RESUMO
Freshwater aquaculture serves as a significant focal point for antibiotic contamination, yet understanding antibiotic distribution across different aquaculture models and stages remains limited. This study evaluated antibiotic pollution in three distinct freshwater aquaculture models: rice-crayfish coculture, fish aquaculture, and crab-crayfish aquaculture, during various aquaculture stages. Of the 33 target antibiotics, 16 antibiotics were detected, with the total concentrations ranging from 111.81 ng/L to 15,949.05 ng/L in water and 10.11 ng/g to 8986.30 ng/g in sediment. Among these antibiotics, erythromycin and lomefloxacin are prohibited for use in Chinese aquaculture. Dominant antibiotics in water included lincomycin, enrofloxacin, and enoxacin, whereas in sediment, oxytetracycline and erythromycin were predominant. Notably, lincomycin emerged as a dominant antibiotic in aquaculture for the first time. The concentrations of these dominant antibiotics were high compared to other aquaculture settings and exhibited elevated ecological risk. Critical periods for antibiotic contamination in water and sediment were found to be incongruent, occurring during the rainy season in July for water and the dry season in October for sediment. Notably, the rice-crayfish coculture model exerts a good effect in reducing antibiotic pollution. Overall, these findings offer valuable evidence for the healthful and sustainable advancement of aquaculture.
Assuntos
Antibacterianos , Aquicultura , Monitoramento Ambiental , Água Doce , Lagoas , Poluentes Químicos da Água , Antibacterianos/análise , Poluentes Químicos da Água/análise , China , Medição de Risco , Água Doce/química , Animais , Monitoramento Ambiental/métodos , Lagoas/química , Agricultura , Sedimentos Geológicos/química , PeixesRESUMO
A model based framework was established for large scale assessment of microalgae production using anaerobically digested effluent considering varied climatic parameters such as solar irradiance and air temperature. The aim of this research was to identify the optimum monthly average culture depth operation to minimize the cost of producing microalgae grown on anaerobic digestion effluents rich in ammoniacal nitrogen with concentration of 248 mg L-1. First, a productivity model combined with a thermal model was developed to simulate microalgae productivity in open raceway ponds as a function of climatic variables. Second, by combining the comprehensive open pond model with other harvesting equipment, the final techno economic model was developed to produce a microalgae product with 20 wt% biomass content and treated water with <1 mg L-1 ammoniacal nitrogen. The optimization approach on culture depth for outdoor open raceway ponds managed to reduce the cost of microalgae production grown in anaerobic digested wastewater up to 16 %, being a suitable solution for the production of low cost microalgae (1.7 AUD kg-1 dry weight) at possible scale of 1300 t dry weight microalgae yr-1.
Assuntos
Microalgas , Lagoas , Anaerobiose , Águas Residuárias , Biomassa , NitrogênioRESUMO
The issue of potentially toxic elements (PTEs) contamination of regional soil caused by mining activities and tailings accumulation has attracted wide attention all over the world. The East Qinling is one of the three main molybdenum mines in the world, and the concentration of PTEs such as Hg, Pb and Cu in the slag is high. Quantifying the amount of PTEs contamination in soil and identifying potential sources of contamination is vital for soil environmental management. In the present investigation, the pollution levels of 8 PTEs in the Qinling molybdenum tailings intensive area were quantitatively identified. Additionally, an integrated source-risk method was adopted for resource allocation and risk assessment based on the PMF model, the ecological risk, and the health risk assessment model. The mean concentrations of Cu, Ni, Pb, Cd, Cr, Zn, As, and Hg in the 80 topsoil samples ranged from 0.80 to 13.38 times the corresponding background values; notably high levels were observed for Pb and Hg. The source partitioning results showed that PTEs were mainly affected by four pollution sources: natural and agricultural sources, coal-burning sources, combined transport and mining industry sources, and mining and smelting sources. The health risk assessment results revealed that the risks of soil PTEs for adults are acceptable, while the risks for children exceeded the limit values. The obtained results will help policymakers to obtain the sources of PTEs of tailing ponds intensive area. Moreover, it provides priorities for the governance of subsequent pollution sources and ecological restoration.
Assuntos
Mercúrio , Metais Pesados , Poluentes do Solo , Criança , Adulto , Humanos , Solo , Metais Pesados/toxicidade , Metais Pesados/análise , Molibdênio/análise , Chumbo/análise , Lagoas , Monitoramento Ambiental/métodos , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Mercúrio/análise , Medição de Risco , ChinaRESUMO
An integrated life cycle assessment (LCA) and quantitative microbial risk assessment (QMRA) were conducted to assess microalgae-mediated wastewater disinfection (M-WWD). M-WWD was achieved by replacing ultraviolet disinfection with a microalgal open raceway pond in an existing sewage treatment plant (STP) in India. Regarding impacts on human health, both M-WWD and STP yielded comparable life cycle impacts, around 0.01 disability-adjusted life years (DALYs) per person per year. However, QMRA impacts for M-WWD (0.053 DALYs per person per year) were slightly lower than that for STP while considering exposure to E. coli O157:H7 and adenovirus. Additionally, a comparative LCA resolved the dilemma about the appropriate utilization of microalgal biomass. Among biodiesel, biocrude, and biogas production, the lowest impacts of 0.015 DALYs per person per year were obtained for biocrude for 1 m3 water treated by M-WWD. Electricity consumption in microalgae cultivation was a major environmental hotspot. Overall, M-WWD, followed by production of microalgal biocrude, emerged as a sustainable alternative from environmental and public health perspectives. These findings set the foundation for pilot-scale M-WWD system development, testing, and economic evaluation. Such comprehensive investigations, encompassing LCA, QMRA, and resource recovery scenarios, offer crucial insights for stakeholders and decision-makers in wastewater treatment and environmental management.
Assuntos
Microalgas , Águas Residuárias , Humanos , Escherichia coli , Esgotos , Lagoas , Biocombustíveis , BiomassaRESUMO
An integrated, remotely sensed approach to assess land-use and land-cover change (LULCC) dynamics plays an important role in environmental monitoring, management, and policy development. In this study, we utilized the advantage of land-cover seasonality, canopy height, and spectral characteristics to develop a phenology-based classification model (PCM) for mapping the annual LULCC in our study areas. Monthly analysis of normalized difference vegetation index (NDVI) and near-infrared (NIR) values derived from SPOT images enabled the detection of temporal characteristics of each land type, serving as crucial indices for land type classification. The integration of normalized difference built-up index (NDBI) derived from Landsat images and airborne LiDAR canopy height into the PCM resulted in an overall performance of 0.85, slightly surpassing that of random forest analysis or principal component analysis. The development of PCM can reduce the time and effort required for manual classification and capture annual LULCC changes among five major land types: forests, built-up land, inland water, agriculture land, and grassland/shrubs. The gross change LULCC analysis for the Taoyuan Tableland demonstrated fluctuations in land types over the study period (2013 to 2022). A negative correlation (r = - 0.79) in area changes between grassland/shrubs and agricultural land and a positive correlation (r = 0.47) between irrigation ponds and agricultural land were found. Event-based LULCC analysis for Taipei City demonstrated a balance between urbanization and urban greening, with the number of urbanization events becoming comparable to urban greening events when the spatial extent of LULCC events exceeds 1000 m2. Besides, small-scale urban greening events are frequently discovered and distributed throughout the metropolitan area of Taipei City, emphasizing the localized nature of urban greening events.
Assuntos
Monitoramento Ambiental , Tecnologia de Sensoriamento Remoto , Agricultura , Formulação de Políticas , LagoasRESUMO
Antibiotics are causing widespread concern as one of the emerging contaminants. There is the abuse of antibiotics in high-density open aquaculture, and the tailwater is often discharged into surrounding rivers. At the same time, the water replenishment of open aquaculture ponds from nearby rivers containing antibiotic contamination from different sources may result in cross-contamination. However, it is still unclear which pollution intensity is greater in rivers or in open aquaculture. So in this paper, the levels of 20 antibiotics (i.e., Fluoroquinolones (FQs), Sulfonamides (SAs), Tetracyclines (TCs), Macrolides (MLs) and Lincosamides (LCs)) in rivers and high-density open aquaculture ponds were investigated in the Baini River basin in the suburbs of Guangzhou, China. The results showed that norfloxacin (NFX) was the predominant antibiotic in river and aquaculture water, with concentrations ranging from 6.12 to 156.04 ng/L and from 7.47 to 82.62 ng/L in both aquatic systems, respectively. As for the pollution intensity of antibiotics, the annual pollution contribution (28.64 kg/a) of the river water supply to open aquaculture is higher than that (10.81 kg/a) of open aquaculture to the river, which means river pollution has a greater impact on aquaculture ponds. The risk quotient (RQ) showed that the ecological risk of lincomycin (LIN), erythromycin (ERY), sulfamethoxazole (SMX), norfloxacin (NFX), ciprofloxacin (CFX) and chlortetracycline (CTC) in rivers and aquaculture environments had high ecological risks from 1.21 to 1.81. Water interactions with contaminated rivers will result in a corresponding increase in the ecological risk of antibiotics in the aquaculture environment. Overall, according to the results, the risk of polluted rivers to open aquaculture cannot be ignored, and it is recommended that open aquaculture should use these water sources with caution, and that the water quality evaluation of aquaculture water should be increased with monitoring indicators for emerging contaminants such as antibiotics.
Assuntos
Antibacterianos , Norfloxacino , Lagoas , Rios , AquiculturaRESUMO
The possible impact of ZnO and CuO nanoparticles (NPs) (individually and in binary mixture) was investigated using the freshwater microalgae, Scenedesmus obliquus. The present study shows the effect of nanoparticles on algae in OECD growth media, wastewater, and pond water during a 96-h toxicity test. At 0.1 mg/L concentration of the mixture of NPs, the reduction in the chlorophyll a content was 13.61 ± 1.34% (OECD media), 28.83 ± 1.85% (wastewater), and 31.81 ± 2.23% (pond water). Values of reduction in biomass were observed to be 42.13 ± 1.38, 39.96 ± 1.03, and 33.10 ± 1.29% for OECD media, wastewater, and pond water, respectively. The highest increase in lipid values was observed in the case of pond water (6.3 ± 1.31%). A significant increase in the value of EPS-generated protein was observed in the wastewater sample. EPS-generated carbohydrate values were increased in OECD media but decreased in the wastewater matrix. The transmission electron microscope images showed structural damage to algae cells due to the exposure to a mixture of nanoparticles at higher concentrations. Fourier transform infrared analysis showed an addition of bonds and differences in the peak and its intensity during exposure to high concentrations of NPs. Overall, this study gives fundamental insights into the interaction and toxicity of a mixture of NPs to algal species in different water matrices.
Assuntos
Microalgas , Nanopartículas , Scenedesmus , Poluentes Químicos da Água , Águas Residuárias/toxicidade , Clorofila A/farmacologia , Organização para a Cooperação e Desenvolvimento Econômico , Lagoas , Nanopartículas/toxicidade , Nanopartículas/química , Água Doce , Água/farmacologia , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/químicaRESUMO
Energy-harnessing sources significantly influence a country's infrastructure and economic development. Though nuclear and hydel power sources are used for energy harnessing, thermal sources are still the primary power source in India and contribute to 75% of the demand. Thermal power plants exploit large volumes of coal reserves. The combustion of coal leads to 30%-40% of waste ash residues such as Fly ash and Bottom ash. Though Fly ash finds greater applicability, pond ash poses a severe environmental hazard due to its large occupancy of terrain in ash dykes and lagoons. Many research efforts are underway to utilize pond ash in various structural and geotechnical infrastructure projects; however, there are still limitations and apprehensions about its properties and determination. The present study provides a detailed review of the morphological and chemical properties. Further, the geotechnical attributes of pond ash, including strength characteristics, consolidation parameters, and durability aspects, are critically reviewed for the probable application as fill material for backfill and many other applications. Based on the earlier research on pond ash, it could be comprehended that pond ash has wide property variability and finds compatibility with many other pozzolanic admixtures and, in this way, finds broader applicability in geotechnical projects. The way forwards could be a significant step towards cleaner and greener technology.
Assuntos
Cinza de Carvão , Lagoas , Cinza de Carvão/análise , Centrais Elétricas , Carvão Mineral/análise , ÍndiaRESUMO
Pollution of lentic ecosystems by potentially hazardous elements (PHE) due to human activities has become a global concern. In this study, the contents of eight PHEs in the sediments of 10 most important ponds located in the Saros Bay region (Türkiye) were evaluated. The contents of PHEs in the sediments of the ponds ranged from 0.14 mg/kg for Cd to 274 mg/kg for Mn. According to the enrichment factor (EF) results, ponds P3, P8 and P9 for Cd and pond P8 for Pb showed "moderate enrichment". However, the pollution load index (PLI) results indicated that all ponds were in a "baseline contamination" state due to the combined effect of all PHEs. Similarly, based on ecological risk assessment indices, no ecological risk from PHEs was identified. In addition, Cd, Zn, As, Cr, Cu and Pb contents in all ponds were found below threshold effect concentrations. The results of the health risk assessment indicated that non-carcinogenic and carcinogenic risks were not expected for recreational receptors due to exposure to the PHEs in the sediments via incidental ingestion and dermal contact. Correlation and cluster analysis results indicated that although agricultural activities contributed slightly to the As content, all PHEs mainly originated from natural sources.
Assuntos
Cádmio , Ecossistema , Humanos , Chumbo , Lagoas , AgriculturaRESUMO
Ponds occupy a large share of standing water worldwide and play an important role in providing various ecosystem services. There are concerted efforts of the European Union either to create new ponds, or to restore and preserve existing ponds as nature-based solutions to provide benefits to ecosystem and human well-being. As part of the EU PONDERFUL project, selected pondscapes (i.e. landscapes of ponds) in eight different countries - hereafter "demo-sites", are studied to comprehensively understand their characteristics and their efficiency to provide ecosystem services. In addition, the needs and knowledge of stakeholders who own, work, research, or benefit from the pondscapes are also important, because of their capabilities to create, manage and develop the pondscapes. Therefore, we established connection with stakeholders to study their preferences and visions on the pondscapes. Using the analytic hierarchy process, this study shows that in general stakeholders in the European and Turkish demo-sites prefer environmental benefits to economic benefits, while stakeholders in the Uruguayan demo-sites rank the economic benefits higher. More specifically, in the European and Turkish demo-sites, the biodiversity benefits, i.e. life-cycle maintenance, habitat and gene pool protection, receive the highest ranking among all groups. On the other hand, stakeholders at the Uruguayan demo-sites rank provisioning benefits as the most important, because many ponds in Uruguayan demo-sites are being used for agricultural purposes. Understanding those preferences helps policy makers to address the needs of stakeholders more correctly, when considering any action or policy for the pondscapes.
Assuntos
Processo de Hierarquia Analítica , Ecossistema , Humanos , Biodiversidade , Lagoas , Fatores Socioeconômicos , Conservação dos Recursos NaturaisRESUMO
This study was designed to determine the level of potentially toxic elements (PTEs) contamination in soil and selected fruits and assesses the health risk of inhabitants in the abandoned tin mining community in Kuba, Bokkos LGA. Samples of the abandoned mine soil and selected fruits mango (Magnifera indica), guava (Psidium guajava), avocado pear (Persea americana), and banana (Musa spp)) from the vicinity of the abandoned mine were analyzed for the presence of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), manganese (Mn), nickel (Ni), lead (Pb), and zinc (Zn) using inductively coupled plasma mass spectrometry (ICP-MS). The results showed that the levels of all the PTEs analysed in the abandoned mine soil samples were significantly (p < 0.05) higher than their corresponding values in the control soil from the non-mining area. Except for Cd, the mean concentrations of As, Cr, Cu, Mn, Ni, and Pb were significantly higher than the FAO/WHO maximum permissible limit. Except for Zn in guava fruits and Cd in avocado fruits, the mean concentration of PTEs in fruits from abandoned mines was significantly (p < 0.05) higher than their corresponding control values. In contrast, the mean levels of As, Cr, Cu, Mn, Ni, and Pb in the investigated fruits were significantly (p < 0.05) higher than FAO/WHO maximum permissible limits established for fruits. The studied fruits remarkably took up and bioaccumulated PTEs from the abandoned mine soil. Mango fruit significantly bioaccumulated As (5.40), Cd (3.40), and Zn (2.81). Guava fruit bioaccumulated As (1.50) and Cd (4.60), while avocado bioaccumulated As (3.53), Cd (3.80), and Zn (6.48). Banana bioaccumulated As (0.96), Cd (0.80), and Zn (6.78). The hazard quotient values for PTEs investigated in fruits for adults, and children were several folds greater than 1. The hazard index (HI) for the PTEs through consuming fruits for children and adults was greater than 1, indicating that possible health risks exist for both local children and adults. However, the HI values for the children were higher than those for adults, implying that children were exposed to more potential noncarcinogenic health risks from PTEs than adults. The total cancer risk (TCR) values for Cr and Ni for all the fruits studied were within 10-3-10-1, which is several-fold higher than the permissible limits (10-6 and < 10-4), indicating high carcinogenic risk. TCR values for Cd and Pb in all the fruits, except for Cd in guava and avocado fruits for children, were within the range of 10-5-10-4, indicating that they are associated with moderate risk. The CR values for all the PTEs in all the fruits for adults and children except for mango fruit adults were within 10-2-10-1, indicating high carcinogenic risk. In conclusion, the results and risk assessment provided by this study indicate that human exposure to fruits from abandoned mines suggests a high vulnerability of the local community to PTE toxicity. Long-term preventive measures to safeguard the health of the residents need to be put in place.
Assuntos
Arsênio , Metais Pesados , Poluentes do Solo , Criança , Adulto , Humanos , Metais Pesados/toxicidade , Metais Pesados/análise , Cádmio/análise , Frutas/química , Árvores , Lagoas , Governo Local , Solo/química , Nigéria , Chumbo/toxicidade , Chumbo/análise , Monitoramento Ambiental/métodos , Zinco/análise , Manganês/análise , Níquel/análise , Arsênio/toxicidade , Arsênio/análise , Cromo/análise , Medição de Risco , Receptores de Antígenos de Linfócitos T/análise , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , ChinaRESUMO
Life cycle assessment (LCA) was applied to evaluate duckweed ponds and constructed wetlands as polishing steps in pig manure liquid fraction treatment. Using nitrification-denitrification (NDN) of the liquid fraction as the starting point, the LCA compared direct land application of the NDN effluent with different combinations of duckweed ponds, constructed wetlands and discharge into natural waterbodies. Duckweed ponds and constructed wetlands are viewed as a viable tertiary treatment option and potential remedy for nutrient imbalances in areas of intense livestock farming, such as in Belgium. As the effluent stays in the duckweed pond, settling and microbial degradation reduce the remaining phosphorous and nitrogen concentrations. Combined with duckweed and/or wetland plants that take up nutrients in their plant body, this approach can reduce over-fertilisation and prevent excessive nitrogen losses to aquatic environments. In addition, duckweed could serve as an alternative livestock feed and replace imports of protein destined for animal consumption. The environmental performance of the overall treatment systems studied was found to depend greatly on assumptions about the possible avoidance of potassium fertiliser production through the field application of effluents. If it is assumed that the potassium contained in the effluent replaces mineral fertiliser, direct field application of the NDN effluent performed best. If the application of NDN effluent does not lead to mineral fertiliser savings or if the replaced K fertiliser is of low grade, duckweed ponds seem to be a viable additional step in the manure treatment chain. Consequently, whenever background concentrations of N and/or P in fields allow for effluent application and potassium fertiliser substitution, direct application should be favoured over further treatment. If direct land application of the NDN effluent is not an option, the focus should be on long residence times in duckweed ponds to allow for maximum nutrient uptake and feed production.
Assuntos
Araceae , Lagoas , Animais , Suínos , Áreas Alagadas , Esterco , Eliminação de Resíduos Líquidos , Fertilizantes , Plantas/metabolismo , Araceae/metabolismo , Nitrogênio/metabolismo , Estágios do Ciclo de VidaRESUMO
The aim of this study was to assess the environmental impacts of up-flow anaerobic sludge blanket (UASB) reactors coupled with high rate algal ponds (HRAPs) for wastewater treatment and bioenergy recovery using the Life Cycle Assessment (LCA) methodology. This solution was compared with the UASB reactor coupled with other consolidated technologies in rural areas of Brazil, such as trickling filters, polishing ponds and constructed wetlands. To this end, full-scale systems were designed based on experimental data obtained from pilot/demonstrative scale systems. The functional unit was 1 m3 of water. System boundaries comprised input and output flows of material and energy resources for system construction and operation. The LCA was performed with the software SimaPro®, using the ReCiPe midpoint method. The results showed that the HRAPs scenario was the most environmentally friendly alternative in 4 out of 8 impact categories (i.e. Global warming, Stratospheric Ozone Depletion, Terrestrial Ecotoxicity and Fossil resource scarcity). This was associated with the increase in biogas production by the co-digestion of microalgae and raw wastewater, leading to higher electricity and heat recovery. From an economic point of view, despite the HRAPs showed a higher capital cost, the operation and maintenance costs were completely offset by the revenue obtained from the electricity generated. Overall, the UASB reactor coupled with HRAPS showed to be a feasible nature-based solution to be used in small communities in Brazil, especially when microalgae biomass is valorised and used to increase biogas productivity.
Assuntos
Microalgas , Purificação da Água , Animais , Eliminação de Resíduos Líquidos/métodos , Biocombustíveis , Esgotos , Lagoas , Reatores Biológicos , Estágios do Ciclo de VidaRESUMO
Microalgae cultivation in swine wastewater (SW) allows the removal of nutrients and biomass production. However, SW is known for its Cu contamination, and its effects on algae cultivation systems such as high-rate algal ponds (HRAPs) are poorly understood. This gap in the literature limits the proposition of adequate concentrations of Cu to optimise SW treatment and resource recovery in HRAPs. For this assessment, 12 HRAPs installed outdoors were operated with 800 L of SW with different Cu concentrations (0.1-4.0 mg/L). Cu's interferences on the growth and composition of biomass and nutrient removal from SW were investigated through mass balance and experimental modelling. The results showed that the concentration of 1.0 mg Cu/L stimulated microalgae growth, and above 3.0 mg Cu/L caused inhibition accompanied by an accumulation of H2O2. Furthermore, Cu affected the contents of lipids and carotenoids observed in the biomass; the highest concentration was observed in the control (16%) and 0.5 mg Cu/L (1.6 mg/g), respectively. An innovative result was verified for nutrient removal, in which increased Cu concentration reduced the N-NH4+ removal rate. In contrast, the soluble P removal rate was enhanced by 2.0 mg Cu/L. Removal of soluble Cu in treated SW reached 91%. However, the action of microalgae in this process was not associated with assimilation but with a pH increase resulting from photosynthesis. A preliminary evaluation of economic viability showed that the commercialisation of biomass considering the concentration of carotenoids obtained in HRAPs with 0.5 mg Cu/L could be economically attractive. In conclusion, Cu affected the different parameters evaluated in this study in a complex way. This can help managers consort nutrient removal, biomass production, and resource recovery, providing information for possible industrial exploitation of the generated bioproducts.
Assuntos
Microalgas , Purificação da Água , Animais , Suínos , Eliminação de Resíduos Líquidos/métodos , Cobre , Biomassa , Lagoas , Peróxido de Hidrogênio , Águas Residuárias , Purificação da Água/métodos , Nutrientes , Nitrogênio/análiseRESUMO
In this study, dissolved metal levels of 10 different ponds used as irrigation and drinking water sources in the north of Saros Bay (Türkiye) were evaluated using multivariate statistical methods, contamination and ecological risk indices, and absolute principal component score-multiple linear regression (APCS-MLR). The mean levels of metals in the ponds ranged from 0.045 µg/L (Cd) to 127 µg/L (Mn). Pond 7 used for drinking water source had the lowest total metal level. Only Mn levels in two ponds (P1 and P2) slightly exceeded the critical value set by EU Drinking Water Directive. However, the levels of all metals in all ponds were lower than the critical values set for irrigation water and aquatic life. According to the heavy metal pollution index (HPI), five ponds showed low metal pollution in terms of drinking water quality, four ponds showed moderate metal pollution, and one pond (P1) showed moderate to heavy pollution. According to the Nemerow pollution index (NPI) values (0.26-1.82), ponds P1 and P2 showed slight metal pollution, while other ponds showed insignificant metal pollution. Contamination degree (CD) values of ponds varied between 0.95 and 3.33, indicating that all ponds showed low pollution. In terms of irrigation water quality, all ponds showed low or insignificant metal pollution according to the HPI, NPI, and CD values. According to the ecological risk index (ERI) values, metals in all ponds posed low ecological risks for both drinking and irrigation purposes. Factor analysis identified two potential sources: mixed sources and natural sources. The APCS-MLR model results revealed that mixed sources and natural sources contributed 78.99% and 21.01% to dissolved metals in the ponds, respectively. Health risk assessment results indicated that both individual and combined metals in the ponds would not cause non-carcinogenic risks to both adults and children. Similarly, it was found that Cr and As would not cause carcinogenic risks to the residents of the region.
Assuntos
Água Potável , Metais Pesados , Poluentes do Solo , Adulto , Criança , Humanos , Monitoramento Ambiental , Lagoas/análise , Água Potável/análise , Poluentes do Solo/análise , Solo , Metais Pesados/análise , Medição de Risco , Qualidade da Água , ChinaRESUMO
Constructed wetlands as natural process-based water treatment technologies are popular globally. However, lack of detailed long-term assessment on the impact of seasonal variations on their performance with focus on optimal seasonal adjustments of controllable operating parameters significantly limits their efficient and sustainable long-term operation. To address this, a full-scale integrated multiple surface flow constructed wetlands-pond system situated between slightly polluted river water and outflow-receiving waterworks in a subtropical monsoon climate area of middle-eastern China was seasonally assessed over a period of six years. During this period, the removal rate (R) and mass removal rate (MRR) of total nitrogen (TN), total phosphorus (TP) and chemical oxygen demand (COD) possessed strong seasonality (p < 0.05). The highest R (%) and MRR (mg/m2/d) were in summer for TN (51.53 %, 114.35), COD (16.30 %, 143.85) and TP (62.39 %, 23.89) and least in spring for TN (23.88 %, 39.36) and COD. Whereas for TP, the least R was in autumn (37.82 %) and least MRR was in winter (9.35). Applying a first-order kinetics model coupled with Spearman's rank correlation analysis, purification efficiency exhibited significant dependence on temperature as nutrient reaction rates constant, k generally increased with temperature and was highest in summer. Meanwhile, the R of TN, TP and COD were positively correlated with influent concentration whiles MRR of TP was negatively correlated with hydraulic retention time but positively correlated with hydraulic loading rate (HLR) (p < 0.05). Also, MRR of COD and TN were positively correlated with mass loading rates (MLR) in summer and autumn. Through linear optimization, the best operating parameters according to the compliance rate were determined and a set of guidelines were proposed to determine the optimal operational change of hydrological index in each season (Spring, 0.1-0.12 m/d; Summer, 0.14-0.16 m/d; Autumn, 0.15-0.17 m/d; Winter, 0.1-0.11 m/d) for efficient and sustainable long-term operation.
Assuntos
Purificação da Água , Áreas Alagadas , Estações do Ano , Lagoas , Poluição da Água/análise , Nitrogênio/análise , Fósforo/análise , Eliminação de Resíduos LíquidosRESUMO
Fish feed quality is the main determinant of fish flesh quality, so it is important for successful aquaculture. The current study determines the concentration of heavy metals in fish feeds (A and B), water, and their bioaccumulation in gills, liver, and muscle of C. carpio cultured in different environments (biofloc technology and earthen pond systems). In addition, the correlation between heavy metals in fish feeds with bioaccumulated metals in fish tissues was also determined. Results revealed that most heavy metal concentration was significantly greater (P < 0.05) in feed B than in feed A but in permissible range, while all the heavy metal concentration was notably higher in earthen ponds than in biofloc technology. Result from the bioaccumulation factor and concentration of the metals showed that heavy metals were highly accumulated in the fish liver followed by gills. The metal concentration in fish feeds and fish edible parts (muscle) was lower than the WHO standard level; however, the amount of Pb was higher in the fish muscle, liver, and gills, which is harmful for human consumption and also for fish health. Though the correlation test revealed that all of the metals from the feeds were positively correlated to the metals in fish tissues, but most of the estimated correlation was significant and linearly correlated. It can be concluded that producers must measure feed quality correctly to avoid heavy metal contamination because it may assimilate and accumulate in the food chain.
Assuntos
Carpas , Metais Pesados , Poluentes Químicos da Água , Animais , Humanos , Lagoas , Água , Monitoramento Ambiental , Bioacumulação , Metais Pesados/análise , Aquicultura , Poluentes Químicos da Água/análise , Medição de RiscoRESUMO
Tailings resulting from mining and smelting activities may cause soil heavy-metal pollution and harm human health. To evaluate the environmental impact of heavy metals from tailings on farmland soils in the surrounding area, heavy metals (As, Cd, Cr, Cu, Ni, Pb, and Zn) in tailings and farmland soils in the vicinity of a typical copper tailings pond were analyzed. Contamination status, potential sources, and health risks for farmland soils were investigated. The results showed that the tailings contained a high concentration of Cu (1136.23 mg/kg). The concentrations of Cd and Cu in the farmland soils exceeded the soil quality standard. The geoaccumulation index (Igeo) indicated that the soils were moderately polluted by Cu and Cd, and slightly polluted by Ni, Cr, and Zn. The absolute principal component scores-multiple linear regression (APCS-MLR) model was applied for source apportionment. The results showed that tailings release is the main source of soil heavy-metals contamination, accounting for 35.81%, followed by agricultural activities (19.41%) and traffic emission (16.31%). The health risk assessment suggested that the children in the study region were exposed to non-carcinogenic risks caused by As, while the non-carcinogenic risk to adults and the carcinogenic risk to both adults and children were at acceptable levels. It is necessary to take effective measures to control heavy-metal contamination from tailings releases to protect humans, especially children, from adverse health risks.
Assuntos
Metais Pesados , Poluentes do Solo , Criança , Adulto , Humanos , Solo , Cobre , Poluentes do Solo/análise , Fazendas , Lagoas , Cádmio , Monitoramento Ambiental , Metais Pesados/análise , Medição de Risco , ChinaRESUMO
Microalgae biotechnology is a great candidate for carbon neutralization, wastewater treatment and the sustainable production of biofuels and food. Efficient and cost-effective microalgae production depends on highly coordinating the resources used for algal growth. However, dynamic natural disturbances such as culture temperature and sunlight can lead to the poor coordination and waste of resources. Open ponds are the most commonly used commercial microalgal production systems, and enhanced mixing can significantly increase their productivity, but mixing energy can be seriously wasted due to dynamic disturbances, presenting a hindrance to further reducing production costs. Herein, a smart and precise mixing strategy was developed for open ponds in which a paddle wheel's stirring speed for an open pond was smartly and precisely controlled in real time based on dynamic variations in light intensity and culture temperature. The proposed technology achieved the same biomass productivity of Spirulina platensis (8.37 g m-2 day-1) as a control with a constant high mixing rate under dynamic disturbances while reducing mixing energy inputs by approximately 30 % compared to the control. This study provides a promising method to address serious resource waste and poor coordination due to dynamic natural disturbances, holding great potential for efficient and cost-effective microalgae production.
Assuntos
Microalgas , Lagoas , Biocombustíveis , Análise Custo-Benefício , Biomassa , Carbono , Águas ResiduáriasRESUMO
Nile tilapia is the most commercially important fish in Chiapas as well as in other parts of the world. An understanding of parasite infection dynamics in tilapia may assist in applying proper prophylactic measures for reducing the loss of fish caused by parasitic diseases. Different environments and culture systems may imply different infection dynamics; therefore, the present study identified and compared the infection parameters (prevalence, mean abundance, and intensity) of parasites of Oreochromis niloticus cultured in floating cages and ponds. A total of 18 metazoan parasite taxa were recovered from gills, skin, fins and intestines of 310 specimens from floating cages and ponds. Fourteen species of parasites were found in floating cages: 8 monogenean species, 1 nematode, 1 digenea, 1 crustacea, 3 protozoans. In ponds, 16 parasite taxa were reported: 11 were monogeneans species, 4 protozoans and 1 crustacean. In both systems, monogeneans (Cichlidogyrus sclerosus, C. tilapiae, Gyrodactylus cichlidarum) and protozoans (Trichodina compacta) were most prevalent. Tilapia in ponds sustained higher parasitic infections than those in floating cages (p < 0.05). The Canonical Correspondence Analysis showed two groups: the first grouped the ponds, associated with high values of nitrite, nitrate, ammonia, conductivity, temperature, and the abundance of the ectoparasites C. halli, C. dossoui, Scutogyrus longicornis, C. sclerosus and T. compacta. The second group grouped the cages, associated with Clinostomum marginatum, Apiosoma piscicola, Lernea sp., and Contracaecum sp. and a high dissolved oxygen concentration. Our findings suggest that monitoring programs are required to improve the sanitary conditions of tilapia cultures in Chiapas.