Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Tissue Cell ; 88: 102400, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38759522

RESUMO

Sepsis-induced acute lung injury is a common and severe complication of sepsis, for which effective treatments are currently lacking. Previous studies have demonstrated the influence of wogonin in treating acute lung injury (ALI). However, its precise mechanism of action remains unclear. To delve deeper into the mechanisms underlying wogonin's impacts in sepsis-induced acute lung injury, we established a mouse sepsis model through cecal ligation and puncture and conducted further cell experiments using lipopolysaccharide-treated MH-S and MLE-12 cells to explore wogonin's potential mechanisms of action in treating ALI. Our results revealed that wogonin significantly increased the survival rate of mice, alleviated pulmonary pathological damage and inflammatory cell infiltration, and activated the SIRT1-FOXO1 pathway. Additionally, wogonin suppressed the release of pro-inflammatory factors by M1 macrophages and induced the activation of M2 anti-inflammatory factors. Further in vitro studies confirmed that wogonin effectively inhibited M1 macrophage polarization through the activation of the SIRT1-FOXO1 pathway, thereby mitigating lung pathological changes caused by ALI. In summary, our study demonstrated that wogonin regulated macrophage M1/M2 polarization through the activation of the SIRT1-FOXO1 pathway, thereby attenuating the inflammatory response and improving pulmonary pathological changes induced by sepsis-induced ALI. This discovery provided a solid mechanistic foundation for the therapeutic use of wogonin in sepsis-induced ALI, shedding new light on potential strategies for the treatment of sepsis-induced ALI.


Assuntos
Lesão Pulmonar Aguda , Flavanonas , Proteína Forkhead Box O1 , Macrófagos , Sepse , Transdução de Sinais , Sirtuína 1 , Animais , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/patologia , Sirtuína 1/metabolismo , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/metabolismo , Flavanonas/farmacologia , Camundongos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Proteína Forkhead Box O1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Polaridade Celular/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos
2.
Cell Mol Biol Lett ; 29(1): 36, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486141

RESUMO

BACKGROUND: Macrophage activation may play a crucial role in the increased susceptibility of obese individuals to acute lung injury (ALI). Dysregulation of miRNA, which is involved in various inflammatory diseases, is often observed in obesity. This study aimed to investigate the role of miR-192 in lipopolysaccharide (LPS)-induced ALI in obese mice and its mechanism of dysregulation in obesity. METHODS: Human lung tissues were obtained from obese patients (BMI ≥ 30.0 kg/m2) and control patients (BMI 18.5-24.9 kg/m2). An obese mouse model was established by feeding a high-fat diet (HFD), followed by intratracheal instillation of LPS to induce ALI. Pulmonary macrophages of obese mice were depleted through intratracheal instillation of clodronate liposomes. The expression of miR-192 was examined in lung tissues, primary alveolar macrophages (AMs), and the mouse alveolar macrophage cell line (MH-S) using RT-qPCR. m6A quantification and RIP assays helped determine the cause of miR-192 dysregulation. miR-192 agomir and antagomir were used to investigate its function in mice and MH-S cells. Bioinformatics and dual-luciferase reporter gene assays were used to explore the downstream targets of miR-192. RESULTS: In obese mice, depletion of macrophages significantly alleviated lung tissue inflammation and injury, regardless of LPS challenge. miR-192 expression in lung tissues and alveolar macrophages was diminished during obesity and further decreased with LPS stimulation. Obesity-induced overexpression of FTO decreased the m6A modification of pri-miR-192, inhibiting the generation of miR-192. In vitro, inhibition of miR-192 enhanced LPS-induced polarization of M1 macrophages and activation of the AKT/ NF-κB inflammatory pathway, while overexpression of miR-192 suppressed these reactions. BIG1 was confirmed as a target gene of miR-192, and its overexpression offset the protective effects of miR-192. In vivo, when miR-192 was overexpressed in obese mice, the activation of pulmonary macrophages and the extent of lung injury were significantly improved upon LPS challenge. CONCLUSIONS: Our study indicates that obesity-induced downregulation of miR-192 expression exacerbates LPS-induced ALI by promoting macrophage activation. Targeting macrophages and miR-192 may provide new therapeutic avenues for obesity-associated ALI.


Assuntos
Lesão Pulmonar Aguda , MicroRNAs , Animais , Humanos , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Regulação para Baixo , Lipopolissacarídeos/toxicidade , Ativação de Macrófagos , Camundongos Obesos , MicroRNAs/genética , MicroRNAs/metabolismo , Obesidade/complicações , Obesidade/genética , Transdução de Sinais
3.
Braz J Med Biol Res ; 57: e13235, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38511769

RESUMO

The imbalance between pro-inflammatory M1 and anti-inflammatory M2 macrophages plays a critical role in the pathogenesis of sepsis-induced acute lung injury (ALI). Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) may modulate macrophage polarization toward the M2 phenotype by altering mitochondrial activity. This study aimed to investigate the role of the PGC-1α agonist pioglitazone (PGZ) in modulating sepsis-induced ALI. A mouse model of sepsis-induced ALI was established using cecal ligation and puncture (CLP). An in vitro model was created by stimulating MH-S cells with lipopolysaccharide (LPS). qRT-PCR was used to measure mRNA levels of M1 markers iNOS and MHC-II and M2 markers Arg1 and CD206 to evaluate macrophage polarization. Western blotting detected expression of peroxisome proliferator-activated receptor gamma (PPARγ) PGC-1α, and mitochondrial biogenesis proteins NRF1, NRF2, and mtTFA. To assess mitochondrial content and function, reactive oxygen species levels were detected by dihydroethidium staining, and mitochondrial DNA copy number was measured by qRT-PCR. In the CLP-induced ALI mouse model, lung tissues exhibited reduced PGC-1α expression. PGZ treatment rescued PGC-1α expression and alleviated lung injury, as evidenced by decreased lung wet-to-dry weight ratio, pro-inflammatory cytokine secretion (tumor necrosis factor-α, interleukin-1ß, interleukin-6), and enhanced M2 macrophage polarization. Mechanistic investigations revealed that PGZ activated the PPARγ/PGC-1α/mitochondrial protection pathway to prevent sepsis-induced ALI by inhibiting M1 macrophage polarization. These results may provide new insights and evidence for developing PGZ as a potential ALI therapy.


Assuntos
Lesão Pulmonar Aguda , Sepse , Camundongos , Animais , Pioglitazona , Regulação para Cima , PPAR gama/metabolismo , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/prevenção & controle , Sepse/complicações , Lipopolissacarídeos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo
4.
Pharm Biol ; 62(1): 22-32, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38100537

RESUMO

CONTEXT: Sepsis-induced acute lung injury (ALI) is a severe condition with limited effective therapeutics; nicotinamide mononucleotide (NMN) has been reported to exert anti-inflammatory activities. OBJECTIVE: This study explores the potential mechanisms by which NMN ameliorates sepsis-induced ALI in vivo and in vitro. MATERIALS AND METHODS: Cultured MH-S cells and a murine model were used to evaluate the effect of NMN on sepsis-induced ALI. MH-S cells were stimulated with LPS (1 µg/mL) and NMN (500 µM) for 12 h grouping as control, LPS, and LPS + NMN. Cell viability, apoptotic status, and M1/2 macrophage-related markers were detected. The mice were pretreated intraperitoneally with NMN (500 mg/kg) and/or EX-527 (5 mg/kg) 1 h before LPS injection and randomized into 7 groups (n = 8): control, LPS, LPS + NMN, NMN, LPS + NMN + EX-527 (a SIRT1 inhibitor), LPS + EX-527, and EX-527. After 12 h, lung histopathology, W/D ratio, MPO activity, NAD+ and ATP levels, M1/2 macrophage-related markers, and expression of the SIRT1/NF-κB pathway were detected. RESULTS: In MH-S cells, NMN significantly decreased the apoptotic rate from 12.25% to 5.74%. In septic mice, NMN improved the typical pathologic findings in lungs and reduced W/D ratio and MPO activity, but increased NAD+ and ATP levels. Additionally, NMN suppressed M1 but promoted M2 polarization, and upregulated the expression of SIRT1, with inhibition of NF-κB-p65 acetylation and phosphorylation. Furthermore, inhibition of SIRT1 reversed the effects of NMN-induced M2 macrophage polarization. CONCLUSIONS: NMN protects against sepsis-induced ALI by promoting M2 macrophage polarization via the SIRT1/NF-κB pathway, it might be an effective strategy for preventing or treating sepsis-induced ALI.


Assuntos
Lesão Pulmonar Aguda , Sepse , Animais , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/prevenção & controle , Trifosfato de Adenosina/metabolismo , Endotoxinas/toxicidade , Lipopolissacarídeos/toxicidade , Pulmão , Macrófagos/metabolismo , NAD/metabolismo , NF-kappa B/metabolismo , Mononucleotídeo de Nicotinamida/farmacologia , Sepse/induzido quimicamente , Sepse/complicações , Sepse/tratamento farmacológico , Sirtuína 1
5.
Appl Immunohistochem Mol Morphol ; 31(5): 311-317, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37010513

RESUMO

Acute respiratory distress syndrome (ARDS) is a life-threatening condition due to acute lung injury (ALI), characterized by rapid-onset respiratory failure, leading to the clinical manifestations of poor lung compliance, severe hypoxemia, and dyspnea. ARDS/ALI has many causes, most commonly related to infections (sepsis, pneumonia), traumas, and multiple transfusions. The objective of this study is to assess the performance of postmortem anatomopathological examination in identifying etiological agents associated with ARDS or ALI in deceased patients from the State of São Paulo from 2017 to 2018. A retrospective cross-sectional study was performed based on the final outcome obtained by histopathology, histochemical, and immunohistochemical examination for ARDS/ALI differential diagnosis at the Pathology Center of the Adolfo Lutz Institute in São Paulo, Brazil. Of the 154 patients clinically diagnosed with ARDS or ALI, 57% tested positive for infectious agents, and the most frequent outcome was influenza A/H1N1 virus infection. In 43% of cases, no etiologic agent was identified. The opportunity to establish a diagnosis, identify particular infections, confirm a microbiological diagnosis, and uncover unanticipated etiologies is provided by postmortem pathologic analysis of ARDS. A molecular assessment could improve the diagnosis accuracy and lead to research into host responses and public health measures.


Assuntos
Lesão Pulmonar Aguda , Vírus da Influenza A Subtipo H1N1 , Síndrome do Desconforto Respiratório , Humanos , Estudos Retrospectivos , Estudos Transversais , Brasil , Síndrome do Desconforto Respiratório/diagnóstico , Síndrome do Desconforto Respiratório/etiologia , Síndrome do Desconforto Respiratório/patologia , Lesão Pulmonar Aguda/complicações
7.
Int Immunopharmacol ; 117: 109923, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36842235

RESUMO

Acute lung injury (ALI) is a serious and common clinical disease. Despite significant progress in ALI treatment, the morbidity and mortality rates remain high. However, no effective drug has been discovered for ALI. FGF4, a member of the FGF family, plays an important role in the regulation of various physiological and pathological processes. Therefore, in the present study, we aimed to study the protective effects of FGF4 against LPS-induced lung injury in vivo and in vitro. We found that rFGF4 treatment improved the lung W/D weight ratio, the survival rate, immune cell infiltration and protein concentrations in mice with LPS-induced ALI. Histological analysis revealed that rFGF4 significantly attenuated lung tissue injury and cell apoptosis. Furthermore, rFGF4 inhibited the activation of the TLR4/NF-κB signaling pathway and the production of pro-inflammatory mediators in LPS-injured lung tissues, murine alveolar macrophages (MH-S) and murine pulmonary epithelial (MLE-12) cells. The results of cell experiments further verified that rFGF4 inhibited the production of inflammatory mediators in MH-S cells and MLE-12 cells by regulating the TLR4/NF-κB signaling pathway. These results revealed that rFGF4 protected lung tissues and inhibited inflammatory mediators in mice with LPS-induced ALI by inhibiting the TLR4/NF-κB signaling pathway in MH-S and MLE-12 cells.


Assuntos
Lesão Pulmonar Aguda , NF-kappa B , Camundongos , Animais , NF-kappa B/metabolismo , Lipopolissacarídeos , Receptor 4 Toll-Like/metabolismo , Transdução de Sinais , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Pulmão/patologia , Mediadores da Inflamação
8.
Free Radic Biol Med ; 194: 12-22, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36436727

RESUMO

Acute lung injury (ALI) remains a global public health issue without specific and effective treatment options available in the clinic. Alveolar macrophage polarization is involved in the initiation, development and progression of ALI; however, the underlying mechanism remains poorly understood. Heme oxygenase-1 (HO-1) acts as an antioxidant in pulmonary inflammation and has been demonstrated to be linked with the severity and prognosis of ALI. In this study, the therapeutic effects of HO-1 were examined, along with the mechanisms involved, mainly focusing on alveolar macrophage polarization. HO-1 depletion induced higher iNOS and CD86 (M1 phenotype) expression but was significantly decreased in Arg-1 and CD206 (M2 phenotype) expression in BALF alveolar macrophages after equivalent LPS stimulation. We also found that HO-1 deletion distinctly accelerated the expression of inflammasome-associated components NLRP3, ASC and caspase-1 in vivo and in vivo and in vitro. Moreover, on the basis of LPS for MH-S cells, levels of TXNIP, NLRP3, ASC and caspase-1 were increased and HO-1 depletion exacerbated these changes, whereas double depletion of HO-1 and TXNIP partially mitigated these elevations. Also, HO-1 knockdown induced more M1 phenotype and less M2 phenotype compared with LPS alone, whereas double silence of HO-1 and TXNIP partially changed the polarization state. Taken together, we demonstrated that HO-1 could modulate macrophage polarization via TXNIP/NLRP3 signaling pathway, which could be a potential therapeutic target for ALI treatment.


Assuntos
Lesão Pulmonar Aguda , Heme Oxigenase-1 , Humanos , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Inflamassomos/genética , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Endotoxinas/efeitos adversos , Endotoxinas/metabolismo , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/tratamento farmacológico , Macrófagos/metabolismo , Caspases/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo
9.
Contrast Media Mol Imaging ; 2022: 3193671, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36051925

RESUMO

This paper uses cellular imaging analysis algorithms to assess and predict the condition of patients with acute lung injury. Given the unique optical properties of UCNPs, this paper designs a ratiometric upconversion fluorescent nanoprobe for the determination of nitric oxide (NO) content in living cells and tissues. To address the image degradation phenomenon of optical sections, this paper uses a blind deconvolution method to abate the degradation effect caused by the scattered focus surface, thus completing the image recovery. After that, grayscale and binarization are performed using the weighted average method and the Otsu method. In this paper, we propose a migration learning-based Resnet-50 network for the triple classification of unlabeled leukocytes based on the characteristics of cell images acquired by a miniaturized label-free microfluidic cell imaging detection device. The migration learning can rapidly optimize the network parameters, the short connection structure of Resnet-50 is more suitable for feature extraction of unlabeled leukocytes than the InceptionV3 model without a short connection structure, and the accuracy of the Resnet-50 network can reach 94% in the test set. In this paper, we propose two tracking algorithms based on the dynamic Gaussian mixture model and mathematical morphology-based algorithms suitable for cells of different shapes for cell tracking in microscopic images, neuronal cell labeling in fluorescent images, and cell segmentation in mice. These methods have the advantages of low cost, speed, reproducibility, and objectivity, and we hope that their elicitation will be useful for relevant cell biology research.


Assuntos
Lesão Pulmonar Aguda , Processamento de Imagem Assistida por Computador , Lesão Pulmonar Aguda/diagnóstico por imagem , Algoritmos , Animais , Processamento de Imagem Assistida por Computador/métodos , Camundongos , Reprodutibilidade dos Testes
10.
Front Immunol ; 13: 968336, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36052067

RESUMO

Many respiratory viruses cause lung damage that may evolve into acute lung injury (ALI), a cytokine storm, acute respiratory distress syndrome, and ultimately, death. Peroxisome proliferator activated receptor gamma (PPARγ), a member of the nuclear hormone receptor (NHR) family of transcription factors, regulates transcription by forming heterodimers with another NHR family member, Retinoid X Receptor (RXR). Each component of the heterodimer binds specific ligands that modify transcriptional capacity of the entire heterodimer by recruiting different co-activators/co-repressors. However, the role of PPARγ/RXR ligands in the context of influenza infection is not well understood. PPARγ is associated with macrophage differentiation to an anti-inflammatory M2 state. We show that mice lacking the IL-4Rα receptor, required for M2a macrophage differentiation, are more susceptible to mouse-adapted influenza (A/PR/8/34; "PR8")-induced lethality. Mice lacking Ptgs2, that encodes COX-2, a key proinflammatory M1 macrophage mediator, are more resistant. Blocking the receptor for COX-2-induced Prostaglandin E2 (PGE2) was also protective. Treatment with pioglitazone (PGZ), a PPARγ ligand, increased survival from PR8 infection, decreased M1 macrophage gene expression, and increased PPARγ mRNA in lungs. Conversely, conditional knockout mice expressing PPARγ-deficient macrophages were significantly more sensitive to PR8-induced lethality. These findings were extended in cotton rats: PGZ blunted lung inflammation and M1 cytokine gene expression after challenge with non-adapted human influenza. To study mechanisms by which PPARγ/RXR transcription factors induce canonical M2a genes, WT mouse macrophages were treated with IL-4 in the absence or presence of rosiglitazone (RGZ; PPARγ ligand), LG100754 (LG; RXR ligand), or both. IL-4 dose-dependently induced M2a genes Arg1, Mrc1, Chil3, and Retnla. Treatment of macrophages with IL-4 and RGZ and/or LG differentially affected induction of Arg1 and Mrc1 vs. Chil3 and Retnla gene expression. In PPARγ-deficient macrophages, IL-4 alone failed to induce Arg1 and Mrc1 gene expression; however, concurrent treatment with LG or RGZ + LG enhanced IL-4-induced Arg1 and Mrc1 expression, but to a lower level than in WT macrophages, findings confirmed in the murine alveolar macrophage cell line, MH-S. These findings support a model in which PPARγ/RXR heterodimers control IL-4-induced M2a differentiation, and suggest that PPARγ/RXR agonists should be considered as important tools for clinical intervention against influenza-induced ALI.


Assuntos
Lesão Pulmonar Aguda , Influenza Humana , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/metabolismo , Animais , Ciclo-Oxigenase 2/metabolismo , Humanos , Influenza Humana/metabolismo , Interleucina-4/metabolismo , Ligantes , Macrófagos/metabolismo , Camundongos , PPAR gama/metabolismo , Receptores X de Retinoides/metabolismo
11.
Drug Deliv ; 29(1): 2592-2608, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35945895

RESUMO

Acute lung injury (ALI) is a life-threatening illness which may progress to chronic pulmonary fibrosis (CPF). Resveratrol (RSV), a natural polyphenol, is known to exert several pharmacological effects on lung injury. However, its physicochemical properties and pharmacokinetic profile limit its clinical applications. In this study, RSV was loaded into lipid nanocapsules (LNCs) aiming to overcome these limitations. RSV-LNCs were prepared by phase inversion method and showed small uniform particle size (∼55 nm, PdI 0.04) with high entrapment efficiency >99%. The efficacy of RSV-LNCs in the prophylaxis against ALI and treatment of CPF was investigated in bleomycin-induced lung injury. For assessment of ALI, rats were administered a single oral dose of RSV (10 mg/kg) either free or as RSV-LNCs 4 h before bleomycin and euthanized 3 days later. For CPF, treatments in the same dose were given daily from days 10-20 after bleomycin and rats were euthanized on day-21. Results showed enhanced beneficial role for RSV-LNCs, compared to RSV, in the prevention of ALI as demonstrated by preservation of pulmonary microscopic and ultrastructural architecture and improvement of pulmonary functions. Analysis of BALF revealed reduction in oxidative stress markers, IL-6 level, leukocytosis and neutrophilia. iNOS and c-caspase 3 immunohistochemical expression and CD68+ cells immunofluorescence were inhibited. However, RSV-LNCs failed to show any improvement in oxidative stress, chronic inflammation, apoptosis and collagen deposition in CPF. In conclusion, RSV-LNCs are promising nanoplatforms for mitigating ALI detrimental effects. Future research investigating higher doses and longer durations of treatment is recommended to evaluate RSV-LNCs anti-fibrotic potential in CPF.


Assuntos
Lesão Pulmonar Aguda , Nanocápsulas , Fibrose Pulmonar , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Animais , Bleomicina , Nanocápsulas/química , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Ratos , Resveratrol/efeitos adversos
12.
Theranostics ; 12(6): 2928-2947, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401830

RESUMO

Rationale: Aberrant activation of macrophages with mitochondria dismiss was proved to be associated with pathogenesis of ALI (acute lung injury). Exosomes from adipose-derived mesenchymal stem cells (AdMSC-Exos) have been distinguished by their low immunogenicity, lack of tumorigenicity, and high clinical safety, but their role in treating ALI and the mechanism involved need to be defined. In this study, we sought to investigate whether the mitochondrial donation from AdMSC-Exos provides profound protection against LPS-induced ALI in mice, accompanied by improvement of macrophage mitochondrial function. Methods: C57BL/6 mice were orotracheally instilled with LPS (1 mg/kg). AdMSC-Exos were administered via the tail vein 4 h after LPS inhalation. Flow cytometry, H&E, Quantitative Real-Time PCR, immunofluorescence (IF), confocal microscopy imaging was conducted to investigate lung tissue inflammation and macrophage mitochondrial function. And further observe the transfer of exosomes and the effect on mitochondrial function of MH-S cells through in vitro experiments. Results: AdMSC-Exos can transfer the stem cell-derived mitochondria components to alveolar macrophages in a dose-dependent manner. Likely through complementing the damaged mitochondria, AdMSC-Exos exhibited the ability to elevate the level of mtDNA, mitochondrial membrane potential (MMP), OXPHOS activity and ATP generation, while reliving mROS stress in LPS-challenged macrophages. Restoring mitochondrial integrity via AdMSC-Exos treatment enabled macrophages shifting to anti-inflammatory phenotype, as featured with the down-regulation of IL-1ß, TNF-α and iNOS secretion and increase in production of anti-inflammatory cytokines IL-10 and Arg-1. As we depleted alveolar macrophages using clodronate liposomes, the protective role for AdMSC-Exos was largely abrogated. Conclusions: AdMSC-Exos can effectively donate mitochondria component improved macrophages mitochondrial integrity and oxidative phosphorylation level, leading to the resumption of metabolic and immune homeostasis of airway macrophages and mitigating lung inflammatory pathology.


Assuntos
Lesão Pulmonar Aguda , Exossomos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/terapia , Animais , Exossomos/metabolismo , Homeostase , Lipopolissacarídeos/metabolismo , Macrófagos Alveolares , Camundongos , Camundongos Endogâmicos C57BL
14.
Shock ; 57(2): 274-280, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34738958

RESUMO

ABSTRACT: Nuclear factor erythroid 2-related factor (Nrf2) is a redox-sensitive transcription factor that responds to oxidative stress by activating expressions of key antioxidant and cytoprotective enzymes via the Nrf2-antioxidant response element (ARE) signaling pathway. Our objective was to characterize hyperoxia-induced acute lung injury (HALI) in Nrf2 knock-out (KO) rats to elucidate the role of this pathway in HALI. Adult Nrf2 wildtype (WT), and KO rats were exposed to room air (normoxia) or >95% O2 (hyperoxia) for 48 h, after which selected injury and functional endpoints were measured in vivo and ex vivo. Results demonstrate that the Nrf2-ARE signaling pathway provides some protection against HALI, as reflected by greater hyperoxia-induced histological injury and higher pulmonary endothelial filtration coefficient in KO versus WT rats. We observed larger hyperoxia-induced increases in lung expression of glutathione (GSH) synthetase, 3-nitrotyrosine (index of oxidative stress), and interleukin-1ß, and in vivo lung uptake of the GSH-sensitive SPECT biomarker 99mTc-HMPAO in WT compared to KO rats. Hyperoxia also induced increases in lung expression of myeloperoxidase in both WT and KO rats, but with no difference between WT and KO. Hyperoxia had no effect on expression of Bcl-2 (anti-apoptotic protein) or peroxiredoxin-1. These results suggest that the protection offered by the Nrf2-ARE pathway against HALI is in part via its regulation of the GSH redox pathway. To the best of our knowledge, this is the first study to assess the role of the Nrf2-ARE signaling pathway in protection against HALI using a rat Nrf2 knockout model.


Assuntos
Lesão Pulmonar Aguda/etiologia , Hiperóxia/complicações , Fator 2 Relacionado a NF-E2/fisiologia , Animais , Ratos , Transdução de Sinais
15.
Life Sci ; 282: 119814, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34298039

RESUMO

Sepsis is commonly complicated by acute lung injury (ALI). We aimed to determine the long non-coding RNAs (lncRNAs) and mRNAs expression profiles. Septic acute lung injury mouse model was established by cecal ligation and puncture. LPS was applied to induce inflammation in mouse alveolar macrophages (MH-s). Besides, LPS/Nigericin sodium salt was used to activate inflammasome in MH-s. LncRNA and mRNA profiles were detected using an Agilent microarray and identified by qPCR. Bioinformatic analyses were employed to analyze the expression profiles and multiple biological functions. Inflammation-related mRNAs were selected according to KEGG pathways and GO terms including inflammation response, immune response and cytokine activity. A network of inflammation related mRNAs and co-expressed lncRNAs was conducted. Finally, Gm33647 was identified as potential regulator in septic acute lung injury. Gm33647 was knock-downed via siRNA to explore functions. The results showed 353 differentially expressed lncRNAs and 3116 differentially expressed mRNAs were identified. Co-expression networks of lncRNA-mRNA showed Gm33647 was a hub gene. Cis- and trans-regulation analyses revealed Gm41442, Gm38850 and Gm36841 could function as a network in septic ALI. LncRNA Gm33647 was reduced by LPS and increased by inflammasome activation in MH-s. Silencing Gm33647 up-regulated IL-6, IL10 and TNF-α in MH-s. When inflammasome was activated by LPS/Nigericin sodium salt, IL-1ß, IL-18 and Caspase 1 were increased by silencing Gm33647 in MH-s. These results identified inflammation related lncRNAs and Gm33647 as potential regulators in septic ALI.


Assuntos
Lesão Pulmonar Aguda/imunologia , RNA Longo não Codificante/imunologia , RNA Interferente Pequeno/imunologia , Sepse/imunologia , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/patologia , Animais , Citocinas/genética , Citocinas/imunologia , Masculino , Camundongos , RNA Longo não Codificante/genética , RNA Interferente Pequeno/genética , Sepse/genética , Sepse/patologia
16.
Chem Biol Drug Des ; 98(1): 114-126, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33961336

RESUMO

3-O-trans-caffeoyloleanolic acid (COA) is a pentacyclic triterpenoid compound, with significant anti-inflammatory effects. In this study, we report the protective effects of COA on lipopolysaccharide (LPS)-induced acute lung injury (ALI) and explored its mechanism of action. LPS was used to construct in vivo mouse ALI models to observe the effects of COA pretreatment on lung pathology, inflammation, and oxidative stress. In vitro, mouse alveolar macrophages MH-S cells were cultured and stimulated with LPS to investigate the effects of COA pretreatment on inflammation and oxidative stress. Western blotting was used to investigate the expression of iNOS, TLR4, p-p65, p-AKT, and p-PI3K from in vivo and in vitro samples. The results showed that COA significantly improved lung injury, inhibited neutrophil infiltration, prevented macrophage infiltration, inhibited the release of inflammatory factors, reduced oxidative stress, and down-regulated the expression of iNOS, TLR4, p-p65, p-AKT, and p-PI3K in ALI mice caused by LPS. In vitro, COA inhibited the release of inflammatory factors, reduced oxidative stress, and down-regulated the expression of iNOS, TLR4, p-p65, p-AKT, and p-PI3K in MH-S cells stimulated with LPS. Of interest, the protective effects of COA were significantly attenuated in MH-S cells pretreated with the PI3K phosphopeptide activator 740Y-P with no effect on TLR4 expression observed. Taken together, these findings confirm the protective effects of COA on ALI. We further demonstrate that the anti-inflammation and antioxidant effects of COA are mediated through its effects on PI3K/AKT and potentially TLR4.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Anti-Inflamatórios/química , Ácido Oleanólico/análogos & derivados , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Lipopolissacarídeos/metabolismo , Macrófagos/citologia , Masculino , Camundongos Endogâmicos BALB C , Óxido Nítrico Sintase Tipo II/metabolismo , Ácido Oleanólico/química , Ácido Oleanólico/farmacologia , Fosfopeptídeos/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo
17.
J Int Med Res ; 49(2): 300060520986351, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33535837

RESUMO

OBJECTIVES: To investigate the mechanisms underlying the protective effect of sufentanil against acute lung injury (ALI). MATERIAL AND METHODS: Rats were administered lipopolysaccharide (LPS) by endotracheal instillation to establish a model of ALI. LPS was used to stimulate BEAS-2B cells. The targets and promoter activities of IκB were assessed using a luciferase reporter assay. Apoptosis of BEAS-2B cells was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling. RESULTS: Sufentanil treatment markedly reduced pathological changes in lung tissue, pulmonary edema and secretion of inflammatory factors associated with ALI in vivo and in vitro. In addition, sufentanil suppressed apoptosis induced by LPS and activated NF-κB both in vivo and in vitro. Furthermore, upregulation of high mobility group box protein 1 (HMGB1) protein levels and downregulation of miR-129-5p levels were observed in vivo and in vitro following sufentanil treatment. miR-129-5p targeted the 3' untranslated region and its inhibition decreased promoter activities of IκB-α. miR-129-5p inhibition significantly weakened the protective effect of sufentanil on LPS-treated BEAS-2B cells. CONCLUSION: Sufentanil regulated the miR-129-5p/HMGB1 axis to enhance IκB-α expression, suggesting that sufentanil represents a candidate drug for ALI protection and providing avenues for clinical treatment.


Assuntos
Lesão Pulmonar Aguda , MicroRNAs , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/genética , Animais , Lipopolissacarídeos/toxicidade , MicroRNAs/genética , NF-kappa B/genética , Ratos , Sufentanil
18.
Physiol Res ; 70(Suppl4): S567-S583, 2021 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-35199544

RESUMO

Aspiration is a common condition affecting healthy or sick patients which could create an acute or chronic inflammatory reaction in the lungs. Aspiration syndromes could be categorized according to a content entering the respiratory system into bacterial aspiration pneumonia with the gastric or oropharyngeal bacteria entering, aspiration chemical pneumonitis with bacteria-freegastric acid aspiration, or aspiration of a foreign body which causes an acute pulmonary emergency. There are differences in the clinical presentation of volume-dependent aspirations (microaspiration and macroaspiration): the higher is the volume of aspiration, the greater is the injury to the patient and more serious are the health consequences (with 70 % mortality rate for hospitalized patients). Aspiration syndromes can affect both the airways and pulmonary parenchyma, leading to acute lung injury, increased hospitalization rate and worse outcomes in critically ill patients. Impaired alveolar-capillary permeability, oedema formation, neutrophilic inflammatory response and pulmonary surfactant inactivation lead to reduced lung compliance and loss of aerated lung tissue and give rise to hypoxemia and respiratory failure. This review discusses the effect of aspiration events on the pulmonary tissue. The main focus is to distinguish the differences between bacterial and chemical pneumonia, their clinical presentation and symptoms, risk factors of developing the changes, possibilities of diagnostics and management as well as prevention of aspirations. Because of a risk of serious lung damage after the aspiration, pathophysiology and processes leading to lung tissue injury are discussed in detail. Data sources represent a systematic literature search using relevant medical subject headings.


Assuntos
Lesão Pulmonar Aguda , Pneumonia Aspirativa , Lesão Pulmonar Aguda/etiologia , Humanos , Incidência , Pulmão , Pneumonia Aspirativa/epidemiologia , Pneumonia Aspirativa/terapia , Síndrome
19.
Hum Exp Toxicol ; 40(4): 608-621, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32969285

RESUMO

The objective of this study was to evaluate the histopathological effect of gas explosion on rats, and to explore the metabolic alterations associated with gas explosion-induced acute blast lung injury (ABLI) in real roadway environment using metabolomics analyses. All rats were exposed to the gas explosion source at different distance points (160 m and 240 m) except the control group. Respiratory function indexes were monitored and lung tissue analysis was performed to correlate histopathological effect to serum metabolomics. Their sera samples were collected to measure the metabolic alterations by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). HE staining in lung showed that the gas explosion caused obvious inflammatory pulmonary injury, which was consistent with respiratory function monitoring results and the serum metabolomics analysis results. The metabolomics identified 9 significantly metabolites different between the control- and ABLI rats. 2-aminoadipic acid, L-methionine, L-alanine, L-lysine, L-threonine, cholic acid and L-histidine were significantly increased in the exposed groups. Citric acid and aconitic acid were significantly decreased after exposure. Pathway analyses identified 8 perturbed metabolic pathways, which provided novel potential mechanisms for the gas explosion-induced ABLI. Therefore, metabolomics analysis identified both known and unknown alterations in circulating biomarkers, adding an integral mechanistic insight into the gas explosion-induced ABLI in real roadway environment.


Assuntos
Lesão Pulmonar Aguda/sangue , Traumatismos por Explosões/sangue , Explosões , Gases/toxicidade , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Traumatismos por Explosões/metabolismo , Traumatismos por Explosões/patologia , Cromatografia Líquida , Pulmão/efeitos dos fármacos , Pulmão/patologia , Masculino , Espectrometria de Massas , Metaboloma/efeitos dos fármacos , Metabolômica , Ratos Sprague-Dawley
20.
Ann N Y Acad Sci ; 1480(1): 246-256, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33165947

RESUMO

Nitrogen mustard (NM) causes acute lung injury, which progresses to fibrosis. This is associated with a macrophage-dominant inflammatory response and the production of proinflammatory/profibrotic mediators, including tumor necrosis factor alpha (TNF-α). Herein, we refined magnetic resonance imaging (MRI) and computed tomography (CT) imaging methodologies to track the progression of NM-induced lung injury in rodents and assess the efficacy of anti-TNF-α antibody in mitigating toxicity. Anti-TNF-α antibody was administered to rats (15 mg/kg, every 8 days, intravenously) beginning 30 min after treatment with phosphate-buffered saline control or NM (0.125 mg/kg, intratracheally). Animals were imaged by MRI and CT prior to exposure and 1-28 days postexposure. Using MRI, we characterized acute lung injury and fibrosis by quantifying high-signal lung volume, which represents edema, inflammation, and tissue consolidation; these pathologies were found to persist for 28 days following NM exposure. CT scans were used to assess structural components of the lung and to register changes in tissue radiodensities. CT scans showed that in control animals, total lung volume increased with time. Treatment of rats with NM caused loss of lung volume; anti-TNF-α antibody mitigated this decrease. These studies demonstrate that MRI and CT can be used to monitor lung disease and the impact of therapeutic intervention.


Assuntos
Lesão Pulmonar Aguda , Anticorpos Monoclonais Murinos/farmacologia , Irritantes/intoxicação , Imageamento por Ressonância Magnética , Mecloretamina/intoxicação , Fibrose Pulmonar , Tomografia Computadorizada por Raios X , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/diagnóstico por imagem , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Animais , Masculino , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/diagnóstico por imagem , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Ratos , Fatores de Tempo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA