression of inflammatory and hypoxia-related genes. In conclusion, islets preserved at 4°C in UW solution showed the best overall outcomes after 48 h compared with islets cultured at 22°C, 37°C, or 37°C-22°C in PRODO. Advancement in islet culture media is warranted to reduce inflammatory gene activation and improve recovery of islets for transplantation.


Assuntos
Ilhotas Pancreáticas , Soluções para Preservação de Órgãos , Adenosina , Alopurinol , Glutationa , Humanos , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Rafinose
17.
Cell Death Dis ; 13(1): 67, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-35046383

RESUMO

Short-chain fatty acids (SCFAs) produced by the gut microbiota have been well demonstrated to improve metabolic homeostasis. However, the role of SCFAs in islet function remains controversial. In the present study, none of the sodium acetate, sodium propionate, and sodium butyrate (SB) displayed acute impacts on insulin secretion from rat islets, whereas long-term incubation of the three SCFAs significantly potentiated pancreatic ß cell function. RNA sequencing (RNA-seq) revealed an unusual transcriptome change in SB-treated rat islets, with the downregulation of insulin secretion pathway and ß cell identity genes, including Pdx1, MafA, NeuroD1, Gck, and Slc2a2. But these ß cell identity genes were not governed by the pan-HDAC inhibitor trichostatin A. Overlapping analysis of H3K27Ac ChIP-seq and RNA-seq showed that the inhibitory effect of SB on the expression of multiple ß cell identity genes was independent of H3K27Ac. SB treatment increased basal oxygen consumption rate (OCR), but attenuated glucose-stimulated OCR in rat islets, without altering the expressions of genes involved in glycolysis and tricarboxylic acid cycle. SB reduced the expression of Kcnj11 (encoding KATP channel) and elevated basal intracellular calcium concentration. On the other hand, SB elicited insulin gene expression in rat islets through increasing H3K18bu occupation in its promoter, without stimulating CREB phosphorylation. These findings indicate that SB potentiates islet function as a lipid molecule at the expense of compromised expression of islet ß cell identity genes.


Assuntos
Células Secretoras de Insulina , Ilhotas Pancreáticas , Animais , Ácido Butírico/farmacologia , Ácidos Graxos Voláteis/metabolismo , Glucose/metabolismo , Glucose/farmacologia , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Ratos
20.
Diabetes Metab J ; 45(5): 641-654, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34610719

RESUMO

The impaired insulin secretion and increased insulin resistance (or decreased insulin sensitivity) play a major role in the pathogenesis of all types of diabetes mellitus (DM). It is very important to assess the pancreatic ß-cell function and insulin resistance/ sensitivity to determine the type of DM and to plan an optimal management and prevention strategy for DM. So far, various methods and indices have been developed to assess the ß-cell function and insulin resistance/sensitivity based on static, dynamic test and calculation of their results. In fact, since the metabolism of glucose and insulin is made through a complex process related with various stimuli in several tissues, it is difficult to fully reflect the real physiology. In order to solve the theoretical and practical difficulties, research on new index is still in progress. Also, it is important to select the appropriate method and index for the purpose of use and clinical situation. This review summarized a variety of traditional methods and indices to evaluate pancreatic ß-cell function and insulin resistance/sensitivity and introduced novel indices.


Assuntos
Intolerância à Glucose , Resistência à Insulina , Teste de Tolerância a Glucose , Humanos , Insulina/metabolismo , Secreção de Insulina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA