Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Tissue Cell ; 88: 102400, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38759522

RESUMO

Sepsis-induced acute lung injury is a common and severe complication of sepsis, for which effective treatments are currently lacking. Previous studies have demonstrated the influence of wogonin in treating acute lung injury (ALI). However, its precise mechanism of action remains unclear. To delve deeper into the mechanisms underlying wogonin's impacts in sepsis-induced acute lung injury, we established a mouse sepsis model through cecal ligation and puncture and conducted further cell experiments using lipopolysaccharide-treated MH-S and MLE-12 cells to explore wogonin's potential mechanisms of action in treating ALI. Our results revealed that wogonin significantly increased the survival rate of mice, alleviated pulmonary pathological damage and inflammatory cell infiltration, and activated the SIRT1-FOXO1 pathway. Additionally, wogonin suppressed the release of pro-inflammatory factors by M1 macrophages and induced the activation of M2 anti-inflammatory factors. Further in vitro studies confirmed that wogonin effectively inhibited M1 macrophage polarization through the activation of the SIRT1-FOXO1 pathway, thereby mitigating lung pathological changes caused by ALI. In summary, our study demonstrated that wogonin regulated macrophage M1/M2 polarization through the activation of the SIRT1-FOXO1 pathway, thereby attenuating the inflammatory response and improving pulmonary pathological changes induced by sepsis-induced ALI. This discovery provided a solid mechanistic foundation for the therapeutic use of wogonin in sepsis-induced ALI, shedding new light on potential strategies for the treatment of sepsis-induced ALI.


Assuntos
Lesão Pulmonar Aguda , Flavanonas , Proteína Forkhead Box O1 , Macrófagos , Sepse , Transdução de Sinais , Sirtuína 1 , Animais , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/patologia , Sirtuína 1/metabolismo , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/metabolismo , Flavanonas/farmacologia , Camundongos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Proteína Forkhead Box O1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Polaridade Celular/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos
2.
Cell Mol Biol Lett ; 29(1): 36, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486141

RESUMO

BACKGROUND: Macrophage activation may play a crucial role in the increased susceptibility of obese individuals to acute lung injury (ALI). Dysregulation of miRNA, which is involved in various inflammatory diseases, is often observed in obesity. This study aimed to investigate the role of miR-192 in lipopolysaccharide (LPS)-induced ALI in obese mice and its mechanism of dysregulation in obesity. METHODS: Human lung tissues were obtained from obese patients (BMI ≥ 30.0 kg/m2) and control patients (BMI 18.5-24.9 kg/m2). An obese mouse model was established by feeding a high-fat diet (HFD), followed by intratracheal instillation of LPS to induce ALI. Pulmonary macrophages of obese mice were depleted through intratracheal instillation of clodronate liposomes. The expression of miR-192 was examined in lung tissues, primary alveolar macrophages (AMs), and the mouse alveolar macrophage cell line (MH-S) using RT-qPCR. m6A quantification and RIP assays helped determine the cause of miR-192 dysregulation. miR-192 agomir and antagomir were used to investigate its function in mice and MH-S cells. Bioinformatics and dual-luciferase reporter gene assays were used to explore the downstream targets of miR-192. RESULTS: In obese mice, depletion of macrophages significantly alleviated lung tissue inflammation and injury, regardless of LPS challenge. miR-192 expression in lung tissues and alveolar macrophages was diminished during obesity and further decreased with LPS stimulation. Obesity-induced overexpression of FTO decreased the m6A modification of pri-miR-192, inhibiting the generation of miR-192. In vitro, inhibition of miR-192 enhanced LPS-induced polarization of M1 macrophages and activation of the AKT/ NF-κB inflammatory pathway, while overexpression of miR-192 suppressed these reactions. BIG1 was confirmed as a target gene of miR-192, and its overexpression offset the protective effects of miR-192. In vivo, when miR-192 was overexpressed in obese mice, the activation of pulmonary macrophages and the extent of lung injury were significantly improved upon LPS challenge. CONCLUSIONS: Our study indicates that obesity-induced downregulation of miR-192 expression exacerbates LPS-induced ALI by promoting macrophage activation. Targeting macrophages and miR-192 may provide new therapeutic avenues for obesity-associated ALI.


Assuntos
Lesão Pulmonar Aguda , MicroRNAs , Animais , Humanos , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Regulação para Baixo , Lipopolissacarídeos/toxicidade , Ativação de Macrófagos , Camundongos Obesos , MicroRNAs/genética , MicroRNAs/metabolismo , Obesidade/complicações , Obesidade/genética , Transdução de Sinais
3.
Int Immunopharmacol ; 117: 109923, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36842235

RESUMO

Acute lung injury (ALI) is a serious and common clinical disease. Despite significant progress in ALI treatment, the morbidity and mortality rates remain high. However, no effective drug has been discovered for ALI. FGF4, a member of the FGF family, plays an important role in the regulation of various physiological and pathological processes. Therefore, in the present study, we aimed to study the protective effects of FGF4 against LPS-induced lung injury in vivo and in vitro. We found that rFGF4 treatment improved the lung W/D weight ratio, the survival rate, immune cell infiltration and protein concentrations in mice with LPS-induced ALI. Histological analysis revealed that rFGF4 significantly attenuated lung tissue injury and cell apoptosis. Furthermore, rFGF4 inhibited the activation of the TLR4/NF-κB signaling pathway and the production of pro-inflammatory mediators in LPS-injured lung tissues, murine alveolar macrophages (MH-S) and murine pulmonary epithelial (MLE-12) cells. The results of cell experiments further verified that rFGF4 inhibited the production of inflammatory mediators in MH-S cells and MLE-12 cells by regulating the TLR4/NF-κB signaling pathway. These results revealed that rFGF4 protected lung tissues and inhibited inflammatory mediators in mice with LPS-induced ALI by inhibiting the TLR4/NF-κB signaling pathway in MH-S and MLE-12 cells.


Assuntos
Lesão Pulmonar Aguda , NF-kappa B , Camundongos , Animais , NF-kappa B/metabolismo , Lipopolissacarídeos , Receptor 4 Toll-Like/metabolismo , Transdução de Sinais , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Pulmão/patologia , Mediadores da Inflamação
4.
Front Immunol ; 13: 968336, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36052067

RESUMO

Many respiratory viruses cause lung damage that may evolve into acute lung injury (ALI), a cytokine storm, acute respiratory distress syndrome, and ultimately, death. Peroxisome proliferator activated receptor gamma (PPARγ), a member of the nuclear hormone receptor (NHR) family of transcription factors, regulates transcription by forming heterodimers with another NHR family member, Retinoid X Receptor (RXR). Each component of the heterodimer binds specific ligands that modify transcriptional capacity of the entire heterodimer by recruiting different co-activators/co-repressors. However, the role of PPARγ/RXR ligands in the context of influenza infection is not well understood. PPARγ is associated with macrophage differentiation to an anti-inflammatory M2 state. We show that mice lacking the IL-4Rα receptor, required for M2a macrophage differentiation, are more susceptible to mouse-adapted influenza (A/PR/8/34; "PR8")-induced lethality. Mice lacking Ptgs2, that encodes COX-2, a key proinflammatory M1 macrophage mediator, are more resistant. Blocking the receptor for COX-2-induced Prostaglandin E2 (PGE2) was also protective. Treatment with pioglitazone (PGZ), a PPARγ ligand, increased survival from PR8 infection, decreased M1 macrophage gene expression, and increased PPARγ mRNA in lungs. Conversely, conditional knockout mice expressing PPARγ-deficient macrophages were significantly more sensitive to PR8-induced lethality. These findings were extended in cotton rats: PGZ blunted lung inflammation and M1 cytokine gene expression after challenge with non-adapted human influenza. To study mechanisms by which PPARγ/RXR transcription factors induce canonical M2a genes, WT mouse macrophages were treated with IL-4 in the absence or presence of rosiglitazone (RGZ; PPARγ ligand), LG100754 (LG; RXR ligand), or both. IL-4 dose-dependently induced M2a genes Arg1, Mrc1, Chil3, and Retnla. Treatment of macrophages with IL-4 and RGZ and/or LG differentially affected induction of Arg1 and Mrc1 vs. Chil3 and Retnla gene expression. In PPARγ-deficient macrophages, IL-4 alone failed to induce Arg1 and Mrc1 gene expression; however, concurrent treatment with LG or RGZ + LG enhanced IL-4-induced Arg1 and Mrc1 expression, but to a lower level than in WT macrophages, findings confirmed in the murine alveolar macrophage cell line, MH-S. These findings support a model in which PPARγ/RXR heterodimers control IL-4-induced M2a differentiation, and suggest that PPARγ/RXR agonists should be considered as important tools for clinical intervention against influenza-induced ALI.


Assuntos
Lesão Pulmonar Aguda , Influenza Humana , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/metabolismo , Animais , Ciclo-Oxigenase 2/metabolismo , Humanos , Influenza Humana/metabolismo , Interleucina-4/metabolismo , Ligantes , Macrófagos/metabolismo , Camundongos , PPAR gama/metabolismo , Receptores X de Retinoides/metabolismo
5.
Theranostics ; 12(6): 2928-2947, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401830

RESUMO

Rationale: Aberrant activation of macrophages with mitochondria dismiss was proved to be associated with pathogenesis of ALI (acute lung injury). Exosomes from adipose-derived mesenchymal stem cells (AdMSC-Exos) have been distinguished by their low immunogenicity, lack of tumorigenicity, and high clinical safety, but their role in treating ALI and the mechanism involved need to be defined. In this study, we sought to investigate whether the mitochondrial donation from AdMSC-Exos provides profound protection against LPS-induced ALI in mice, accompanied by improvement of macrophage mitochondrial function. Methods: C57BL/6 mice were orotracheally instilled with LPS (1 mg/kg). AdMSC-Exos were administered via the tail vein 4 h after LPS inhalation. Flow cytometry, H&E, Quantitative Real-Time PCR, immunofluorescence (IF), confocal microscopy imaging was conducted to investigate lung tissue inflammation and macrophage mitochondrial function. And further observe the transfer of exosomes and the effect on mitochondrial function of MH-S cells through in vitro experiments. Results: AdMSC-Exos can transfer the stem cell-derived mitochondria components to alveolar macrophages in a dose-dependent manner. Likely through complementing the damaged mitochondria, AdMSC-Exos exhibited the ability to elevate the level of mtDNA, mitochondrial membrane potential (MMP), OXPHOS activity and ATP generation, while reliving mROS stress in LPS-challenged macrophages. Restoring mitochondrial integrity via AdMSC-Exos treatment enabled macrophages shifting to anti-inflammatory phenotype, as featured with the down-regulation of IL-1ß, TNF-α and iNOS secretion and increase in production of anti-inflammatory cytokines IL-10 and Arg-1. As we depleted alveolar macrophages using clodronate liposomes, the protective role for AdMSC-Exos was largely abrogated. Conclusions: AdMSC-Exos can effectively donate mitochondria component improved macrophages mitochondrial integrity and oxidative phosphorylation level, leading to the resumption of metabolic and immune homeostasis of airway macrophages and mitigating lung inflammatory pathology.


Assuntos
Lesão Pulmonar Aguda , Exossomos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/terapia , Animais , Exossomos/metabolismo , Homeostase , Lipopolissacarídeos/metabolismo , Macrófagos Alveolares , Camundongos , Camundongos Endogâmicos C57BL
6.
Hum Exp Toxicol ; 40(4): 608-621, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32969285

RESUMO

The objective of this study was to evaluate the histopathological effect of gas explosion on rats, and to explore the metabolic alterations associated with gas explosion-induced acute blast lung injury (ABLI) in real roadway environment using metabolomics analyses. All rats were exposed to the gas explosion source at different distance points (160 m and 240 m) except the control group. Respiratory function indexes were monitored and lung tissue analysis was performed to correlate histopathological effect to serum metabolomics. Their sera samples were collected to measure the metabolic alterations by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). HE staining in lung showed that the gas explosion caused obvious inflammatory pulmonary injury, which was consistent with respiratory function monitoring results and the serum metabolomics analysis results. The metabolomics identified 9 significantly metabolites different between the control- and ABLI rats. 2-aminoadipic acid, L-methionine, L-alanine, L-lysine, L-threonine, cholic acid and L-histidine were significantly increased in the exposed groups. Citric acid and aconitic acid were significantly decreased after exposure. Pathway analyses identified 8 perturbed metabolic pathways, which provided novel potential mechanisms for the gas explosion-induced ABLI. Therefore, metabolomics analysis identified both known and unknown alterations in circulating biomarkers, adding an integral mechanistic insight into the gas explosion-induced ABLI in real roadway environment.


Assuntos
Lesão Pulmonar Aguda/sangue , Traumatismos por Explosões/sangue , Explosões , Gases/toxicidade , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Traumatismos por Explosões/metabolismo , Traumatismos por Explosões/patologia , Cromatografia Líquida , Pulmão/efeitos dos fármacos , Pulmão/patologia , Masculino , Espectrometria de Massas , Metaboloma/efeitos dos fármacos , Metabolômica , Ratos Sprague-Dawley
7.
Ann N Y Acad Sci ; 1480(1): 246-256, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33165947

RESUMO

Nitrogen mustard (NM) causes acute lung injury, which progresses to fibrosis. This is associated with a macrophage-dominant inflammatory response and the production of proinflammatory/profibrotic mediators, including tumor necrosis factor alpha (TNF-α). Herein, we refined magnetic resonance imaging (MRI) and computed tomography (CT) imaging methodologies to track the progression of NM-induced lung injury in rodents and assess the efficacy of anti-TNF-α antibody in mitigating toxicity. Anti-TNF-α antibody was administered to rats (15 mg/kg, every 8 days, intravenously) beginning 30 min after treatment with phosphate-buffered saline control or NM (0.125 mg/kg, intratracheally). Animals were imaged by MRI and CT prior to exposure and 1-28 days postexposure. Using MRI, we characterized acute lung injury and fibrosis by quantifying high-signal lung volume, which represents edema, inflammation, and tissue consolidation; these pathologies were found to persist for 28 days following NM exposure. CT scans were used to assess structural components of the lung and to register changes in tissue radiodensities. CT scans showed that in control animals, total lung volume increased with time. Treatment of rats with NM caused loss of lung volume; anti-TNF-α antibody mitigated this decrease. These studies demonstrate that MRI and CT can be used to monitor lung disease and the impact of therapeutic intervention.


Assuntos
Lesão Pulmonar Aguda , Anticorpos Monoclonais Murinos/farmacologia , Irritantes/intoxicação , Imageamento por Ressonância Magnética , Mecloretamina/intoxicação , Fibrose Pulmonar , Tomografia Computadorizada por Raios X , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/diagnóstico por imagem , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Animais , Masculino , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/diagnóstico por imagem , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Ratos , Fatores de Tempo , Fator de Necrose Tumoral alfa/metabolismo
8.
J Biol Chem ; 295(52): 18638-18648, 2020 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-33109608

RESUMO

Acute lung injury (ALI), is a rapidly progressing heterogenous pulmonary disorder that possesses a high risk of mortality. Accumulating evidence has implicated the activation of the p65 subunit of NF-κB [NF-κB(p65)] activation in the pathological process of ALI. microRNAs (miRNAs), a group of small RNA molecules, have emerged as major governors due to their post-transcriptional regulation of gene expression in a wide array of pathological processes, including ALI. The dysregulation of miRNAs and NF-κB activation has been implicated in human diseases. In the current study, we set out to decipher the convergence of miR-99b and p65 NF-κB activation in ALI pathology. We measured the release of pro-inflammatory cytokines (IL-1ß, IL-6, and TNFα) in bronchoalveolar lavage fluid using ELISA. MH-S cells were cultured and their viability were detected with cell counting kit 8 (CCK8) assays. The results showed that miR-99b was up-regulated, while PRDM1 was down-regulated in a lipopolysaccharide (LPS)-induced murine model of ALI. Mechanistic investigations showed that NF-κB(p65) was enriched at the miR-99b promoter region, and further promoted its transcriptional activity. Furthermore, miR-99b targeted PRDM1 by binding to its 3'UTR, causing its down-regulation. This in-creased lung injury, as evidenced by increased wet/dry ratio of mouse lung, myeloperoxidase activity and pro-inflammatory cytokine secretion, and enhanced infiltration of inflammatory cells in lung tissues. Together, our findings indicate that NF-κB(p65) promotion of miR-99b can aggravate ALI in mice by down-regulating the expression of PRDM1.


Assuntos
Lesão Pulmonar Aguda/patologia , Regulação da Expressão Gênica , Lipopolissacarídeos/toxicidade , MicroRNAs/genética , NF-kappa B/metabolismo , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Transdução de Sinais
9.
Respir Physiol Neurobiol ; 281: 103506, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32726645

RESUMO

Acute lung injury (ALI) is one of the most severe outcomes of sepsis which still waiting for effective treatment method. Roxadustat (FG-4592) which is often used for treatment of anemia in patients with chronic kidney disease (CKD), its affection on LPS-induced ALI haven't been evaluated. MH-S and MLE-12 cell injury and ALI mouse model was induced LPS. Several assays were used to explore the role of FG-4592 in reducing the damage caused by LPS. FG-4592 treatment significantly upregulated HIF-1α and HO-1 and strikingly attenuated inflammation in vivo and in vitro. Furthermore, septic mice overexpressing HIF-1α had high level of survival rate and lower expression of inflammatory factors while down-regulation can enhance the damage of LPS. HIF-1α has a protective effect on acute lung injury in LPS induced septic mice. FG-4592 treatment remarkably ameliorated the LPS-induced lung injury through the stabilization of HIF-1α. Besides the role in treating CKD anemia, the clinical use of FG-4592 also might be extended to ALI.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Glicina/análogos & derivados , Prolina Dioxigenases do Fator Induzível por Hipóxia/antagonistas & inibidores , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Isoquinolinas/farmacologia , Sepse/metabolismo , Lesão Pulmonar Aguda/etiologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Glicina/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Sepse/complicações
10.
Respir Res ; 20(1): 233, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31660971

RESUMO

BACKGROUND: Accumulating evidence has shown the important roles of long non-coding RNAs (lncRNAs) in acute lung injury (ALI). This study aimed to investigate the potential role of lncRNA small nucleolar RNA host gene 14 (SNHG14) in lipopolysaccharides (LPS)-induced ALI. METHODS: Expression of SNHG14, microRNA-34c-3p (miR-34c-3p) and Wnt1 inducible signaling pathway protein 1 (WISP1) in LPS-exposed mouse alveolar macrophages (MH-S) and lung tissues from mice with LPS-induced ALI was determined by reverse transcription quantitative polymerase chain reaction. The interactions among SNHG14, miR-34c-3p and WISP1 were analyzed by dual-luciferase reporter and RIP assays. Using gain-of-function or loss-of-function approaches, the contents of proinflammatory proteins were determined and MH-S cell viability was assessed to evaluate the in vitro functions of SNHG14, miR-34c-3p and WISP1, and wet/dry weight ratio and proinflammatory proteins in lung tissues were determined to assess their in vivo effects. RESULTS: SNHG14 and WISP1 expression was increased, while miR-34c-3p was decreased in ALI models. SNHG14 bound to miR-34c-3p, resulting in impaired miR-34c-3p-dependent down-regulation of WISP1. Both SNHG14 silencing and miR-34c-3p over-expression reduced the levels of proinflammatory proteins IL-18, IL-1ß, TNF-α and IL-6 and inhibited MH-S cell viability. SNHG14 silencing or miR-34c-3p over-expression decreased the wet/dry weight ratio in lung tissues from ALI mice. The reductions induced by SNHG14 silencing or miR-34c-3p over-expression were rescued by WISP1 over-expression. CONCLUSION: This study demonstrated that lncRNA SNHG14 silencing alleviated inflammation in LPS-induced ALI through miR-34c-3p-mediated inhibition of WISP1. Our findings suggest that lncRNA SNHG14 may serve as a therapeutic target for ALI.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Proteínas de Sinalização Intercelular CCN/biossíntese , Regulação para Baixo/fisiologia , Lipopolissacarídeos/toxicidade , MicroRNAs/biossíntese , Proteínas Proto-Oncogênicas/biossíntese , RNA Longo não Codificante/biossíntese , Lesão Pulmonar Aguda/induzido quimicamente , Animais , Proteínas de Sinalização Intercelular CCN/antagonistas & inibidores , Proteínas de Sinalização Intercelular CCN/genética , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos ICR , MicroRNAs/genética , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/genética , Distribuição Aleatória
11.
Connect Tissue Res ; 59(6): 581-592, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29649906

RESUMO

BACKGROUND: Acute lung injury (ALI) is a type of severe pulmonary inflammatory disease with high rates of morbidity and mortality. Now, an increasing number of studies suggest that lncRNAs may act as key regulators of the inflammatory response and play a crucial role in the pathogenesis of many inflammatory diseases. Our study firstly explored the function and underlying mechanism of lncRNA metastasis-associated lung adenocarcinoma transcription 1 (MALAT1) in regulating the inflammatory response of lipopolysaccharide (LPS)-induced ALI in rats. METHODS: The ALI rats were constructed by intratracheal instillation with LPS. Hematoxylin and eosin (HE) for histological examination were performed to detect histopathological changes in the lung tissues. Enzyme-linked immunosorbent assay (ELISA) was used to determine the concentrations of cytokines TNF-α, IL-6, and IL-1ß in the supernatants of the bronchoalveolar lavage fluid (BALF). Quantitative real-time PCR (qRT-PCR) analysis was employed to assess the expression of MALAT1, miR-146a, TNF-α, IL-6, and IL-1ß in lung tissues. Luciferase reporter assay and RNA immunoprecipitation (RIP) assay were used to detect the relationship between MALAT1 and miR-146a. RESULTS: The results revealed that MALAT1 knockdown played a protective role in the LPS-induced ALI rat model. In addition, knockdown of MALAT1 in vitro inhibited LPS-induced inflammatory response in murine alveolar macrophages cell line MH-S and murine alveolar epithelial cell line MLE-12. This study found that MALAT1 acts as a molecular sponge for miR-146a and MALAT1 negatively regulated miR-146a expression. Mechanistically, MALAT1 overexpression alleviated the inhibitory effect of miR-146a on LPS-induced inflammatory response in MH-S. CONCLUSIONS: Together, our study provided the first evidence that MALAT1 knockdown could suppress inflammatory response by up-regulating miR-146a in LPS-induced ALI, which provided a potential therapeutic target for the treatment of ALI.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Lipopolissacarídeos/toxicidade , MicroRNAs/biossíntese , RNA Longo não Codificante/metabolismo , Regulação para Cima/efeitos dos fármacos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/patologia , Animais , Técnicas de Silenciamento de Genes , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , MicroRNAs/genética , RNA Longo não Codificante/genética , Ratos , Ratos Sprague-Dawley
12.
PLoS One ; 11(12): e0168688, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27997619

RESUMO

Chromium (Cr) is used in many industries and it is widely distributed in the environment. Exposure to Cr dust has been reported among workers at these industries. Beside its hazardous effects on the lungs, brain injury could be induced, as the absorption of substances through the nasal membrane has been found to provide them a direct delivery to the brain. We investigated the distribution and the effects of Cr in both brain and lung following the intranasal instillation of potassium dichromate (inPDC) in rats. Simultaneously, we used the common intraperitoneal (ipPDC) rat model of acute Cr-toxicity for comparison. Thirty male Wistar rats were randomly allocated into five groups (n = 6); each received a single dose of saline, ipPDC (15 mg/kg), or inPDC in three dose levels: 0.5, 1, or 2 mg/kg. Locomotor activity was assessed before and 24 h after PDC administration, then, the lungs and brain were collected for biochemical, histopathological, and immunohistochemical investigations. Treatment of rats with ipPDC resulted in a recognition of 36% and 31% of the injected dose of Cr in the brain and lung tissues, respectively. In inPDC-treated rats, targeting the brain by Cr was increased in a dose-dependent manner to reach 46% of the instilled dose in the group treated with the highest dose. Moreover, only this high dose of inPDC resulted in a delivery of a significant concentration of Cr, which represented 42% of the instilled dose, to the lungs. The uppermost alteration in the rats locomotor activity as well as in the brain and lung histopathological features and contents of oxidative stress biomarkers, interleukin-1ß (IL-1ß), phosphorylated protein kinase B (PKB), and cyclooxygenase 2 (COX-2) were observed in the rats treated with inPDC (2 mg/kg). The findings revealed that these toxic manifestations were directly proportional to the delivered concentration of Cr to the tissue. In conclusion, the study showed that a comparably higher concentrations of Cr and more elevated levels of oxidative stress and inflammatory markers were observed in brain and lung tissues of rats subjected to inPDC in a dose that is just 0.13 that of ipPDC dose commonly used in Cr-induced toxicity studies. Therefore, the study suggests a high risk of brain-targeting injury among individuals environmentally or occupationally exposed to Cr dust, even in low doses, and an additional risk of lung injury with higher Cr concentrations. Moreover, the study introduces inPDC (2 mg/kg)-instillation as a new experimental animal model suitable to study the acute brain and lung toxicities induced by intranasal exposure to Cr compounds.


Assuntos
Lesão Pulmonar Aguda , Lesões Encefálicas , Cromo/toxicidade , Exposição Ambiental/efeitos adversos , Exposição Ocupacional/efeitos adversos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Administração Intranasal , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Lesões Encefálicas/induzido quimicamente , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Modelos Animais de Doenças , Humanos , Locomoção/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Ratos , Ratos Wistar
13.
J Ethnopharmacol ; 155(2): 1353-61, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25068578

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The roots of Angelica decursiva Fr. Et Sav (Umbelliferae) have been frequently used in traditional medicine as anti-inflammatory, antitussive, analgesic agents and expectorant, especially for treating cough, asthma, bronchitis and upper respiratory tract infections. To establish the scientific rationale for the clinical use of Angelica decursiva and to identify new agents for treating inflammatory lung disorders, pharmacological evaluation of the roots of Angelica decursiva and the isolated constituents was performed. METHODS: In vitro study was carried out using two lung cells, lung epithelial cells (A549) and alveolar macrophages (MH-S). The inflammatory markers such as IL-6 and nitric oxide (NO) for each cell line were examined. For in vivo study, a mouse model of lipopolysaccharide (LPS)-induced acute lung injury was used and the effects on lung inflammation were established by measuring the cell numbers in bronchoalveolar lavage fluid (BALF) and by histological observation. RESULTS: Water and 70% ethanol extracts of the roots of Angelica decursiva showed considerable inhibitory activity against LPS-induced lung inflammation in mice following oral administration at a dose of 400 mg/kg. Five coumarin derivatives including columbianadin, umbelliferone, umbelliferone 6-carboxylic acid, nodakenin and nodakenetin were isolated. Among the isolated compounds, columbianadin was found to possess strong inhibitory activity against the inflammatory response of IL-1ß-treated A549 cells and LPS-treated MH-S cells. Columbianadin was found to inhibit NO production by down-regulation of inducible NO synthase. Moreover, columbianadin was also proved to possess significant inhibitory activity against LPS-induced lung inflammation following oral administration at a dose of 20-60 mg/kg. CONCLUSIONS: The roots of Angelica decursiva were proved to be effective in the treatment of lung inflammation. Columbianadin can be a potential new agent for treating inflammatory lung disorders.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Angelica , Anti-Inflamatórios/farmacologia , Cumarínicos/farmacologia , Pulmão/efeitos dos fármacos , Macrófagos Alveolares/efeitos dos fármacos , Extratos Vegetais/farmacologia , Raízes de Plantas , Pneumonia/tratamento farmacológico , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/metabolismo , Angelica/química , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Linhagem Celular Tumoral , Cumarínicos/química , Cumarínicos/isolamento & purificação , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Endotoxinas , Etanol/química , Humanos , Mediadores da Inflamação/metabolismo , Interleucina-6/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Masculino , Camundongos Endogâmicos ICR , Óxido Nítrico/imunologia , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/metabolismo , Fitoterapia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Raízes de Plantas/química , Plantas Medicinais , Pneumonia/induzido quimicamente , Pneumonia/imunologia , Pneumonia/metabolismo , Solventes/química , Fatores de Tempo , Água/química
14.
Am J Respir Cell Mol Biol ; 49(3): 368-83, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23590305

RESUMO

In this study, a genetically diverse panel of 43 mouse strains was exposed to phosgene and genome-wide association mapping performed using a high-density single nucleotide polymorphism (SNP) assembly. Transcriptomic analysis was also used to improve the genetic resolution in the identification of genetic determinants of phosgene-induced acute lung injury (ALI). We prioritized the identified genes based on whether the encoded protein was previously associated with lung injury or contained a nonsynonymous SNP within a functional domain. Candidates were selected that contained a promoter SNP that could alter a putative transcription factor binding site and had variable expression by transcriptomic analyses. The latter two criteria also required that ≥10% of mice carried the minor allele and that this allele could account for ≥10% of the phenotypic difference noted between the strains at the phenotypic extremes. This integrative, functional approach revealed 14 candidate genes that included Atp1a1, Alox5, Galnt11, Hrh1, Mbd4, Phactr2, Plxnd1, Ptprt, Reln, and Zfand4, which had significant SNP associations, and Itga9, Man1a2, Mapk14, and Vwf, which had suggestive SNP associations. Of the genes with significant SNP associations, Atp1a1, Alox5, Plxnd1, Ptprt, and Zfand4 could be associated with ALI in several ways. Using a competitive electrophoretic mobility shift analysis, Atp1a1 promoter (rs215053185) oligonucleotide containing the minor G allele formed a major distinct faster-migrating complex. In addition, a gene with a suggestive SNP association, Itga9, is linked to transforming growth factor ß1 signaling, which previously has been associated with the susceptibility to ALI in mice.


Assuntos
Lesão Pulmonar Aguda/genética , Substâncias para a Guerra Química/toxicidade , Expressão Gênica/efeitos dos fármacos , Genoma , Pulmão/metabolismo , Fosgênio/toxicidade , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Alelos , Animais , Mapeamento Cromossômico , Ensaio de Desvio de Mobilidade Eletroforética , Feminino , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Genômica , Genótipo , Integrinas/genética , Integrinas/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/patologia , Camundongos , Camundongos Endogâmicos , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Proteína Reelina , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo
15.
Mol Imaging Biol ; 15(1): 19-27, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22752654

RESUMO

PURPOSE: The aim of the study was to use micro-autoradiography to investigate the lung cell types responsible for 2-deoxy-2-[(18)F]fluoro-D-glucose (FDG) uptake in murine models of acute lung injury (ALI). PROCEDURES: C57/BL6 mice were studied in three groups: controls, ventilator-induced lung injury (VILI), and endotoxin. VILI was produced by high tidal volumes and zero end-expiratory pressure and endotoxin ALI, by intranasal administration. Following FDG injection, the lungs were processed and exposed to autoradiographic emulsion. Grain density over cells was used to quantify FDG uptake. RESULTS: Neutrophils, macrophages, and type 2 epithelial cells presented higher grain densities during VILI and endotoxin ALI than controls. Remarkably, cell grain density in specific cell types was dependent on the injury mechanism. Whereas macrophages showed high grain densities during endotoxin ALI, similar to those exhibited by neutrophils, type 2 epithelial cells demonstrated the second highest grain density (with neutrophils as the highest) during VILI. CONCLUSIONS: In murine models of VILI and endotoxin ALI, FDG uptake occurs not only in neutrophils but also in macrophages and type 2 epithelial cells. FDG uptake by individual cell types depends on the mechanism underlying ALI.


Assuntos
Autorradiografia/métodos , Células Endoteliais/metabolismo , Endotoxemia/metabolismo , Fluordesoxiglucose F18/farmacocinética , Neutrófilos/metabolismo , Compostos Radiofarmacêuticos/farmacocinética , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Análise de Variância , Animais , Células Endoteliais/química , Endotoxemia/patologia , Feminino , Fluordesoxiglucose F18/química , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia , Imagem Molecular/métodos , Neutrófilos/química , Compostos Radiofarmacêuticos/química , Lesão Pulmonar Induzida por Ventilação Mecânica/patologia
16.
Zhongguo Wei Zhong Bing Ji Jiu Yi Xue ; 18(8): 485-7, 2006 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-16887063

RESUMO

OBJECTIVE: To observe and evaluate the pathophysiological indexes of acute lung injury (ALI) induced by lipopolysaccharide (LPS) in rats. METHODS: Thirty-three Wistar rats were randomly divided into normal control group and experiment group. Respiratory rate , mortality, arterial blood gases, compliance and wet weight of right lung/body weight ratio, tumor necrosis factor-alpha (TNF-alpha) in serum and bronchoalveolar lavage fluid (BALF) were determined 2, 4 and 6 hours after injection of LPS or normal saline in both groups. RESULTS: In the experiment group,the following changes were found. Arterial partial pressure of oxygen (PaO(2)) was reduced to 69.18 mm Hg (1 mm Hg=0.133 kPa), marked blood stasis, and edema in lung tissues could be grossly seen and pathological examination showed that there was a large number of inflammation cell infiltration and edema in interstitial spaces with disappearance of normal construction of alveolar. There was also dilatation of capillaries with congestion and adherent leukocytes. Furthermore, compliance was decreased to 47% of the normal value, and wet weight of right lung/body weight ratio increased to 137% of the normal value. Blood TNF-alpha level increased markedly in serum and BALF. CONCLUSION: Specific pathological changes and decreased PaO(2) over 30% of the baseline value are the main signs of successful reproduction of ALI model in rats. Compliance and weight of right lung/body weight value can also reflect the status of ALI as helpful indexes.


Assuntos
Lesão Pulmonar Aguda/fisiopatologia , Modelos Animais de Doenças , Lipopolissacarídeos/toxicidade , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Animais , Injeções Intravenosas , Lipopolissacarídeos/administração & dosagem , Pulmão/patologia , Pulmão/fisiopatologia , Masculino , Distribuição Aleatória , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA