Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 398
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Biomed Mater ; 19(5)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38955335

RESUMO

This study aimed to develop and optimize karanjin-loaded ethosomal nanogel formulation and evaluate its efficacy in alleviating symptoms of psoriasis in an animal model induced by imiquimod. These karanjin-loaded ethosomal nanogel, were formulated to enhance drug penetration into the skin and its epidermal retention. Karanjin was taken to formulate ethosomes due to its potential ani-psoriatic activity. Ethosomes were formulated using the cold method using 32full factorial designs to optimize the formulation components. 9 batches were prepared using two independent variablesX1: concentration of ethanol andX2: concentration of phospholipid whereas vesicle size (Y1) and percentage entrapment efficiency (Y2) were selected as dependent variables. All the dependent variables were found to be statistically significant. The optimized ethosomal suspension (B3) exhibited a vesicle size of 334 ± 2.89 nm with an entrapment efficiency of 94.88 ± 1.24% and showed good stability. The morphology of vesicles appeared spherical with smooth surfaces through transmission electron microscopy analysis. X-ray diffraction analysis confirmed that the drug existed in an amorphous state within the ethosomal formulation. The optimized ethosome was incorporated into carbopol 934 to develop nanogel for easy application on the skin. The nanogel underwent characterization for various parameters including spreadability, viscosity, pH, extrudability, and percentage drug content. The ethosomal formulation remarkably enhanced the skin permeation of karanjin and increased epidermal retention of the drug in psoriatic skin compared to marketed preparation and pure drug. A skin retention study showed that ethosomal nanogel formulation has 48.33% epidermal retention in 6 h.In vivo,the anti-psoriatic activity of karanjin ethosomal nanogel demonstrated significant improvement in psoriasis, indicated by a gradual decrease in skin thickness and scaling as reflected in the Psoriasis Severity Index grading. Therefore, the prepared ethosomal nanogel is a potential vehicle for improved topical delivery of karanjin for better treatment of psoriasis.


Assuntos
Nanogéis , Psoríase , Absorção Cutânea , Psoríase/tratamento farmacológico , Psoríase/patologia , Animais , Nanogéis/química , Lecitinas/química , Pele/metabolismo , Pele/patologia , Tamanho da Partícula , Lipossomos/química , Polietilenoglicóis/química , Glycine max/química , Ratos , Masculino , Imiquimode/química , Portadores de Fármacos/química , Polietilenoimina/química , Difração de Raios X , Etanol/química , Acrilatos
2.
AAPS PharmSciTech ; 25(5): 119, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816667

RESUMO

Loteprednol etabonate (LE) is a topical corticosteroid for the symptomatic management of ocular conditions, encompassing both allergic and infectious etiologies. Owing to the dynamic and static barriers of the eye, LE exhibits significantly low bioavailability, necessitating an increase in the frequency of drug administration. The objective of this study is to overcome the limitations by developing niosomal systems loaded with LE. Design of Experiments (DoE) approach was used for the development of optimal niosome formulation. The optimal formulation was characterized using DLS, FT-IR, and DSC analysis. In vitro and ex vivo release studies were performed to demonstrate drug release patterns. After that HET-CAM evaluation was conducted to determine safety profile. Then, in vivo studies were carried out to determine therapeutic activity of niosomes. Zeta potential (ZP), particle size, polydispersity index (PI), and encapsulation efficacy (EE) were -33.8 mV, 89.22 nm, 0.192, and 89.6%, respectively. Medicated niosomes had a broad distribution within rabbit eye tissues and was absorbed by the aqueous humor of the bovine eye for up to 6 h after treatment. Cumulative permeated drug in the bovine eye and rabbit eye were recorded 52.45% and 54.8%, respectively. No irritation or hemorrhagic situation was observed according to the results of HET-CAM study. Thus, novel LE-loaded niosomal formulations could be considered as a promising treatment option for the dry-eye-disease (DED) due to enhanced bioavailability and decreased side effects.


Assuntos
Preparações de Ação Retardada , Síndromes do Olho Seco , Lipossomos , Etabonato de Loteprednol , Animais , Coelhos , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/farmacocinética , Etabonato de Loteprednol/administração & dosagem , Etabonato de Loteprednol/farmacocinética , Síndromes do Olho Seco/tratamento farmacológico , Bovinos , Liberação Controlada de Fármacos , Tamanho da Partícula , Modelos Animais de Doenças , Administração Oftálmica , Disponibilidade Biológica , Sistemas de Liberação de Medicamentos/métodos , Olho/metabolismo , Olho/efeitos dos fármacos , Humor Aquoso/metabolismo , Química Farmacêutica/métodos , Soluções Oftálmicas/administração & dosagem , Soluções Oftálmicas/farmacocinética
3.
Int J Pharm ; 658: 124212, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38723730

RESUMO

Liposomes are nanosized, spherical vesicles consisting of an aqueous core encircled by one or more phospholipid bilayer shells. Liposomes have found extensive use in numerous biomedicine and nanomedicine applications due to their excellent biocompatibility, adaptable chemical composition, ease of preparation, and diverse structural characteristics. These applications include nanocarriers for drug delivery, immunoassays, nutraceuticals, tissue engineering, clinical diagnostics, and theranostics formulations. These applications stimulated significant efforts toward scaling up formation processes in anticipation of appropriate industrial advancement. Despite the advancements in conventional methods and the emergence of new approaches for liposome production, their inherent susceptibility to chemical and mechanical influences contributes to critical challenges, including limited colloidal stability and decreased efficiency in encapsulating cargo molecules. With this context, the current review provides brief insights into liposomes conventional and novel industrial production techniques. With a special focus on the structural parameters, and pivotal elements influencing the synthesis of an appropriate and stable formulation, followed by the various regulatory aspects of industrial production.


Assuntos
Lipossomos , Humanos , Composição de Medicamentos/métodos , Sistemas de Liberação de Medicamentos/métodos , Química Farmacêutica/métodos , Indústria Farmacêutica/métodos , Animais
4.
Int J Biol Macromol ; 270(Pt 1): 132432, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38761609

RESUMO

The African swine fever virus (ASFV) continues to pose significant economic and pandemic risks. Consequently, discovering new, efficient vaccines is crucial. Messenger RNA (mRNA) vaccines have emerged as promising candidates, providing minimal risk of insertional mutagenesis, high safety profiles, effectiveness, rapid scalability in production, and cost-effectiveness. In this study, we have developed an ASF p30 mRNA vaccine candidate (mRNA/Man-LNP) employing mannose-modified lipid nanoparticles (LNPs). The mRNA/Man-LNP exhibited effective antigen presentation and facilitated dendritic cells (DCs) maturation. Notably, it elicited strong IgG titers and activated CD4+ and CD8+ T-cells in immunized mice, all while adhering to stringent biosafety standards. This investigation demonstrates that mRNA/Man-LNP can trigger both humoral and cellular immune responses, suggesting its potential as a potent and promising vaccine candidate for controlling African swine fever (ASF).


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Manose , Nanopartículas , Vacinas Virais , Animais , Nanopartículas/química , Vírus da Febre Suína Africana/imunologia , Vírus da Febre Suína Africana/genética , Febre Suína Africana/prevenção & controle , Febre Suína Africana/imunologia , Camundongos , Vacinas Virais/imunologia , Suínos , Manose/química , Células Dendríticas/imunologia , Lipídeos/química , Desenvolvimento de Vacinas , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Vacinas de mRNA , Feminino , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Lipossomos
5.
Int J Pediatr Otorhinolaryngol ; 178: 111894, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38350381

RESUMO

OBJECTIVES: We report the in vivo biodistribution and ototoxicity of cationic liposomal-ceftriaxone (CFX) delivered via ear drop formulation in adult chinchilla. METHODS: CFX was encapsulated in liposomes with size of ∼100 nm and surface charge of +20 mV. 100 µl liposomes or free drug was applied twice daily in both external ear canals of adult chinchillas for either 3 or 10 days. Study groups included free ceftriaxone (CFX, Day 3: n = 4, Day 10: n = 8), liposomal ceftriaxone (CFX-Lipo, Day 3: n = 4, Day 10: n = 8), and a systemic control group (Day 3: n = 4, Day 10: n = 4). Ceftriaxone delivery to the middle ear and systemic circulation was quantified by HPLC assays. Liposome transport was visualized via confocal microscopy. Auditory brainstem response (ABR) tests and cochlear histology were used to assess ototoxicity. RESULTS: Liposomal ceftriaxone (CFX-Lipo) displayed a ∼658-fold increase in drug delivery efficiency in the middle ear relative to the free CFX (8.548 ± 0.4638% vs. 0.013 ± 0.0009%, %Injected dose, Mean ± SEM). CFX measured in blood serum (48.2 ± 7.78 ng/ml) following CFX-Lipo treatment in ear was 41-fold lower compared to systemic free-CFX treatment (1990.7 ± 617.34 ng/ml). ABR tests and histological analysis indicated no ototoxicity due to the treatment. CONCLUSION: Cationic liposomal encapsulation results in potent drug delivery across the tympanic membrane to the middle ear with minimal systemic exposure and no ototoxicity.


Assuntos
Otite Média , Ototoxicidade , Animais , Humanos , Membrana Timpânica , Chinchila , Ceftriaxona/uso terapêutico , Lipossomos/uso terapêutico , Distribuição Tecidual , Orelha Média , Otite Média/tratamento farmacológico
6.
Nano Lett ; 24(3): 920-928, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38207109

RESUMO

Organic nanoparticles are used in nanomedicine, including for cancer treatment and some types of COVID-19 vaccines. Here, we demonstrate the scalable, rapid, reproducible, and cost-effective synthesis of three model organic nanoparticle formulations relevant to nanomedicine applications. We employed a custom-made, low-cost fluid mixer device constructed from a commercially available three-dimensional printer. We investigated how systematically changing aqueous and organic volumetric flow rate ratios determined liposome, polymer nanoparticle, and solid lipid nanoparticle sizes, size distributions, and payload encapsulation efficiencies. By manipulating inlet volumes, we synthesized organic nanoparticles with encapsulation efficiencies approaching 100% for RNA-based payloads. The synthesized organic nanoparticles were safe and effective at the cell culture level, as demonstrated by various assays. Such cost-effective synthesis approaches could potentially increase the accessibility to clinically relevant organic nanoparticle formulations for personalized nanomedicine applications at the point of care, especially in nonhospital and low-resource settings.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Humanos , Sistemas de Liberação de Medicamentos/métodos , Nanomedicina/métodos , Sistemas Automatizados de Assistência Junto ao Leito , Vacinas contra COVID-19 , Análise Custo-Benefício , Lipossomos
7.
Drug Deliv Transl Res ; 14(7): 1794-1809, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38165530

RESUMO

Mice as a crucial tool for preclinical assessment of antineoplastic agents. The impact of physiological differences among mouse strains on the in vivo efficacy of antitumor drugs, however, has been significantly overlooked. Mononuclear phagocyte system (MPS) is the major player in clearance in vivo, and differences in MPS among different strains may potentially impact the effectiveness of antitumor preparations. Therefore, in this study, we employed conventional liposomes (CL-EPI) and SA-ODA modified liposomes (SAL-EPI) as model preparations to investigate the comprehensive tumor therapeutic effects of CL-EPI and SAL-EPI in KM, BALB/c, and C57BL/6 tumor-bearing mice. The results demonstrated significant variability in the efficacy of CL-EPI for tumor treatment across different mouse strains. Therefore, we should pay attention to the selection of animal models in the study of antitumor agents. SAL-EPI effectively targeted tumor sites by binding to Siglec-1 on the surface of peripheral blood monocytes (PBMs), and achieved good therapeutic effect in different mouse strains with little difference in treatment. The SA modified preparation is therefore expected to achieve a favorable therapeutic effect in tumor patients with different immune states through PBMs delivery (Siglec-1 was expressed in both mice and humans), thereby possessing clinical translational value and promising development prospects.


Assuntos
Antineoplásicos , Lipossomos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/administração & dosagem , Camundongos , Linhagem Celular Tumoral , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico , Feminino , Modelos Animais de Doenças , Especificidade da Espécie
8.
Ultrason Sonochem ; 102: 106765, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38232412

RESUMO

Every year million tons of by-products and waste from olive and orange processing are produced by agri-food industries, thus triggering environmental and economic problems worldwide. From the perspective of a circular economy model, olive leaves and orange peels can be valorized in valuable products due to the presence of bioactive compounds such as polyphenols exhibiting beneficial effects on human health. The aqueous extracts of olive leaves and orange peels rich in phenolic compounds were prepared by ultrasound-assisted extraction. Both extracts were characterized in terms of yield of extraction, total phenolic content and antioxidant capacity; the polyphenolic profiles were deeper investigated by HPLC-MS analysis. Each extract was included in liposomes composed by a natural phospholipid, 1,2-dioleoyl-sn-glycero-3-phosphocholine,and cholesterol prepared according to the thin-layer evaporation method coupled with a sonication process. The antimicrobial activity of the extracts, free and loaded in liposomes, was investigated according to the broth macrodilution method against different strains of potential bacterial pathogenic species: Staphylococcus aureus (NCIMB 9518), Bacillus subtilis (ATCC 6051) and Enterococcus faecalis (NCIMB 775) as Gram-positive, while Escherichia coli (NCIMB 13302), Pseudomonas aeruginosa (NCIMB 9904) and Klebsiella oxytoca (NCIMB 12259) as Gram-negative. The encapsulation of olive leaves extract in liposomes enhanced its antibacterial activity against S. aureus by an order of magnitude.


Assuntos
Citrus sinensis , Olea , Humanos , Lipossomos , Staphylococcus aureus , Biomassa , Antibacterianos/farmacologia , Fenóis/farmacologia , Extratos Vegetais/farmacologia
9.
J Control Release ; 367: 385-401, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253203

RESUMO

The availability of analytical methods for the characterization of lipid nanoparticles (LNPs) for in-vivo intracellular delivery of nucleic acids is critical for the fast development of innovative RNA therapies. In this study, analytical protocols to measure (i) chemical composition, (ii) drug loading, (iii) particle size, concentration, and stability as well as (iv) structure and morphology were evaluated and compared based on a comprehensive characterization strategy linking key physical and chemical properties to in-vitro efficacy and toxicity. Furthermore, the measurement protocols were assessed either by testing the reproducibility and robustness of the same technique in different laboratories, or by a correlative approach, comparing measurement results of the same attribute with orthogonal techniques. The characterization strategy and the analytical measurements described here will have an important role during formulation development and in determining robust quality attributes ultimately supporting the quality assessment of these innovative RNA therapeutics.


Assuntos
Nanopartículas , Ácidos Nucleicos , Reprodutibilidade dos Testes , Lipídeos/química , RNA Interferente Pequeno/genética , Nanopartículas/química , Lipossomos , Tamanho da Partícula
10.
Drug Deliv Transl Res ; 14(5): 1206-1217, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37867180

RESUMO

The purpose of this study was to conduct the kinetic assessment of iontophoretic delivery of niosomal tetracycline-HCl formulated in an electroconductive gel. Tween-80 and Span-80 were used to obtain tetracycline-HCl niosomes with an average diameter of 101.9 ± 3.3 nm, a polydispersity index of 0.247 ± 0.004, a zeta potential of - 34.1 mV, and an entrapment efficiency of 70.08 ± 0.16%. Four different gel preparations, two of which contained niosomal tetracycline-HCl, were transdermally delivered using Franz diffusion cells under the trigger effect of iontophoresis, applied at 0.2, 0.5, and 1 mA/cm2 current density. The control group was the passive diffusion results of the preparation made using a tetracycline-HCl-based drug marketed in Turkey. The control group was compared with the groups that contained (a) tetracycline-HCl in an electroconductive gel, (b) the niosomal tetracycline-HCl formulation in water, and (c) the niosomal tetracycline-HCl formulation in the electroconductive gel. The group with the niosomal formulation in the electroconductive gel displayed the highest increase in iontophoretic transdermal delivery relative to the control group, displaying a 2-, 2.1-, and 2.2-fold increase, respectively, by current density. The experimental results of transdermal delivery using the synergistic effect of niosomal formulation in electroconductive gel and the trigger effect of iontophoresis appeared to divert slightly from zero-order kinetics, demonstrating a statistically significant increase in the rate of controlled transdermal drug delivery. Considering that about 20% of the formulation is transdermally delivered in the first half-hour, the iontophoretic transdermal delivery of niosomal tetracycline-HCl can be efficiently used in local iontophoretic therapy.


Assuntos
Iontoforese , Tetraciclina , Lipossomos , Administração Cutânea , Sistemas de Liberação de Medicamentos/métodos
11.
J Liposome Res ; 34(1): 1-17, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37144416

RESUMO

This study aimed to design and develop novel surface-engineered Depofoam formulations to extend the drug delivery to the prescribed time. The objectives are to prevent the formulation from burst release, rapid clearance by tissue macrophages, and instability and to analyze the impact of process and material variables in the characteristics of formulations. This work employed a quality-by-design coupled failure modes and effects analysis (FMEA)-risk assessment strategy. The factors for the experimental designs were chosen based on the FMEA results. The formulations were prepared by the double emulsification method followed by surface modification and characterized in terms of critical quality attributes (CQAs). The experimental data for all these CQAs were validated and optimized using the Box-Behnken design. A comparative drug release experiment was studied by the modified dissolution method. Furthermore, the stability of the formulation was also assessed. In addition, the impact of critical material attributes and critical process parameters on CQAs was evaluated using FMEA risk assessment. The optimized formulation method yielded high encapsulation efficiency (86.24 ± 0.69%) and loading capacity (24.13 ± 0.54%) with an excellent zeta potential value (-35.6 ± 4.55mV). The comparative in vitro drug release studies showed that more than 90% of the drug's release time from the surface-engineered Depofoam was sustained for up to 168 h without burst release and ensured colloidal stability. These research findings revealed that Depofoam prepared with optimized formulation and operating conditions yielded stable formulation, protected the drug from burst release, provided a prolonged release, and sufficiently controlled the drug release rate.


Assuntos
Análise do Modo e do Efeito de Falhas na Assistência à Saúde , Lipossomos , Preparações de Ação Retardada , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Tamanho da Partícula
12.
Int J Pharm ; 651: 123735, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38142874

RESUMO

Colorectal cancer (CRC) continues to be one of the most prevalent and deadliest forms of cancer worldwide, despite notable advancements in its management. The prognosis for metastatic CRC remains discouraging, with a relative 5-year survival rate for stage IV CRC patients. Conventional treatments for advanced malignancies such as chemotherapy, often face limitations in effectively targeting cancer cells resulting in off-target distribution and significant side effects. In the quest for better strategies, researchers have explored numerous alternatives. Among these, nanoparticles (NPs) specifically liposomes have emerged as one of the most promising candidates in developing targeted delivery systems for cancer therapeutics. This review discusses the current approaches employing functionalised liposomes to overcome major biological barriers in therapeutics delivery for CRC treatment. We have also shared our perspectives on the technological development of liposomes for future clinical use and highlighted a few useful insights on the material choices for future research work in CRC.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Nanopartículas , Humanos , Lipossomos/uso terapêutico , Sistemas de Liberação de Medicamentos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia
13.
Sci Rep ; 13(1): 20023, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37973805

RESUMO

Acne vulgaris, a prevalent skin disorder among teenagers and young adults, can have numerous psychological consequences. Topical treatment of acne would be advantageous by reducing the risk of systemic adverse drug reactions. However, the major challenge would be skin penetration through the stratum corneum. Therefore, during this study, tretinoin (TRT) and bicalutamide (BCT) loaded niosomes with follicular targeting potential were fabricated through the thin film hydration technique. Formulation optimization was performed using the Design-Expert software and optimum formulation was characterized in terms of particle size, zeta potential, transmission electron microscopy, drug loading, and differential scanning calorimetry. In vivo follicular targeting was assessed using rhodamine B-loaded niosomes to follow the skin penetration pathways. The results showed that, the optimum formulation was spherical in shape and had an average diameter of 319.20 ± 18.50 nm and a zeta potential of - 29.70 ± 0.36 mV. Furthermore, entrapment efficiencies were 94.63 ± 0.50% and > 99% and loading capacities were 1.40 ± 0.01% and 1.48 ± 0.00% for BCT and TRT, respectively. According to the animal study results, the prepared niosomes with an average diameter of about 300 nm showed significant accumulation in hair follicles. It seems that the designed niosomal BCT-TRT co-delivery system would be promising in acne management with follicular targeting potential.


Assuntos
Acne Vulgar , Lipossomos , Animais , Lipossomos/química , Absorção Cutânea , Tretinoína/uso terapêutico , Acne Vulgar/tratamento farmacológico , Tamanho da Partícula
14.
Langmuir ; 39(23): 8255-8266, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37265082

RESUMO

In vitro cell-based characterization methods of nanoparticles are generally static and require the use of secondary analysis techniques and labeling agents. In this study, bare niosomes and chitosan-coated niosomes (chitosomes) and their interactions with intestinal cells are studied under dynamic conditions and without fluorescent probes, using surface plasmon resonance (SPR)-based cell sensing. Niosomes and chitosomes were synthesized by using Tween 20 and cholesterol in a 15 mM:15 mM ratio and then characterized by dynamic light scattering (DLS). DLS analysis demonstrated that bare niosomes had average sizes of ∼125 nm, polydispersity index (PDI) below 0.2, and a negative zeta (ζ)-potential of -35.6 mV. In turn, chitosomes had increased sizes up to ∼180 nm, with a PDI of 0.2-0.3 and a highly positive ζ-potential of +57.9 mV. The viability of HT29-MTX, Caco-2, and Caco-2/HT29-MTX cocultured cells showed that both niosomes and chitosomes are cytocompatible up to concentrations of 31.6 µg/mL for at least 240 min. SPR analysis demonstrated that chitosomes interact more efficiently with HT29-MTX, Caco-2, and Caco-2/HT29-MTX cocultures compared to bare niosomes. The resulting SPR measurements were further supported by confocal microscopy and flow cytometry studies, which demonstrated that this method is a useful complementary or even alternative tool to directly characterize the interactions between niosomes and in vitro cell models in label-free and real-time conditions.


Assuntos
Quitosana , Lipossomos , Humanos , Células CACO-2 , Intestinos
15.
Int. j. morphol ; 41(3): 804-810, jun. 2023. ilus, tab
Artigo em Inglês | LILACS | ID: biblio-1514282

RESUMO

SUMMARY: The preserved form of all components of the nerve fiber is a prerequisite for the proper conduction of the nerve impulse. various factors can change the shape of nerve fibers. In everyday practice, qualitative histological analysis is the gold standard for detecting changes in shape. Geometric morphometry is an innovative method that objectively enables the assessment of changes in nerve fibers' shape after local anesthetics action. A total of sixty sciatic nerves were used as material, which was intraneural injected with saline solution in the control group (n=30), and a solution of 1.33 % liposomal bupivacaine (n=30) in the test group. After the animals were sacrificed, nerve samples were taken and histological preparations were made. The preparations were first described and examined using a qualitative histological method, after which digital images were made. The images were entered into the MorphoJ program and processed using the method of geometric morphometry. Qualitative histological examination revealed no differences in nerve fibers after intraneurally applied physiological solution and liposomal bupivacaine. Using the method of geometric morphometry, a statistically significant change in the shape of axons was found after intraneurally applied saline solution and liposomal bupivacaine (p=0.0059). No significant differences in histological changes were found after the qualitative histological analysis of nerve fiber cross-section preparations. A statistically significant change in the shape of nerve fiber axons was observed after geometric morphometric analysis of digital images after intraneural application of saline and liposomal bupivacaine.


La forma conservada de todos los componentes de la fibra nerviosa es un requisito previo para la conducción correcta del impulso nervioso. Varios factores pueden cambiar la forma de las fibras nerviosas. En la práctica diaria, el análisis histológico cualitativo es el estándar de oro para detectar cambios de forma. La morfometría geométrica es un método innovador que permite evaluar objetivamente los cambios en la forma de las fibras nerviosas después de la acción de los anestésicos locales. Se utilizó como material un total de sesenta nervios ciáticos, que se inyectaron intraneuralmente con solución salina en el grupo control (n=30), y una solución de bupivacaína liposomal al 1,33 % (n=30) en el grupo de prueba. Después de sacrificados los animales, se tomaron muestras de nervios y se realizaron preparaciones histológicas. Primero se describieron y examinaron las preparaciones utilizando un método histológico cualitativo, después de lo cual se tomaron imágenes digitales. Las imágenes fueron ingresadas al programa MorphoJ y procesadas mediante el método de morfometría geométrica. El examen histológico cualitativo no reveló diferencias en las fibras nerviosas después de la aplicación intraneural de solución fisiológica y bupivacaína liposomal. Usando el método de morfometría geométrica, se encontró un cambio estadísticamente significativo en la forma de los axones después de la aplicación intraneural de solución salina y bupivacaína liposomal (p = 0,0059). No se encontraron diferencias significativas en los cambios histológicos después del análisis histológico cualitativo de las preparaciones de secciones transversales de fibras nerviosas. Se observó un cambio estadísticamente significativo en la forma de los axones de las fibras nerviosas después del análisis de morfometría geométrica de imágenes digitales después de la aplicación intraneural de solución salina y bupivacaína liposomal.


Assuntos
Animais , Ratos , Bupivacaína/administração & dosagem , Técnicas Histológicas/métodos , Anestésicos Locais/administração & dosagem , Fibras Nervosas/efeitos dos fármacos , Análise Discriminante , Ratos Wistar , Análise de Componente Principal , Solução Salina/administração & dosagem , Injeções , Lipossomos/administração & dosagem
16.
Int J Pharm ; 640: 123024, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37156309

RESUMO

Bilosomes are innovative vesicular carriers containing bile salt with a non-ionic surfactant. Being highly flexible, bilosomes can squeeze themselves through the skin carrying the drug to the action site and improving its skin penetration. The objective of this research was to encapsulate niflumic acid (NA), a non-steroidal anti-inflammatory drug into Brij® integrated bilosomes (BIBs) for effective treatment of osteoarthritis through transdermal delivery. BIBs were formulated using 100 mg of Span 20 with different amounts of sodium cholate (NaC), sodium taurocholate (NaTC), or sodium glycocholate (NaGC) as bile salt, with the addition of 5 mg of Brij-93 or Brij-35. BIBs were prepared utilizing ethanol injection method with the application of (31 × 22) complete factorial design using Design-Expert® software. The optimal BIBs formulation determined was (B5) which contains 5 mg of NaTC used as bile salt and 5 mg of Brij-93. B5 exhibited entrapment efficiency% = 95.21 ± 0.00%, particle size = 373.05 ± 0.07 nm, polydispersity index = 0.27 ± 0.01, and zeta potential = -32.00 ± 0.00 mV. It also had a high elasticity with a spherical shape. B5 gel displayed a sustained release profile with a significantly 2.3 folds' higher drug permeation percent across rat skin than that permeated from NA gel. Moreover, in vivo anti-osteoarthritic and histopathological studies assured the efficacy and safety of B5 gel and its superiority over NA gel. Generally, the outcomes confirmed the great efficacy of NA loaded BIBs for the topical treatment of osteoarthritis.


Assuntos
Lipossomos , Ácido Niflúmico , Ratos , Animais , Ácido Niflúmico/farmacologia , Lipossomos/farmacologia , Administração Cutânea , Pele , Ácidos e Sais Biliares , Permeabilidade , Tamanho da Partícula , Sistemas de Liberação de Medicamentos
17.
Carbohydr Polym ; 315: 120960, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37230631

RESUMO

Investigating the structural integrity of carriers in transit from ocular surface to ocular posterior segment is essential for an efficient topical drug delivery system. In this study, dual-carrier hydroxypropyl-ß-cyclodextrin complex@Liposome (HPCD@Lip) nanocomposites were developed for the efficient delivery of dexamethasone. Förster Resonance Energy Transfer with near-infrared I fluorescent dyes and in vivo imaging system were used to investigate the structural integrity of HPCD@Lip nanocomposites after crossing Human conjunctival epithelial cells (HConEpiC) monolayer and in ocular tissues. The structural integrity of inner HPCD complexes was monitored for the first time. The results suggested that 23.1 ± 6.4 % of nanocomposites and 41.2 ± 4.3 % of HPCD complexes could cross HConEpiC monolayer with an intact structure at 1 h. 15.3 ± 8.4 % of intact nanocomposites could reach at least sclera and 22.9 ± 1.2 % of intact HPCD complexes could reach choroid-retina after 60 min in vivo, which showed that the dual-carrier drug delivery system could successfully deliver intact cyclodextrin complexes to ocular posterior segment. In conclusion, in vivo assessment of structural integrity of nanocarriers is greatly significant for guiding the rational design, higher drug delivery efficiency and clinical transformation for topical drug delivery system to the posterior segment of the eye.


Assuntos
Lipossomos , Nanocompostos , Humanos , Sistemas de Liberação de Medicamentos/métodos , 2-Hidroxipropil-beta-Ciclodextrina , Retina , Excipientes , Nanocompostos/química
18.
Int J Biol Macromol ; 241: 124651, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37119885

RESUMO

This study focuses on the preparation, physicopharmaceutical and mechanical characterization of reduced glutathione tripeptide loaded niosome containing emulgels as a novel nanocosmeceutical product. Prepared emulgel formulations were mainly composed of oily phase containing different lipids such as glycerine dibehenate, cetyl alcohol, cetearyl alcohol, etc., and aqueous phase containing Carbopol934® as gelling agent. Niosomal lipidic vesicles prepared from Span 60 and cholesterol were subsequently incorporated into optimum emulgel formulations. The pH, viscosity, and textural/mechanical properties of emulgels were examined before and after the incorporation of niosomes. The viscoelasticity and morphological characterization were performed on the final formulation before the packed formulation's microbiological stability test. The hardness and compressibility results ensured easy removal of the emulgel from the container. Due to the carboxyl groups of Carbopol934®, moderate adhesiveness with good cohesiveness was achieved. The rheological characteristics of the emulgels were estimated by oscillatory testing and the data fitted with the Herschel-Bulkley model. Thus, the viscoelastic properties and shear-thinning flow of emulgels were demonstrated. The final formulation was microbiologically stable, and pathogens or skin-irritating allergens were not detected. An anti-aging cosmeceutical preparation containing glutathione tripeptide loaded lipid-based niosome dispersion, suitable for topical use due to its textural and viscosity properties, was successfully produced.


Assuntos
Lipossomos , Pele , Lipossomos/metabolismo , Géis/química , Pele/metabolismo , Absorção Cutânea
19.
Food Funct ; 14(7): 3230-3241, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36938848

RESUMO

An unacceptable bitter taste limits the application of luteolin in healthier food systems. In this study, a bitterness-masking assessment was performed on whey protein isolate-coated liposomes loaded with luteolin (WPI-coated liposomes) using an electronic tongue and human sensory test. The physical properties of the WPI-coated colloidal nanocarrier were characterized by zeta potential, average diameter, distribution, and morphology analyses. The results indicated that WPI-coated nanocarrier systems exhibited a uniformly dispersed distribution and spherical morphology. After the comparison of the bitterness value, the bitterness-reducing effect of 5% WPI-coated liposomes was the most significant and reduced the bitterness of luteolin by 75%. Raman spectroscopy and X-ray diffraction analysis demonstrated that the decoration of WPI on the liposomes reduced the free motion of lipid molecules. This promoted the ordering at the polar headgroup area and hydrophobic core of the lipid bilayer, which explained why luteolin-loaded liposomes (uncoated liposomes) and WPI-coated liposomes could reduce the bitterness of luteolin from the perspective of bitter molecular groups. Combined with the Raman spectral data, the bilayer rigidity of 5% WPI-coated liposomes was positively responsive to the stabilization of uncoated liposomes against storage and resistance ability against surfactants. It was proven that the emergence of the surface modification of the WPI coating enhanced the stability of uncoated liposomes. These results may contribute to the use of WPI-coated liposomes as prospective candidates for effective delivery of the bioactive bitter substance in nutraceuticals and functional foods.


Assuntos
Lipossomos , Paladar , Humanos , Proteínas do Soro do Leite/química , Luteolina , Interações Hidrofóbicas e Hidrofílicas
20.
Int J Pharm ; 637: 122868, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-36958606

RESUMO

Follicle stimulating hormone (FSH) is widely used for the treatment of female infertility, where the level of FSH is suboptimal due to which arrest in follicular development and anovulation takes place. Currently, only parenteral formulations are available for FSH in the market. Due to the drawbacks of parenteral administration and the high market shares of FSH, there is a need for easily accessible oral formulation. Therefore, enteric coated capsules filled with FSH loaded nanostructured lipid carriers (NLCs) or liposomes were prepared. Preliminary studies such as circular dichroism, SDS-PAGE, FTIR and ELISA were conducted to analyze FSH. Prepared formulations were optimized with respect to the size, polydispersity index, zeta potential, and entrapment efficiency using the design of experiments. Optimized formulations were subjected to particle counts and distribution analysis, TEM analysis, in vitro drug release, dissolution of enteric coated capsules, cell line studies, everted sac rat's intestinal uptake study, pharmacokinetics, pharmacodynamics, and stability studies. In the case of liposomes, RGD conjugation was done by carbodiimide chemistry and conjugation was confirmed by FTIR, 1HNMR and Raman spectroscopy. The prepared formulations were discrete and spherical. The release of FSH from enteric coated capsules was slow and sustained. The increased permeability of nano-formulations was observed in Caco-2 monoculture as well as in Caco-2 and Raji-B co-culture models. NLCs and liposomes showed an improvement in oral bioavailability and efficacy of FSH in rats. This may be due to mainly chylomicron-assisted lymphatic uptake of NLCs; whereas, in the case of liposomes, RGD-based targeting of ß1 integrins of M cells on Peyer's patches may be the main reason for the better effect by FSH. FSH was found to be stable chemically and conformationally. Overall, the study reveals the successful development and evaluation of FSH loaded NLCs and liposomes.


Assuntos
Portadores de Fármacos , Nanoestruturas , Humanos , Ratos , Feminino , Animais , Portadores de Fármacos/química , Lipossomos , Hormônio Foliculoestimulante , Células CACO-2 , Nanoestruturas/química , Administração Oral , Cápsulas , Oligopeptídeos , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA