Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Genes (Basel) ; 15(5)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38790242

RESUMO

Many organisms facultatively produce different phenotypes depending on their environment, yet relatively little is known about the genetic bases of such plasticity in natural populations. In this study, we describe the genetic variation underlying an extreme form of plasticity--resource polyphenism--in Mexican spadefoot toad tadpoles, Spea multiplicata. Depending on their environment, these tadpoles develop into one of two drastically different forms: a carnivore morph or an omnivore morph. We collected both morphs from two ponds that differed in which morph had an adaptive advantage and performed genome-wide association studies of phenotype (carnivore vs. omnivore) and adaptive plasticity (adaptive vs. maladaptive environmental assessment). We identified four quantitative trait loci associated with phenotype and nine with adaptive plasticity, two of which exhibited signatures of minor allele dominance and two of which (one phenotype locus and one adaptive plasticity locus) did not occur as minor allele homozygotes. Investigations into the genetics of plastic traits in natural populations promise to provide novel insights into how such complex, adaptive traits arise and evolve.


Assuntos
Adaptação Fisiológica , Anuros , Estudo de Associação Genômica Ampla , Fenótipo , Locos de Características Quantitativas , Animais , Anuros/genética , Estudo de Associação Genômica Ampla/métodos , Adaptação Fisiológica/genética , Larva/genética , Larva/crescimento & desenvolvimento , Variação Genética
2.
J Econ Entomol ; 117(2): 618-628, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38377139

RESUMO

Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae) is a major economic pest attacking a variety of crops in Egypt and other Mediterranean countries. S. littoralis has developed resistance to both traditional and novel insecticides. The current study investigated S. littoralis resistance to indoxacarb regarding inheritance mode, realized heritability (h2), and fitness costs. An indoxacarb-resistant strain (Indoxa-SEL) was obtained by selecting a field strain with indoxacarb. Indoxa-SEL strain outperformed the susceptible one (Indoxa-S) by 29.77-fold after 16 consecutive generations of selection. Based on the LC50 values of the progenies of reciprocal crosses F1 (R♂ × S♀) and F1' (R♀ × S♂), S. littoralis resistance to indoxacarb was found to be autosomal and partially recessive. Chi-square tests for goodness-of-fit between observed and expected mortalities of self-bred F1 and resistant strain reciprocal crosses revealed that the resistance was controlled by multiple genes. The resistant strain had a relative fitness of 0.80, with significantly increased total preovipositional period of females, egg, larvae, pupae, preadult, adult, and total longevity period. The estimated realized heritability value in the Indoxa-SEL strain was 0.21. The current study will contribute to sustaining indoxacarb efficacy and designing effective resistance management programs against S. littoralis.


Assuntos
Inseticidas , Mariposas , Feminino , Animais , Spodoptera/genética , Resistência a Inseticidas/genética , Mariposas/genética , Oxazinas/farmacologia , Larva/genética , Inseticidas/farmacologia
3.
Methods Mol Biol ; 2746: 213-224, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38070092

RESUMO

Due to the highly conserved genetics across the central nervous system, the easily probed visual system can act as an endophenotype for assessing neurological function. Here, we describe a psychophysics approach to assess visually driven swimming behavior in the high-throughput zebrafish genetic model system. We use the optomotor response test together with general locomotion behavior to assess neural processing while excluding motor defects related to muscle function.


Assuntos
Endofenótipos , Peixe-Zebra , Animais , Peixe-Zebra/genética , Larva/genética , Locomoção , Natação/fisiologia
4.
Genes (Basel) ; 14(12)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38136987

RESUMO

The rice leaf folder, Cnaphalocrocis medinalis (Lepidoptera: Pyralidae), is a notorious pest of rice in Asia. The larvae and adults of C. medinalis utilize specialized chemosensory systems to adapt to different environmental odors and physiological behaviors. However, the differences in chemosensory genes between the olfactory organs of these two different developmental stages remain unclear. Here, we conducted a transcriptome analysis of larvae heads, male antennae, and female antennae in C. medinalis and identified 131 putative chemosensory genes, including 32 OBPs (8 novel OBPs), 23 CSPs (2 novel CSPs), 55 ORs (17 novel ORs), 19 IRs (5 novel IRs) and 2 SNMPs. Comparisons between larvae and adults of C. medinalis by transcriptome and RT-qPCR analysis revealed that the number and expression of chemosensory genes in larval heads were less than that of adult antennae. Only 17 chemosensory genes (7 OBPs and 10 CSPs) were specifically or preferentially expressed in the larval heads, while a total of 101 chemosensory genes (21 OBPs, 9 CSPs, 51 ORs, 18 IRs, and 2 SNMPs) were specifically or preferentially expressed in adult antennae. Our study found differences in chemosensory gene expression between larvae and adults, suggesting their specialized functions at different developmental stages of C. medinalis. These results provide a theoretical basis for screening chemosensory genes as potential molecular targets and developing novel management strategies to control C. medinalis.


Assuntos
Mariposas , Transcriptoma , Animais , Feminino , Masculino , Transcriptoma/genética , Larva/genética , Perfilação da Expressão Gênica , Mariposas/genética , Ásia
5.
Front Cell Infect Microbiol ; 13: 1176013, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37305408

RESUMO

Control of ticks and tick-borne pathogens is a priority for human and animal health. Livestock-holders extensively rely on acaricide applications for tick control. Different groups of acaricides including cypermethrin and amitraz have been consistently used in Pakistan. There has been a gap in understanding the susceptibility or resistance of Rhipicephalus microplus, the most prevalent tick in Pakistan, to acaricides. The present study aimed to molecularly characterize cypermethrin and amitraz targeted genes such as voltage-gated sodium channel (VGSC) and octopamine tyramine (OCT/Tyr) of R. microplus ticks in Khyber Pakhtunkhwa (KP), Pakistan to monitor the acaricides resistance. Tick specimens were collected from cattle and buffaloes in northern (Chitral, Shangla, Swat, Dir, and Buner), central (Peshawar, Mardan, Charsadda, Swabi, and Nowshera), and southern districts (Kohat, Karak, Lakki Marwat, Tank, and Dera Ismail Khan) of KP, Pakistan. Different concentrations of commercially available cypermethrin (10%) and amitraz (12.5%) were prepared for in vitro larval immersion tests (LIT). In LIT, the average mortality rate of immersed larvae was recorded that was increased gradually with an increase in the concentration of specific acaricide. The larvae's highest mortality rates (94.5% and 79.5%) were observed at 100-ppm of cypermethrin and amitraz, respectively. A subset of 82 R. microplus ticks was subjected to extract genomic DNA, followed by PCR to amplify partial fragments of VGSC (domain-II) and OCT/Tyr genes. The BLAST results of the consensus sequence of VGSC gene (domain-II) showed 100% identity with the acaricides susceptible tick sequence from the United States (reference sequence). Obtained identical sequences of OCT/Tyr genes showed maximum identity (94-100%) with the identical sequences reported from Australia (reference sequence), India, Brazil, Philippines, USA, South Africa, and China. Thirteen single nucleotide polymorphisms (10 synonymous and three non-synonymous) were observed at various positions of partial OCT/Tyr gene fragments. The SNP at position A-22-C (T-8-P) in OCT/Tyr gene has been linked to amitraz resistance in R. microplus ticks. Molecular analysis and LIT bioassay's findings indicate the availability of resistant R. microplus ticks in the KP region. To our understanding, this is the first preliminary study to monitor cypermethrin and amitraz resistance via molecular profiling of cypermethrin and amitraz targeted genes (VGSC and OCT/Tyr) in combination with in vitro bioassays (LIT) in R. microplus ticks from Pakistan.


Assuntos
Acaricidas , Rhipicephalus , Humanos , Animais , Bovinos , Octopamina , Tiramina , Rhipicephalus/genética , Acaricidas/farmacologia , Larva/genética
6.
J Econ Entomol ; 116(4): 1372-1378, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37366322

RESUMO

Xylosandrus compactus (Eichhoff) (Coleoptera: Curculionidae, Scolytinae) is a worldwide invasive species that causes huge economic loss and environmental damage in many countries. Traditional morphological characteristics make it hard to identify scolytines due to their tiny size. Besides, the intercepted insect samples are incomplete, and the limitation of insect (larvae and pupae) morphology makes morphological identification more difficult. The majority of the damage is caused by adults and fungi that serve as nutrition for their larvae. They destroy plant trunks, branches, and twigs, affecting plant transport tissues in both weak and healthy plants. An accurate, efficient, and economical molecular identification technique for X. compactus not restricted by professional taxonomic knowledge is necessary. In the present study, a molecular identification tool based on the mitochondrial DNA gene, cytochrome C oxidase subunit I (COI) was developed. A species-specific COI (SS-COI) PCR assay was designed to identify X. compactus regardless of the developmental stage. Twelve scolytines commonly found in eastern China, namely Xylosandrus compactus, X. crassiusculus, X. discolor, X. germanus, X. borealis, X. amputates, X. eupatorii, X. mancus, Xyleborinus saxesenii, Euwallacea interjectus, E. fornicatus, and Acanthotomicus suncei, were included in the study. Additionally, specimens of X. compactus from 17 different areas in China, as well as a specimen collected from the United Stated, were also analyzed. Results demonstrated the accuracy and high efficiency of the assay, regardless of the developmental stage or the type of specimen. These features provide a good application prospect for fundamental departments and can be used to prevent the harmful consequences of the spread of X. compactus.


Assuntos
Besouros , Gorgulhos , Animais , Complexo IV da Cadeia de Transporte de Elétrons/genética , Besouros/genética , Gorgulhos/genética , Gorgulhos/microbiologia , Reação em Cadeia da Polimerase , Larva/genética
7.
J Econ Entomol ; 116(2): 565-573, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36799000

RESUMO

Western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), is a serious pest of corn and is currently managed with corn hybrids that produce insecticidal proteins derived from the bacterium Bacillus thuringiensis (Bt). Bt corn kills rootworm larvae and reduces larval feeding injury to corn roots. The Bt protein Gpp34/Tpp35Ab1, previously named Cry34/35Ab1, has been widely used in transgenic Bt corn for management of western corn rootworm, and field-evolved resistance has been found in some populations. In the United States, the refuge strategy is used to manage Bt resistance, with refuges of non-Bt host plants serving as a source of Bt-susceptible individuals, which in turn reduce the frequency of homozygous resistant individuals within a population. As such, the dominance of resistance strongly influences resistance evolution, with faster evolution of resistance when resistance is not recessive. Additionally, selection for resistance by a Bt crop leads to the accumulation of resistance alleles within refuge populations, thereby reducing the capacity of refuges to delay resistance. However, fitness costs can remove resistance alleles from refuge populations and preserve the dynamic of refuges producing Bt-susceptible genotypes. Bt-susceptible and Gpp34/Tpp35Ab1-resistant western corn rootworm were used to quantify the inheritance and fitness costs of resistance. We found that Gpp34/Tpp35Ab1 resistance was not recessive and had the accompanying fitness costs of slower developmental rate to adulthood and lower egg viability. This research will help improve insect resistance management by providing a better understanding of the risk of western corn rootworm evolving resistance to transgenic corn that produces Gpp34/Tpp35Ab1.


Assuntos
Bacillus thuringiensis , Besouros , Animais , Besouros/genética , Zea mays/genética , Endotoxinas , Plantas Geneticamente Modificadas/genética , Resistência a Inseticidas , Larva/genética , Bacillus thuringiensis/genética , Proteínas de Bactérias/genética , Controle Biológico de Vetores
8.
J Fish Biol ; 102(3): 581-595, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36564830

RESUMO

The gap between spawning and settlement location of marine fishes, where the larvae occupy an oceanic phase, is a great mystery in both natural history and conservation. Recent genomic approaches provide some resolution, especially in linking parent to offspring with assays of nucleotide polymorphisms. Here, the authors applied this method to the endemic Hawaiian convict tang (Acanthurus triostegus sandvicensis), a surgeonfish with a long pelagic larval stage of c. 54-77 days. They collected 606 adults and 607 juveniles from 23 locations around the island of O'ahu, Hawai'i. Based on 399 single nucleotide polymorphisms, the authors assigned 68 of these juveniles back to a parent (11.2% assignment rate). Each side of the island showed significant population differentiation, with higher levels in the west and north. The west and north sides of the island also had little evidence of recruitment, which may be due to westerly currents in the region or an artefact of uneven sampling. In contrast, the majority of juveniles (94%) sampled along the eastern shore originated on that side of the island, primarily within semi-enclosed Kane'ohe Bay. Nearly half of the juveniles assigned to parents were found in the southern part of Kane'ohe Bay, with local settlement likely facilitated by extended water residence time. Several instances of self-recruitment, when juveniles return to their natal location, were observed along the eastern and southern shores. Cumulatively, these findings indicate that most dispersal is between adjacent regions on the eastern and southern shores. Regional management efforts for Acanthurus triostegus and possibly other reef fishes will be effective only with collaboration among adjacent coastal communities, consistent with the traditional moku system of native Hawaiian resource management.


Assuntos
Perciformes , Animais , Larva/genética , Havaí , Perciformes/genética , Peixes , Genômica
9.
Artigo em Inglês | MEDLINE | ID: mdl-36528931

RESUMO

The spotted wing Drosophila, Drosophila suzukii, has emerged within the past decade as an invasive species on a global scale, and is one of the most economically important pests in fruit and berry production in Europe and North America. Insect ecology, to a strong degree, depends on the chemosensory modalities of smell and taste. Extensive research on the sensory receptors of the olfactory and gustatory systems in Drosophila melanogaster provide an excellent frame of reference to better understand the fundamentals of the chemosensory systems of D. suzukii. This knowledge may enhance the development of semiochemicals for sustainable management of D. suzukii, which is urgently needed. Here, using a transcriptomic approach we report the chemosensory receptor expression profiles in D. suzukii female and male antennae, and for the first time, in larval heads including the dorsal organ that houses larval olfactory sensory neurons. In D. suzukii adults, we generally observed a lack of sexually dimorphic expression levels in male and female antennae. While there was generally conservation of antennal expression of odorant and ionotropic receptor orthologues for D. melanogaster and D. suzukii, gustatory receptors showed more distinct species-specific profiles. In larval head tissues, for all three receptor gene families, there was also a greater degree of species-specific gene expression patterns. Analysis of chemosensory receptor repertoires in the pest species, D. suzukii relative to those of the genetic model D. melanogaster enables comparative studies of the chemosensory, physiology, and ecology of D. suzukii.


Assuntos
Drosophila , Transcriptoma , Feminino , Masculino , Animais , Drosophila/genética , Drosophila/metabolismo , Larva/genética , Drosophila melanogaster/genética , Perfilação da Expressão Gênica
10.
Braz. j. biol ; 83: e245202, 2023. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1285622

RESUMO

Abstract Although propolis has been reported for having anti-inflammatory activities, its effects on complement system has not been much studied. This research was conducted to find out the effects of Indonesian propolis on the expression levels of C3, C1r/s, Bf, MBL, and C6 in zebrafish larvae which were induced by lipopolysaccharide (LPS). Counting of macrophages migrating to yolk sac and liver histology were carried out. Larvae were divided into four groups: CON (cultured in E3 medium only), LPS (cultured in a medium containing 0.5 μg/L LPS), LPSIBU (cultured in a medium containing LPS, and then treated with 100 μg/L ibuprofen for 24 hours), and LPSPRO (cultured in a medium containing LPS, and then immersed in 14,000 μg/L propolis for 24 hours) groups. The results showed that complement gene expression in larvae from the LPSIBU and LPSPRO groups were generally lower than in larvae from the LPS group. The number of macrophage migrations to the yolk in the LPSPRO group was also lower than in the LPS group. Histological structure of liver in all groups were considered normal. This study shows that Indonesian propolis has the potential to be used as an alternative to the substitution of NSAIDs.


Resumo Embora a própolis tenha sido relatada por ter atividade anti-inflamatória, seus efeitos no sistema complemento, uma parte do sistema imunológico inato, não foram muito estudados. Esta pesquisa foi conduzida para descobrir os efeitos da própolis da Indonésia nos níveis de expressão de C3, C1r/s, Bf, MBL e C6 em larvas de peixe-zebra induzidas por lipopolissacarídeo (LPS). Foram realizadas contagens de macrófagos que migram para o saco vitelino e histologia do fígado. As larvas foram divididas em quatro grupos: CON (cultivadas apenas em meio E3), LPS (cultivadas em meio contendo 0,5 μg/L de LPS), LPSIBU (cultivadas em meio contendo LPS e, em seguida, tratadas com 100 μg/L de ibuprofeno por 24 horas) e LPSPRO (cultivado em meio contendo LPS, e então imerso em própolis 14,000 μg/L por 24 horas). Os resultados mostraram que a expressão do gene do complemento em larvas dos grupos LPSIBU e LPSPRO foi geralmente menor que em larvas do grupo LPS. O número de migrações de macrófagos para a gema no grupo LPSPRO também foi menor que no grupo LPS. A estrutura histológica do fígado em todos os grupos foi considerada normal. Este estudo mostra que a própolis indonésia tem potencial para ser utilizada como alternativa na substituição dos AINEs (anti-inflamatórios não esteroides).


Assuntos
Animais , Própole/farmacologia , Peixe-Zebra/genética , Regulação para Baixo , Lipopolissacarídeos/farmacologia , Indonésia , Larva/genética
11.
Int J Mol Sci ; 23(14)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35887393

RESUMO

The spread of multidrug-resistant Klebsiella pneumoniae (MDR-KP) has become an emerging threat as a result of the overuse of antibiotics. Bacteriophage (phage) therapy is considered to be a promising alternative treatment for MDR-KP infection compared with antibiotic therapy. In this research, a lytic phage BUCT610 was isolated from hospital sewage. The assembled genome of BUCT610 was 46,774 bp in length, with a GC content of 48%. A total of 83 open reading frames (ORFs) and no virulence or antimicrobial resistance genes were annotated in the BUCT610 genome. Comparative genomics and phylogenetic analyses showed that BUCT610 was most closely linked with the Vibrio phage pYD38-A and shared 69% homology. In addition, bacteriophage BUCT610 exhibited excellent thermal stability (4-75 °C) and broad pH tolerance (pH 3-12) in the stability test. In vivo investigation results showed that BUCT610 significantly increased the survival rate of Klebsiella pneumonia-infected Galleria mellonella larvae from 13.33% to 83.33% within 72 h. In conclusion, these findings indicate that phage BUCT610 holds great promise as an alternative agent with excellent stability for the treatment of MDR-KP infection.


Assuntos
Bacteriófagos , Mariposas , Animais , Antibacterianos/farmacologia , Genômica , Klebsiella pneumoniae/genética , Larva/genética , Mariposas/genética , Filogenia
12.
Toxins (Basel) ; 14(6)2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35737049

RESUMO

The "high-dose/refuge" strategy is expected to work most effectively when resistance is inherited as a functionally recessive trait and the fitness costs associated with resistance are present. In the present study, a laboratory selected Mythimna separata strain that have evolved >634.5-fold resistance to Vip3Aa19 was used to determine the mode of inheritance. To determine if fitness costs were associated with the resistance, life history parameters (larva stage, pupa stage, pupal weight, adult longevity and fecundity) of resistant (RR), -susceptible (SS) and heterozygous (R♂S♀ and R♀S♂) strains on nontoxic diet were assayed. The LC50 values of R♀S♂ were significantly higher than that of R♂S♀ (254.58 µg/g vs. 14.75 µg/g), suggesting that maternal effects or sex linkage were present. The effective dominance h of F1 offspring decreased as concentration increased, suggesting the resistance was functionally dominant at low concentration and recessive at high concentration. The analysis of observed and expected mortality of the progeny from a backcross suggested that more than one locus is involved in conferring Vip3Aa19 resistance. The results showed that significant differences in many life history traits were observed among the four insect genotypes. In short, resistance to Vip3Aa19 in M. separata was inherited as maternal and multigene and the resistance in the strain was associated with significant fitness costs. The results described here provide useful information for understanding resistance evolution and for developing resistance management strategies.


Assuntos
Resistência a Inseticidas , Mariposas , Animais , Endotoxinas/genética , Proteínas Hemolisinas , Resistência a Inseticidas/genética , Larva/genética , Mariposas/genética , Pupa
13.
Fish Shellfish Immunol ; 124: 430-441, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35472401

RESUMO

Mollusks have recently received increasing attention because of their unique immune systems. Mollusks such as Amphioctopus fangsiao are economically important cephalopods, and the effects of their egg-protecting behavior on the larval immune response are unclear. Meanwhile, little research has been done on the resistance response of cephalopod larvae infected with pathogenic bacteria such as Vibrio anguillarum. In this study, V. anguillarum was used to infect the primary hatching A. fangsiao larvae under different egg-protecting behaviors for 24 h, and a total of 7156 differentially expressed genes (DEGs) were identified at four time points after hatching based on transcriptome analysis. GO and KEGG enrichment analyses showed that multiple immune-related GO terms and KEGG signaling pathways were enriched. Protein-protein interaction networks (PPI networks) were used to search functional relationships between immune-related DEGs. Finally, 20 hub genes related to multiple gene functions or involved in multiple signaling pathways were identified, and their accuracy was verified using quantitative RT-PCR. PPI networks were first used to study the effects A. fangsiao larvae after infection with V. anguillarum under different egg-protecting behaviors. The results provide significant genetic resources for exploring invertebrate larval immune processes. The data lays a foundation for further study the immune response mechanisms for invertebrates after infection.


Assuntos
Doenças dos Peixes , Octopodiformes , Vibrioses , Animais , Perfilação da Expressão Gênica/veterinária , Imunidade , Larva/genética , Octopodiformes/genética , Transcriptoma , Vibrio
14.
Med Vet Entomol ; 36(3): 338-346, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35357023

RESUMO

The extensive use of insecticides in agriculture and public health has resulted in the rapid development of insecticide resistance in mosquito populations. Therefore, in this study, we aimed to evaluate insecticide resistance costs on the fitness of Culex pipiens. Two Cx. pipiens field populations (Beheira malathion-resistant and Gharbia malathion-susceptible) were compared to the reference (sensitive) population. The biochemical composition and expression of four genes relevant to insecticide resistance were estimated in third instar larvae. Adult survival, female fecundity and egg hatchability were also determined. As per our findings, it was found that the total protein and carbohydrate contents in Beheira malathion-resistant larvae were significantly lower than that in the reference larvae. Beheira malathion-resistant larvae had higher phenoloxidase (PO) specific activity than the reference population. In terms of the relevant genes, only cytochrome P450 (CYP6F1) expression showed elevated levels in the Gharbia malathion-susceptible population compared to the Beheira malathion-resistant population. In esterases (Estα and Estß) and glutathione S-transferase, the tested populations did not show any significant differences. Compared to the reference mosquito population, Gharbia malathion-susceptible Cx. pipiens males exhibited significantly longer median survival. Female fecundity and hatchability showed nonsignificant differences among the populations tested. In conclusion, malathion resistance can induce lower protein and carbohydrate contents, but higher PO activity in larvae.


Assuntos
Culex , Inseticidas , Animais , Carboidratos , Culex/genética , Egito , Feminino , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Larva/genética , Malation/farmacologia , Masculino
15.
PLoS One ; 16(11): e0257736, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34735485

RESUMO

Since 2016, fall armyworm (FAW) has threatened sub-Saharan 'Africa's fragile food systems and economic performance. Yet, there is limited evidence on this transboundary pest's economic and food security impacts in the region. Additionally, the health and environmental consequences of the insecticides being used to control FAW have not been studied. This paper presents evidence on the impacts of FAW on maize production, food security, and human and environmental health. We use a combination of an agroecology-based community survey and nationally representative data from an agricultural household survey to achieve our objectives. The results indicate that the pest causes an average annual loss of 36% in maize production, reducing 0.67 million tonnes of maize (0.225 million tonnes per year) between 2017 and 2019. The total economic loss is US$ 200 million, or 0.08% of the gross domestic product. The lost production could have met the per capita maize consumption of 4 million people. We also find that insecticides to control FAW have more significant toxic effects on the environment than on humans. This paper highlights governments and development partners need to invest in sustainable FAW control strategies to reduce maize production loss, improve food security, and protect human and environmental health.


Assuntos
Agricultura/economia , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Spodoptera/patogenicidade , África do Norte , Animais , Etiópia , Humanos , Inseticidas/economia , Larva/genética , Larva/parasitologia , Fatores Socioeconômicos , Spodoptera/efeitos dos fármacos , Zea mays/crescimento & desenvolvimento , Zea mays/parasitologia
16.
Ecotoxicol Environ Saf ; 223: 112574, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34358928

RESUMO

The widespread use of bisphenol S (BPS) as an alternative to bisphenol A has captured attention due to its potential toxicity to aquatic organisms. In the present study, the zebrafish was used as a model to evaluate the toxicity of BPS and determine the underlying mechanisms. The environmental concentration-dependent (0, 0.1, 1, 10, 100, and 1000 µg/L BPS) transcriptome approach was employed in combination with toxicity assays to address the problem. Based on a weighted correlation network analysis, we speculated that excess reactive oxygen species (ROS) may initiate cellular events in BPS-exposed zebrafish, leading to multiple toxic effects. Furthermore, we used pathway enrichment analysis to identify key pathways (MAPK signalling pathway and metabolic pathways) that link the molecular mechanisms with different toxic effects. In addition, we performed protein-protein network and shortest path analyses to identify six hub genes (erbb2, rrm2, rps27a, his2h3c, cdk1, and mcm5) and their interactions. Moreover, we suggest that BPS may interact with erbb2 by molecular docking. Thus, the BPS-erbb2 interaction may activate the MAPK signalling and metabolic pathways, resulting in ROS production and then caused multiple toxic effects in zebrafish. This study provides information for characterising the mechanisms of BPS exposure in aquatic environments.


Assuntos
Transcriptoma , Peixe-Zebra , Animais , Compostos Benzidrílicos/toxicidade , Larva/genética , Simulação de Acoplamento Molecular , Fenóis , Sulfonas , Peixe-Zebra/genética
17.
Malar J ; 20(1): 259, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34107949

RESUMO

BACKGROUND: Despite increasing documentation of insecticide resistance in malaria vectors against public health insecticides in sub-Saharan Africa, there is a paucity of information on the potential fitness costs of pyrethroid resistance in malaria vectors, which is important in improving the current resistant management strategies. This study aimed to assess the fitness cost effects of insecticide resistance on the development and survival of immature Anopheles gambiae from western Kenya. METHODS: Two-hour old, first instar larvae (L1) were introduced and raised in basins containing soil and rainwater in a semi-field set-up. Each day the number of surviving individuals per larval stage was counted and their stage of development were recorded until they emerged as adults. The larval life-history trait parameters measured include mean larval development time, daily survival and pupal emergence. Pyrethroid-resistant colony of An. gambiae sensu stricto and susceptible colony originating from the same site and with the same genetic background were used. Kisumu laboratory susceptible colony was used as a reference. RESULTS: The resistant colony had a significantly longer larval development time through the developmental stages than the susceptible colony. The resistant colony took an average of 2 days longer to develop from first instar (L1) to fourth instar (L4) (8.8 ± 0.2 days) compared to the susceptible colony (6.6 ± 0.2 days). The development time from first instar to pupa formation was significantly longer by 3 days in the resistant colony (10.28 ± 0.3 days) than in susceptible colony (7.5 ± 0.2 days). The time from egg hatching to adult emergence was significantly longer for the resistant colony (12.1 ± 0.3 days) than the susceptible colony (9.6 ± 0.2 days). The pupation rate (80%; 95% (CI: 77.5-83.6) vs 83.5%; 95% (CI: 80.6-86.3)) and adult emergence rate (86.3% vs 92.8%) did not differ between the resistant and susceptible colonies, respectively. The sex ratio of the females to males for the resistant (1:1.2) and susceptible colonies (1:1.07) was significantly different. CONCLUSION: The study showed that pyrethroid resistance in An. gambiae had a fitness cost on their pre-imaginal development time and survival. Insecticide resistance delayed the development and reduced the survivorship of An. gambiae larvae. The study findings are important in understanding the fitness cost of insecticide resistance vectors that could contribute to shaping resistant management strategies.


Assuntos
Anopheles/fisiologia , Aptidão Genética , Resistência a Inseticidas , Animais , Anopheles/genética , Anopheles/crescimento & desenvolvimento , Inseticidas/farmacologia , Quênia , Larva/genética , Larva/crescimento & desenvolvimento , Larva/fisiologia , Pupa/genética , Pupa/crescimento & desenvolvimento , Pupa/fisiologia
18.
Pest Manag Sci ; 77(6): 2826-2835, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33538385

RESUMO

BACKGROUND: Tenvermectin A is a new avermectin derivative that has good insecticidal and acaricidal effects. In order to study the resistance of Plutella xylostella to tenvermectin A, a sensitive strain (SS) and a laboratory-selected tenvermectin A-resistant strain (RS, 33.57-fold) were used to evaluate cross-resistance and fitness costs as well as to determine the resistance mechanism. RESULTS: There was no cross-resistance with common pesticides except for moderate cross-resistance with cypermethrin (resistance ratio = 10.26-fold) observed in RS. The activities of metabolic enzymes were measured, and the results showed that mixed function oxidase (MFO) and carboxylate esterase (CarE) in RS increased significantly by 2.92- and 2.86-fold, respectively, compared with SS. In addition, there was no obvious difference in glutathione-S-transferase (GST), which indicated that enhanced MFO and CarE activities may be the main mechanisms of detoxification. In the four typical resistance-related genes, expression of GluCl (4.86-fold), ABCC2 (3.85-fold), and CYP6 (2.94-fold) in RS were significantly promoted, but expression of GST was not. The clone and sequence of the PxGluClα subunit displayed six mutations that could lead to changes in the amino acid residues. CONCLUSION: High suitability related to tenvermectin A resistance was observed in RS, and it was found that the developmental stages of RS were significantly shortened and the survival rate of females was reduced. In addition, the mechanism of resistance to tenvermectin A may be regulated by the glutamate-gated chloride channel, ATP-binding cassette transporter, and MFO. In general, the study of resistance and biochemical mechanisms can provide beneficial and rational information for the management of resistance in P. xylostella. © 2021 Society of Chemical Industry.


Assuntos
Inseticidas , Mariposas , Animais , Feminino , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Laboratórios , Lactonas , Larva/genética , Compostos Macrocíclicos , Mariposas/genética
19.
Ecol Appl ; 31(3): e02284, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33415761

RESUMO

Accurate assessment of larval community composition in spawning areas is essential for fisheries management and conservation but is often hampered by the cryptic nature of many larvae, which renders them difficult to identify morphologically. Metabarcoding is a rapid and cost-effective method to monitor early life stages for management and environmental impact assessment purposes but its quantitative capability is under discussion. We compared metabarcoding with traditional morphological identification to evaluate taxonomic precision and reliability of abundance estimates, using 332 fish larvae from multinet hauls (0-50 m depth) collected at 14 offshore sampling sites in the Irish and Celtic seas. To improve quantification accuracy (relative abundance estimates), the amount of tissue for each specimen was standardized and mitochondrial primers (12S gene) with conserved binding sites were used. Relative family abundance estimated from metabarcoding reads and morphological assessment were positively correlated, as well as taxon richness (RS  = 0.81, P = 0.007) and diversity (RS  = 0.90, P = 0.002). Spatial patterns of community composition did not differ significantly between metabarcoding and morphological assessments. Our results show that DNA metabarcoding of bulk tissue samples can be used to monitor changes in fish larvae abundance and community composition. This represents a feasible, efficient, and faster alternative to morphological methods that can be applied to terrestrial and aquatic habitats.


Assuntos
Código de Barras de DNA Taxonômico , Peixes , Animais , Biodiversidade , Peixes/genética , Larva/genética , Oceanos e Mares , Reprodutibilidade dos Testes
20.
Pest Manag Sci ; 77(5): 2385-2394, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33415809

RESUMO

BACKGROUND: Management of the corn pest, western corn rootworm (WCR), Diabrotica virgifera virgifera (LeConte) (Coleoptera: Chrysomelidae), relies heavily on the planting of transgenic corn expressing toxins produced by the bacterium Bacillus thuringiensis (Bt). This has resulted in the evolution of resistance to all of the four commercially available Bt toxins targeting coleopteran insects. In this study, we evaluated the susceptibility of a Cry34/35Ab1-resistant WCR colony in seedling and diet toxicity assays after removal from selection for six and nine generations. In addition, female fecundity, egg fertility, adult lifespan, larval development, and adult emergence were evaluated in two Cry34/35Ab1-resistant and two susceptible WCR colonies to assess fitness costs. RESULTS: Susceptibility to Cry34/35Ab1 was restored in a colony removed from selection after six and nine generations based on diet toxicity assays and comparisons of relative survival, head capsule width, and dry weight in plant assays. Thus, pronounced fitness costs associated with resistance to Cry34/35Ab1 were documented by susceptibility being restored within six generations. In separate studies evaluating specific fitness costs, larval fitness when reared on isoline corn did not differ between resistant and susceptible colonies. However, beetles from susceptible colonies lived longer than resistant beetles which resulted in females from susceptible colonies producing significantly more eggs than resistant colonies, with no differences in egg fertility. CONCLUSIONS: The presence of a fitness cost that may contribute to the restoration of susceptibility to Bt has not been documented in other Cry3-resistant WCR populations and could have significant impact on the deployment of resistance management practices. Published 2021. This article is a U.S. Government work and is in the public domain in the USA.


Assuntos
Bacillus thuringiensis , Besouros , Animais , Bacillus thuringiensis/genética , Proteínas de Bactérias/genética , Besouros/genética , Endotoxinas/genética , Endotoxinas/farmacologia , Feminino , Resistência a Inseticidas/genética , Larva/genética , Controle Biológico de Vetores , Plantas Geneticamente Modificadas/genética , Zea mays/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA