Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 22574, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38114536

RESUMO

The Carpathian Mountains have been constantly inhabited by grey wolves and present one of the largest distribution areas in Europe, comprising between 2300 and 2700 individuals in Romania. To date, however, relatively little is known about the Romanian wolf population. We aimed to provide a first assessment of genetic diversity, population structure and wolf-dog hybridisation based on 444 mostly non-invasively collected samples in the Eastern Romanian Carpathians. Pack reconstruction and analysis of population genetic parameters were performed with mitochondrial DNA control-region sequencing and microsatellite genotyping. We found relatively high levels of genetic diversity, which is similar to values found in previous studies on Carpathian wolves from Poland and Slovakia, as well as to the long-lasting Dinaric-Balkan wolf population. We found no significant population structure in our study region, suggesting effective dispersal and admixture. Analysis of wolf-dog hybridisation using a Single Nucleotide Polymorphism panel optimised for hybrid detection revealed low rates of admixture between wolves and domestic dogs. Our results provide evidence for the existence of a genetically viable wolf population in the Romanian Carpathians. The genetic data obtained in this study may serve as valuable baseline information for the elaboration of monitoring standards and management plans for wolves in Romania.


Assuntos
Genética Populacional , Lobos , Animais , Lobos/genética , Romênia , Europa (Continente) , Variação Genética
2.
J Hered ; 112(5): 458-468, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34132805

RESUMO

In North American gray wolves, black coat color is dominantly inherited via a 3 base pair coding deletion in the canine beta defensin 3 (CBD103) gene. This 3 base pair deletion, called the KB allele, was introduced through hybridization with dogs and subsequently underwent a selective sweep that increased its frequency in wild wolves. Despite apparent positive selection, KBB wolves have lower fitness than wolves with the KyB genotype, even though the 2 genotypes show no observable differences in black coat color. Thus, the KB allele is thought to have pleiotropic effects on as-yet unknown phenotypes. Given the role of skin-expressed CBD103 in innate immunity, we hypothesized that the KB allele influences the keratinocyte gene expression response to TLR3 pathway stimulation and/or infection by canine distemper virus (CDV). To test this hypothesis, we developed a panel of primary epidermal keratinocyte cell cultures from 24 wild North American gray wolves of both Kyy and KyB genotypes. In addition, we generated an immortalized Kyy line and used CRISPR/Cas9 editing to produce a KyB line on the same genetic background. We assessed the transcriptome-wide responses of wolf keratinocytes to the TLR3 agonist polyinosinic:polycytidylic acid (polyI:C), and to live CDV. K locus genotype did not predict the transcriptional response to either challenge, suggesting that variation in the gene expression response does not explain pleiotropic effects of the KB allele on fitness. This study supports the feasibility of using cell culture methods to investigate the phenotypic effects of naturally occurring genetic variation in wild mammals.


Assuntos
Vírus da Cinomose Canina , Lobos , Alelos , Animais , Vírus da Cinomose Canina/genética , Cães , Expressão Gênica , Receptor 3 Toll-Like/genética , Lobos/genética
3.
Genome Res ; 26(2): 163-73, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26680994

RESUMO

The gray wolf (Canis lupus) is a widely distributed top predator and ancestor of the domestic dog. To address questions about wolf relationships to each other and dogs, we assembled and analyzed a data set of 34 canine genomes. The divergence between New and Old World wolves is the earliest branching event and is followed by the divergence of Old World wolves and dogs, confirming that the dog was domesticated in the Old World. However, no single wolf population is more closely related to dogs, supporting the hypothesis that dogs were derived from an extinct wolf population. All extant wolves have a surprisingly recent common ancestry and experienced a dramatic population decline beginning at least ∼30 thousand years ago (kya). We suggest this crisis was related to the colonization of Eurasia by modern human hunter-gatherers, who competed with wolves for limited prey but also domesticated them, leading to a compensatory population expansion of dogs. We found extensive admixture between dogs and wolves, with up to 25% of Eurasian wolf genomes showing signs of dog ancestry. Dogs have influenced the recent history of wolves through admixture and vice versa, potentially enhancing adaptation. Simple scenarios of dog domestication are confounded by admixture, and studies that do not take admixture into account with specific demographic models are problematic.


Assuntos
Cães/genética , Lobos/genética , Animais , Teorema de Bayes , DNA Mitocondrial/genética , Feminino , Genoma , Hibridização Genética , Masculino , Cadeias de Markov , Modelos Genéticos , Filogenia , Polimorfismo de Nucleotídeo Único , Análise de Componente Principal , Análise de Sequência de DNA
4.
Mol Ecol Resour ; 15(2): 317-28, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25132482

RESUMO

Wolves and dogs provide a paradigmatic example of the ecological and conservation implications of hybridization events between wild and domesticated forms. However, our understanding of such implications has been traditionally hampered by both high genetic similarity and the difficulties in obtaining tissue samples (TS), which limit our ability to assess ongoing hybridization events. To assess the occurrence and extension of hybridization in a pack of wolf-dog hybrids in northwestern Iberia, we compared the power of 52 nuclear markers implemented on TS with a subset of 13 ancestry informative markers (AIMs) typed in noninvasive samples (NIS). We demonstrate that the 13 AIMs are as accurate as the 52 markers that were chosen without regard to the power to differentiate between wolves and dogs, also having the advantage of being rapidly screened on NIS. The efficiency of AIMs significantly outperformed ten random sets of similar size and an additional commercial set of 18 markers. Bayesian clustering analysis implemented on AIMs and NIS identified nine hybrids, two wolves and two dogs. Four hybrids were unambiguously assigned to F1xWolf backcrosses. Our approach (AIMs + NIS) overcomes previous difficulties related to sample availability and informative power of markers, allowing a quick identification of wolf-dog hybrids in the first phases of hybridization episodes. This provides managers with a reliable tool to evaluate hybridization and estimate the success of their actions. This approach may be easily adapted for other pairs of wild/domesticated species, thus improving our understanding of the introgression of domestication genes into natural populations.


Assuntos
Quimera/genética , Cães/classificação , Cães/genética , Lobos/classificação , Lobos/genética , Animais , Marcadores Genéticos , Dados de Sequência Molecular , Análise de Sequência de DNA , Fatores de Tempo
5.
Mol Ecol Resour ; 15(2): 295-305, 2015 03.
Artigo em Inglês | MEDLINE | ID: mdl-25042673

RESUMO

Noninvasive genetics based on microsatellite markers has become an indispensable tool for wildlife monitoring and conservation research over the past decades. However, microsatellites have several drawbacks, such as the lack of standardisation between laboratories and high error rates. Here, we propose an alternative single-nucleotide polymorphism (SNP)-based marker system for noninvasively collected samples, which promises to solve these problems. Using nanofluidic SNP genotyping technology (Fluidigm), we genotyped 158 wolf samples (tissue, scats, hairs, urine) for 192 SNP loci selected from the Affymetrix v2 Canine SNP Array. We carefully selected an optimised final set of 96 SNPs (and discarded the worse half), based on assay performance and reliability. We found rates of missing data in this SNP set of <10% and genotyping error of ~1%, which improves genotyping accuracy by nearly an order of magnitude when compared to published data for other marker types. Our approach provides a tool for rapid and cost-effective genotyping of noninvasively collected wildlife samples. The ability to standardise genotype scoring combined with low error rates promises to constitute a major technological advancement and could establish SNPs as a standard marker for future wildlife monitoring.


Assuntos
Técnicas de Genotipagem/métodos , Polimorfismo de Nucleotídeo Único , Lobos/classificação , Lobos/genética , Animais , Custos e Análise de Custo , Europa (Continente) , Técnicas de Genotipagem/economia , Fatores de Tempo
6.
Mol Ecol ; 23(1): 182-97, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24148003

RESUMO

The evolutionary importance of hybridization as a source of new adaptive genetic variation is rapidly gaining recognition. Hybridization between coyotes and wolves may have introduced adaptive alleles into the coyote gene pool that facilitated an expansion in their geographic range and dietary niche. Furthermore, hybridization between coyotes and domestic dogs may facilitate adaptation to human-dominated environments. We genotyped 63 ancestry-informative single-nucleotide polymorphisms in 427 canids to examine the prevalence, spatial distribution and the ecology of admixture in eastern coyotes. Using multivariate methods and Bayesian clustering analyses, we estimated the relative contributions of western coyotes, western and eastern wolves, and domestic dogs to the admixed ancestry of Ohio and eastern coyotes. We found that eastern coyotes form an extensive hybrid swarm, with all our samples having varying levels of admixture. Ohio coyotes, previously thought to be free of admixture, are also highly admixed with wolves and dogs. Coyotes in areas of high deer density are genetically more wolf-like, suggesting that natural selection for wolf-like traits may result in local adaptation at a fine geographic scale. Our results, in light of other previously published studies of admixture in Canis, revealed a pattern of sex-biased hybridization, presumably generated by male wolves and dogs mating with female coyotes. This study is the most comprehensive genetic survey of admixture in eastern coyotes and demonstrates that the frequency and scope of hybridization can be quantified with relatively few ancestry-informative markers.


Assuntos
Coiotes/genética , Hibridização Genética , Polimorfismo de Nucleotídeo Único , Animais , Teorema de Bayes , Cães/genética , Feminino , Variação Genética , Genética Populacional , Genótipo , Masculino , Ohio , Análise de Sequência de DNA , Lobos/genética
8.
Mol Ecol ; 20(24): 5348-58, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22077191

RESUMO

Mating with close kin can lead to inbreeding depression through the expression of recessive deleterious alleles and loss of heterozygosity. Mate selection may be affected by kin encounter rate, and inbreeding avoidance may not be uniform but associated with age and social system. Specifically, selection for kin recognition and inbreeding avoidance may be more developed in species that live in family groups or breed cooperatively. To test this hypothesis, we compared kin encounter rate and the proportion of related breeding pairs in noninbred and highly inbred canid populations. The chance of randomly encountering a full sib ranged between 1-8% and 20-22% in noninbred and inbred canid populations, respectively. We show that regardless of encounter rate, outside natal groups mates were selected independent of relatedness. Within natal groups, there was a significant avoidance of mating with a relative. Lack of discrimination against mating with close relatives outside packs suggests that the rate of inbreeding in canids is related to the proximity of close relatives, which could explain the high degree of inbreeding depression observed in some populations. The idea that kin encounter rate and social organization can explain the lack of inbreeding avoidance in some species is intriguing and may have implications for the management of populations at risk.


Assuntos
Raposas/genética , Endogamia , Repetições de Microssatélites/genética , Comportamento Sexual Animal , Lobos/genética , Animais , Bases de Dados Genéticas , Variação Genética , Densidade Demográfica , Reprodução/genética
9.
Mol Ecol ; 19(20): 4412-27, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20723068

RESUMO

The successful re-introduction of grey wolves to the western United States is an impressive accomplishment for conservation science. However, the degree to which subpopulations are genetically structured and connected, along with the preservation of genetic variation, is an important concern for the continued viability of the metapopulation. We analysed DNA samples from 555 Northern Rocky Mountain wolves from the three recovery areas (Greater Yellowstone Area, Montana, and Idaho), including all 66 re-introduced founders, for variation in 26 microsatellite loci over the initial 10-year recovery period (1995-2004). The population maintained high levels of variation (H(O) = 0.64-0.72; allelic diversity k=7.0-10.3) with low levels of inbreeding (F(IS) < 0.03) and throughout this period, the population expanded rapidly (n(1995) =101; n(2004) =846). Individual-based Bayesian analyses revealed significant population genetic structure and identified three subpopulations coinciding with designated recovery areas. Population assignment and migrant detection were difficult because of the presence of related founders among different recovery areas and required a novel approach to determine genetically effective migration and admixture. However, by combining assignment tests, private alleles, sibship reconstruction, and field observations, we detected genetically effective dispersal among the three recovery areas. Successful conservation of Northern Rocky Mountain wolves will rely on management decisions that promote natural dispersal dynamics and minimize anthropogenic factors that reduce genetic connectivity.


Assuntos
Fluxo Gênico , Variação Genética , Genética Populacional/métodos , Lobos/genética , Alelos , Animais , Teorema de Bayes , Análise por Conglomerados , Efeito Fundador , Idaho , Endogamia , Funções Verossimilhança , Repetições de Microssatélites , Montana , Análise de Sequência de DNA , Wyoming
10.
J Biol ; 9(2): 10, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20236496

RESUMO

A phylogeographic analysis of gene sequences important in determining body size in dogs, recently published in BMC Biology, traces the appearance of small body size to the Neolithic Middle East. This finding strengthens the association of this event with the development of sedentary societies, and perhaps even has implications for the inception of human social inequality.


Assuntos
Animais Domésticos/genética , Fatores Socioeconômicos/história , Lobos/genética , Adaptação Biológica , Animais , Evolução Biológica , DNA Mitocondrial/química , Cães , História Antiga , Humanos , Oriente Médio
11.
Genetics ; 164(2): 747-65, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12807794

RESUMO

For an admixed population, an important question is how much genetic contribution comes from each parental population. Several methods have been developed to estimate such admixture proportions, using data on genetic markers sampled from parental and admixed populations. In this study, I propose a likelihood method to estimate jointly the admixture proportions, the genetic drift that occurred to the admixed population and each parental population during the period between the hybridization and sampling events, and the genetic drift in each ancestral population within the interval between their split and hybridization. The results from extensive simulations using various combinations of relevant parameter values show that in general much more accurate and precise estimates of admixture proportions are obtained from the likelihood method than from previous methods. The likelihood method also yields reasonable estimates of genetic drift that occurred to each population, which translate into relative effective sizes (N(e)) or absolute average N(e)'s if the times when the relevant events (such as population split, admixture, and sampling) occurred are known. The proposed likelihood method also has features such as relatively low computational requirement compared with previous ones, flexibility for admixture models, and marker types. In particular, it allows for missing data from a contributing parental population. The method is applied to a human data set and a wolflike canids data set, and the results obtained are discussed in comparison with those from other estimators and from previous studies.


Assuntos
Funções Verossimilhança , Modelos Genéticos , Animais , População Negra , Simulação por Computador , Deriva Genética , Marcadores Genéticos , Genética Populacional , Genótipo , Humanos , Modelos Estatísticos , Método de Monte Carlo , Hibridização de Ácido Nucleico , Software , Estatística como Assunto , População Branca , Lobos/genética
12.
Mol Biol Evol ; 15(10): 1298-311, 1998 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-9787436

RESUMO

We derive here two new estimators of admixture proportions based on a coalescent approach that explicitly takes into account molecular information as well as gene frequencies. These estimators can be applied to any type of molecular data (such as DNA sequences, restriction fragment length polymorphisms [RFLPs], or microsatellite data) for which the extent of molecular diversity is related to coalescent times. Monte Carlo simulation studies are used to analyze the behavior of our estimators. We show that one of them (mY) appears suitable for estimating admixture from molecular data because of its absence of bias and relatively low variance. We then compare it to two conventional estimators that are based on gene frequencies. mY proves to be less biased than conventional estimators over a wide range of situations and especially for microsatellite data. However, its variance is larger than that of conventional estimators when parental populations are not very differentiated. The variance of mY becomes smaller than that of conventional estimators only if parental populations have been kept separated for about N generations and if the mutation rate is high. Simulations also show that several loci should always be studied to achieve a drastic reduction of variance and that, for microsatellite data, the mean square error of mY rapidly becomes smaller than that of conventional estimators if enough loci are surveyed. We apply our new estimator to the case of admixed wolflike Canid populations tested for microsatellite data.


Assuntos
Evolução Molecular , Modelos Genéticos , Dados de Sequência Molecular , Homologia de Sequência , Animais , Carnívoros/genética , Hibridização Genética , Matemática , Método de Monte Carlo , Lobos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA