Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Evol Biol ; 37(4): 442-450, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38456649

RESUMO

Organismal health and survival depend on the ability to mount an effective immune response against infection. Yet immune defence may be energy-demanding, resulting in fitness costs if investment in immune function deprives other physiological processes of resources. While evidence of costly immunity resulting in reduced longevity and reproduction is common, the role of energy-producing mitochondria on the magnitude of these costs is unknown. Here we employed Drosophila melanogaster cybrid lines, where several mitochondrial genotypes (mitotypes) were introgressed onto a single nuclear genetic background, to explicitly test the role of mitochondrial variation on the costs of immune stimulation. We exposed female flies carrying one of nine distinct mitotypes to either a benign, heat-killed bacterial pathogen (stimulating immune deployment while avoiding pathology) or a sterile control and measured lifespan, fecundity, and locomotor activity. We observed mitotype-specific costs of immune stimulation and identified a positive genetic correlation between life span and the proportion of time cybrids spent moving while alive. Our results suggest that costs of immunity are highly variable depending on the mitochondrial genome, adding to a growing body of work highlighting the important role of mitochondrial variation in host-pathogen interactions.


Assuntos
Drosophila melanogaster , Mitocôndrias , Animais , Feminino , Drosophila melanogaster/fisiologia , Mitocôndrias/genética , Longevidade/genética , Genótipo , Fertilidade/genética
2.
Aging Cell ; 23(2): e14046, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37990605

RESUMO

A major goal of healthy aging is to prevent declining resilience and increasing frailty, which are associated with many chronic diseases and deterioration of stress response. Here, we propose a loss-or-gain survival model, represented by the ratio of cumulative stress span to life span, to quantify stress resilience at organismal level. As a proof of concept, this is demonstrated by reduced survival resilience in Caenorhabditis elegans exposed to exogenous oxidative stress induced by paraquat or with endogenous proteotoxic stress caused by polyglutamine or amyloid-ß aggregation. Based on this, we reveal that a hidden peptide ("cryptide")-AbaPep#07 (SETYELRK)-derived from abalone hemocyanin not only enhances survival resilience against paraquat-induced oxidative stress but also rescues proteotoxicity-mediated behavioral deficits in C. elegans, indicating its capacity against stress and neurodegeneration. Interestingly, AbaPep#07 is also found to increase cost-free longevity and age-related physical fitness in nematodes. We then demonstrate that AbaPep#07 can promote nuclear localization of SKN-1/Nrf, but not DAF-16/FOXO, transcription factor. In contrast to its effects in wild-type nematodes, AbaPep#07 cannot increase oxidative stress survival and physical motility in loss-of-function skn-1 mutant, suggesting an SKN-1/Nrf-dependent fashion of these effects. Further investigation reveals that AbaPep#07 can induce transcriptional activation of immune defense, lipid metabolism, and metabolic detoxification pathways, including many SKN-1/Nrf target genes. Together, our findings demonstrate that AbaPep#07 is able to boost stress resilience and reduce behavioral frailty via SKN-1/Nrf-governed transcriptional reprogramming, and provide an insight into the health-promoting potential of antioxidant cryptides as geroprotectors in aging and associated conditions.


Assuntos
Proteínas de Caenorhabditis elegans , Fragilidade , Resiliência Psicológica , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA/metabolismo , Longevidade/genética , Reprogramação Metabólica , Estresse Oxidativo/genética , Paraquat/toxicidade , Peptídeos/metabolismo
3.
Nat Hum Behav ; 7(8): 1357-1370, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37386110

RESUMO

Human longevity correlates with socio-economic status, and there is evidence that educational attainment increases human lifespan. However, to inform meaningful health policies, we need fine-grained causal evidence on which dimensions of socio-economic status affect longevity and the mediating roles of modifiable factors such as lifestyle and disease. Here we performed two-sample Mendelian randomization analyses applying genetic instruments of education, income and occupation (n = 248,847 to 1,131,881) to estimate their causal effects and consequences on parental lifespan and self-longevity (n = 28,967 to 1,012,240) from the largest available genome-wide association studies in populations of European ancestry. Each 4.20 years of additional educational attainment were causally associated with a 3.23-year-longer parental lifespan independently of income and occupation and were causally associated with 30-59% higher odds of self-longevity, suggesting that education was the primary determinant. By contrast, each one-standard-deviation-higher income and one-point-higher occupation was causally associated with 3.06-year-longer and 1.29-year-longer parental lifespans, respectively, but not independently of the other socio-economic indicators. We found no evidence for causal effects of income or occupation on self-longevity. Mediation analyses conducted in predominantly European-descent individuals through two-step Mendelian randomization suggested that among 59 candidates, cigarettes per day, body mass index, waist-to-hip ratio, hypertension, coronary heart disease, myocardial infarction, stroke, Alzheimer's disease, type 2 diabetes, heart failure and lung cancer individually played substantial mediating roles (proportion mediated, >10%) in the effect of education on specific longevity outcomes. These findings inform interventions for remediating longevity disparities attributable to socio-economic inequality.


Assuntos
Diabetes Mellitus Tipo 2 , Longevidade , Humanos , Longevidade/genética , Análise da Randomização Mendeliana/métodos , Estudo de Associação Genômica Ampla , População Europeia , Classe Social
4.
Genes (Basel) ; 14(3)2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36980943

RESUMO

In Tunisia, the recognition of the possibility of including longevity and disease resistance in dairy cattle selection objectives has been hypothesized as a useful strategy by both researchers and producers. However, in this paper, the state of the art, with a focus on health and longevity, is reviewed. Along the same lines, the heritability for the milk traits, fertility traits, and longevity of Tunisian Holstein dairy cows complies with the literature. Therefore, the influence of genetics on some diseases of the dairy cow was investigated. In addition, a decreasing efficiency in cow fertility has been observed over the last few years. The results showed that the risk of culling increased with common diseases. When analyzed with the Weibull model, functional lifespan was strongly influenced by milk yield; therefore, the risk increased with a reduced milk yield. In her first three lactations, the relative risk of selection increased gradually with lactation. Thus, the risk of thinning is highest at the beginning and end of the first feeding and the end of her second feeding. In conclusion, the risk of culling was reduced in parity. The factors that influence the life of the herd, such as health, husbandry, environmental conditions, and management, are often ignored when evaluating longevity.


Assuntos
Longevidade , Leite , Gravidez , Bovinos/genética , Animais , Feminino , Longevidade/genética , Lactação/genética , Fenótipo , Fertilidade/genética
5.
Nat Commun ; 14(1): 372, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36720880

RESUMO

Discerning the relationship between sociality and longevity would permit a deeper understanding of how animal life history evolved. Here, we perform a phylogenetic comparative analysis of ~1000 mammalian species on three states of social organization (solitary, pair-living, and group-living) and longevity. We show that group-living species generally live longer than solitary species, and that the transition rate from a short-lived state to a long-lived state is higher in group-living than non-group-living species, altogether supporting the correlated evolution of social organization and longevity. The comparative brain transcriptomes of 94 mammalian species identify 31 genes, hormones and immunity-related pathways broadly involved in the association between social organization and longevity. Further selection features reveal twenty overlapping pathways under selection for both social organization and longevity. These results underscore a molecular basis for the influence of the social organization on longevity.


Assuntos
Comportamento Animal , Longevidade , Mamíferos , Comportamento Social , Animais , Encéfalo , Longevidade/genética , Filogenia
6.
Ageing Res Rev ; 82: 101770, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36330930

RESUMO

Although the progress of aging research relies heavily on a theoretical framework, today there is no consensus on many critical questions in aging biology. I hypothesize that a systematic analysis of the intersection of different evolutionary mechanisms of aging with diverse resource allocation strategies in different organisms may reconcile aging hypotheses. The application of disposable soma, mutation accumulation, antagonistic pleiotropy, and life-history theory is considered across organisms with asexual reproduction, organisms with sexual reproduction and indeterminate growth in different conditions of extrinsic mortality, and organisms with determinate growth, with endotherms/homeotherms as a subgroup. This review demonstrates that different aging mechanisms are complementary to each other, and in organisms with different resource allocation strategies they form aging modalities ranging from immortality to suicidal programs. It also revamps the role of growth arrest in aging. Growth arrest evolved in many different groups of organisms as a result of resource reallocation from growth to reproduction (e.g., semelparous animals, holometabolic insects), or from growth to nutrient storage (endotherms/homeotherms). Growth arrest in different animal lineages has similar molecular mechanisms and similar consequences for longevity due to the conflict between growth-promoting and growth-suppressing programs and suppression of regenerative capacity.


Assuntos
Envelhecimento , Longevidade , Humanos , Animais , Envelhecimento/genética , Longevidade/genética , Alocação de Recursos , Reprodução , Evolução Biológica
7.
Nat Commun ; 13(1): 6339, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36284093

RESUMO

Twenty-nine years following the breakthrough discovery that a single-gene mutation of daf-2 doubles Caenorhabditis elegans lifespan, it remains unclear where this insulin/IGF-1 receptor gene is expressed and where it acts to regulate ageing. Using knock-in fluorescent reporters, we determined that daf-2 and its downstream transcription factor daf-16 are expressed ubiquitously. Using tissue-specific targeted protein degradation, we determined that intracellular DAF-2-to-DAF-16 signaling in the intestine plays a major role in lifespan regulation, while that in the hypodermis, neurons, and germline plays a minor role. Notably, intestine-specific loss of DAF-2 activates DAF-16 in and outside the intestine, causes almost no adverse effects on development and reproduction, and extends lifespan by 94% in a way that partly requires non-intestinal DAF-16. Consistent with intestine supplying nutrients to the entire body, evidence from this and other studies suggests that altered metabolism, particularly down-regulation of protein and RNA synthesis, mediates longevity by reduction of insulin/IGF-1 signaling.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Longevidade/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Insulina/metabolismo , Mutação , Intestinos , RNA/metabolismo
8.
Reprod Domest Anim ; 57(11): 1450-1464, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35916244

RESUMO

Anti-Müllerian hormone (AMH) is a member of the TGF-ß superfamily produced by follicular granulosa cells in women and cattle and is considered an endocrine biomarker of ovarian follicular reserve. The study examined how age and parity influence serum AMH concentration and investigated the presence of single nucleotide polymorphisms in AMH gene in Bos indicus breeds viz Malnad Gidda Amritmahal and Hallikar. All five exons of AMH gene amplified by polymerase chain reaction were subjected to sanger sequencing and identified important SNP and its effects. We observed a highly significant relationship between parity and AMH concentration in Amritmahal cattle, whereas Malnad Gidda and Hallikar breeds did not show a significant difference. We identified one SNP located in exon 5 (rs21402788) with base change A>G, a non-synonymous mutation resulting in a change in amino acid Q>R and the protein product. It is concluded that AMH level could be considered as an indicator of the ovarian reserve and productive herd life (longevity) irrespective of age/parity, especially in B. indicus breeds of cattle.


Assuntos
Hormônio Antimülleriano , Longevidade , Gravidez , Bovinos/genética , Feminino , Animais , Longevidade/genética , Polimorfismo de Nucleotídeo Único , Biomarcadores , Fator de Crescimento Transformador beta
9.
J Dairy Sci ; 105(8): 6749-6759, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35840408

RESUMO

High mortality and involuntary culling rates cause great economic losses to the worldwide dairy cattle industry. However, there is low emphasis on wellness traits in replacement animals (dairy calves and replacement heifers) during their development stages in modern dairy cattle breeding programs. Therefore, the main objectives of this study were to estimate genetic parameters of wellness traits in replacement cattle (replacement wellness traits) and obtain their genetic correlations with 12 cow health and longevity traits in the Chinese Holstein population. Seven replacement wellness traits were analyzed, including birth weight, survival from 3 to 60 d (Sur1), survival from 61 to 365 d (Sur2), survival from 366 d to the first calving (Sur3), calf diarrhea, calf pneumonia, and calf serum total protein (STP). Single and bivariate animal models were employed to estimate (co)variance components using the data from 189,980 Holstein cattle. The genetic correlations between replacement wellness traits and cow longevity, health traits were calculated by employing bivariate models, including 6 longevity traits and 6 health traits (clinical mastitis, metritis, ketosis, displaced abomasum, milk fever, and hoof health or hoof disease). The estimated heritabilities (± SE) were 0.335 (± 0.008), 0.088 (± 0.005), 0.166 (± 0.006), 0.102 (±0 .006), 0.048 (± 0.003), 0.063 (± 0.004), and 0.170 (± 0.019) for birth weight, Sur1, Sur2, Sur3, pneumonia, diarrhea, and STP, respectively. The majority of the genetic correlations among the 7 replacement wellness traits were negligible. The genetic correlations among Sur1, Sur2, and Sur3 ranged from 0.112 (Sur1 and Sur3) to 0.445 (Sur1 and Sur2) when fitting a linear model (estimates in the observed scale), and from 0.560 (Sur1 and Sur3) to 0.773 (Sur1 and Sur2) when fitting a threshold model (estimates in the liability scale). The genetic correlations between replacement wellness and cow longevity were low (absolute value lower than 0.30), but some of them were significantly different from zero. Compared with other replacement wellness traits, Sur3 and STP had relatively high genetic correlations with cow longevity. Replacement wellness traits are heritable and can be improved through direct genetic and genomic selection. The results from the current study will contribute for better balancing dairy cattle breeding goals to genetically improve dairy cattle wellness in the period from birth to first calving.


Assuntos
Doenças dos Bovinos , Longevidade , Animais , Peso ao Nascer , Bovinos/genética , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/genética , Diarreia/veterinária , Feminino , Lactação/genética , Longevidade/genética , Leite
10.
J Vis Exp ; (183)2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35665741

RESUMO

The discovery and development of Caenorhabditis elegans as a model organism was influential in biology, particularly in the field of aging. Many historical and contemporary studies have identified thousands of lifespan-altering paradigms, including genetic mutations, transgenic gene expression, and hormesis, a beneficial, low-grade exposure to stress. With its many advantages, including a short lifespan, easy and low-cost maintenance, and fully sequenced genome with homology to almost two-thirds of all human genes, C. elegans has quickly been adopted as an outstanding model for stress and aging biology. Here, several standardized methods are surveyed for measuring lifespan and healthspan that can be easily adapted into almost any research environment, especially those with limited equipment and funds. The incredible utility of C. elegans is featured, highlighting the capacity to perform powerful genetic analyses in aging biology without the necessity of extensive infrastructure. Finally, the limitations of each analysis and alternative approaches are discussed for consideration.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Envelhecimento/genética , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Humanos , Longevidade/genética , Mutação
11.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35091469

RESUMO

Sirt6 is a multifunctional enzyme that regulates diverse cellular processes such as metabolism, DNA repair, and aging. Overexpressing Sirt6 extends lifespan in mice, but the underlying cellular mechanisms are unclear. Drosophila melanogaster are an excellent model to study genetic regulation of lifespan; however, despite extensive study in mammals, very little is known about Sirt6 function in flies. Here, we characterized the Drosophila ortholog of Sirt6, dSirt6, and examined its role in regulating longevity; dSirt6 is a nuclear and chromatin-associated protein with NAD+-dependent histone deacetylase activity. dSirt6 overexpression (OE) in flies produces robust lifespan extension in both sexes, while reducing dSirt6 levels shortens lifespan. dSirt6 OE flies have normal food consumption and fertility but increased resistance to oxidative stress and reduced protein synthesis rates. Transcriptomic analyses reveal that dSirt6 OE reduces expression of genes involved in ribosome biogenesis, including many dMyc target genes. dSirt6 OE partially rescues many effects of dMyc OE, including increased nuclear size, up-regulation of ribosome biogenesis genes, and lifespan shortening. Last, dMyc haploinsufficiency does not convey additional lifespan extension to dSirt6 OE flies, suggesting dSirt6 OE is upstream of dMyc in regulating lifespan. Our results provide insight into the mechanisms by which Sirt6 OE leads to longer lifespan.


Assuntos
Longevidade/genética , Sirtuínas/metabolismo , Envelhecimento/fisiologia , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Feminino , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Haploinsuficiência/genética , Histona Desacetilases/economia , Histona Desacetilases/metabolismo , Masculino , Sirtuínas/genética
12.
Nat Aging ; 2(5): 438-452, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-37118062

RESUMO

A better understanding of the biological and environmental variables that contribute to exceptional longevity has the potential to inform the treatment of geriatric diseases and help achieve healthy aging. Here, we compared the gut microbiome and blood metabolome of extremely long-lived individuals (94-105 years old) to that of their children (50-79 years old) in 116 Han Chinese families. We found extensive metagenomic and metabolomic remodeling in advanced age and observed a generational divergence in the correlations with socioeconomic factors. An analysis of quantitative trait loci revealed that genetic associations with metagenomic and metabolomic features were largely generation-specific, but we also found 131 plasma metabolic quantitative trait loci associations that were cross-generational with the genetic variants concentrated in six loci. These included associations between FADS1/2 and arachidonate, PTPA and succinylcarnitine and FLVCR1 and choline. Our characterization of the extensive metagenomic and metabolomic remodeling that occurs in people reaching extreme ages may offer new targets for aging-related interventions.


Assuntos
Centenários , Nonagenários , Idoso de 80 Anos ou mais , Criança , Humanos , Idoso , Pessoa de Meia-Idade , Longevidade/genética , Envelhecimento/genética , Fatores Socioeconômicos
13.
Genes (Basel) ; 12(9)2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34573390

RESUMO

Adverse conditions in early life, including environmental, biological and social influences, are risk factors for ill-health during aging and the onset of age-related disorders. In this context, the recent field of social epigenetics offers a valuable method for establishing the relationships among them However, current clinical studies on environmental changes and lifespan disorders are limited. In this sense, the Tlaltizapan (Mexico) cohort, who 52 years ago was exposed to infant malnutrition, low income and poor hygiene conditions, represents a vital source for exploring such factors. Therefore, in the present study, 52 years later, we aimed to explore differences in clinical/biochemical/anthropometric and epigenetic (DNA methylation) variables between individuals from such a cohort, in comparison with an urban-raised sample. Interestingly, only cholesterol levels showed significant differences between the cohorts. On the other hand, individuals from the Tlaltizapan cohort with more years of schooling had a lower epigenetic age in the Horvath (p-value = 0.0225) and PhenoAge (p-value = 0.0353) clocks, compared to those with lower-level schooling. Our analysis indicates 12 differentially methylated sites associated with the PI3-Akt signaling pathway and galactose metabolism in individuals with different durations of schooling. In conclusion, our results suggest that longer durations of schooling could promote DNA methylation changes that may reduce epigenetic age; nevertheless, further studies are needed.


Assuntos
Envelhecimento , Escolaridade , Epigênese Genética/fisiologia , Aprendizagem/fisiologia , Determinantes Sociais da Saúde , Envelhecimento/genética , Envelhecimento/psicologia , Estudos de Coortes , Metilação de DNA , Feminino , Interação Gene-Ambiente , Humanos , Recém-Nascido , Longevidade/genética , Estudos Longitudinais , Masculino , México/epidemiologia , Pessoa de Meia-Idade , Instituições Acadêmicas
14.
Proc Biol Sci ; 288(1944): 20201728, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33529563

RESUMO

Ageing evolves because the force of selection on traits declines with age but the proximate causes of ageing are incompletely understood. The 'disposable soma' theory of ageing (DST) upholds that competitive resource allocation between reproduction and somatic maintenance underpins the evolution of ageing and lifespan. In contrast, the developmental theory of ageing (DTA) suggests that organismal senescence is caused by suboptimal gene expression in adulthood. While the DST predicts the trade-off between reproduction and lifespan, the DTA predicts that age-specific optimization of gene expression can increase lifespan without reproduction costs. Here we investigated the consequences for lifespan, reproduction, egg size and individual fitness of early-life, adulthood and post-reproductive onset of RNAi knockdown of five 'longevity' genes involved in key biological processes in Caenorhabditis elegans. Downregulation of these genes in adulthood and/or during post-reproductive period increases lifespan, while we found limited evidence for a link between impaired reproduction and extended lifespan. Our findings demonstrate that suboptimal gene expression in adulthood often contributes to reduced lifespan directly rather than through competitive resource allocation between reproduction and somatic maintenance. Therefore, age-specific optimization of gene expression in evolutionarily conserved signalling pathways that regulate organismal life histories can increase lifespan without fitness costs.


Assuntos
Envelhecimento , Longevidade , Envelhecimento/genética , Animais , Caenorhabditis elegans/genética , Expressão Gênica , Longevidade/genética , Reprodução
15.
JAMA Health Forum ; 2(7): e211652, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-35977209

RESUMO

Importance: Wealthy adults tend to live longer than those with less wealth. However, a challenge in this area of research has been the reduction of potential confounding by factors associated with the early environment and heritable traits, which could simultaneously affect socioeconomic circumstances in adulthood and health across the life course. Objective: To identify the association between net worth at midlife and subsequent all-cause mortality in individuals as well as within siblings and twin pairs. Design Setting and Participants: This cohort study conducted a series of analyses using data from the Midlife in the United States (MIDUS) study, an ongoing national study of health and aging. The sample included adults (unrelated individuals, full siblings, and dizygotic and monozygotic twins) aged 20 to 75 years, who participated in wave 1 of the MIDUS study, which occurred from 1994 to 1996. The analyses were conducted between November 16, 2019, and May 18, 2021. Exposures: Self-reported net worth (total financial assets minus liabilities) at midlife (the middle years of life). Main Outcomes and Measures: All-cause mortality was tracked over nearly 24 years of follow-up, with a censor date of October 31, 2018. Survival models tested the association between net worth and all-cause mortality. Discordant sibling and twin analyses compared longevity within siblings and twin pairs who, given their shared early experiences and genetic backgrounds, were matched on these factors. Results: The full sample comprised 5414 participants, who had a mean (SD) age of 46.7 (12.7) years and included 2766 women (51.1%). Higher net worth was associated with lower mortality risk (hazard ratio [HR], 0.95; 95% CI, 0.94-0.97; P < .001). Among siblings and twin pairs specifically (n = 2490), a similar within-family association was observed between higher net worth and lower mortality (HR, 0.94; 95% CI, 0.91-0.97; P = .001), suggesting that the sibling or twin with more wealth tended to live longer than their co-sibling or co-twin with less wealth. When separate estimates were performed for the subsamples of siblings (HR, 0.94; 95% CI, 0.90-0.97; P = .002), dizygotic twins (HR, 0.94; 95% CI, 0.86-1.02; P = .19), and monozygotic twins (HR, 0.95; 95% CI, 0.87-1.04; P = .34), the within-family estimates of the net worth-mortality association were similar, although the precision of estimates was reduced among twins. Conclusions and Relevance: This cohort study found that wealth accumulation at midlife was associated with longevity in US adults. Discordant sibling analyses suggested that this association is unlikely to be simply an artifact of early experiences or heritable characteristics shared by families.


Assuntos
Longevidade , Classe Social , Adulto , Idoso , Estudos de Coortes , Feminino , Humanos , Longevidade/genética , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Gêmeos Dizigóticos/genética , Gêmeos Monozigóticos/genética , Estados Unidos/epidemiologia , Adulto Jovem
16.
Clin Nutr ; 40(3): 1186-1191, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32807581

RESUMO

BACKGROUND & AIMS: Empirical analyses of the data available around the word concluded that women have longer life span now, when compared to the men. Available literature unfortunately could not offer full answers to this observation. The "entropic age" concept suggests that ageing related changes in the body, such as loss of molecular functions and overwhelming of the maintenance systems, may be explained in terms of entropy generation. METHODS: Telomere-length regulated entropic assessment based on metabolic activity with four different diets carried out. RESULTS: Estimates of the life expectancy of the women on all of these diets is longer than those of the men. Faster shortening of the telomere lengths in men was the major reason of the shorter life expectancy. The highest and the lowest life expectancy for women were estimated with Mediterranean and the vegetarian diets, respectively; men were estimated to have the longest life span with the vegetarian diet and the shortest life span with the ketogenic diet. CONCLUSIONS: A higher rate of metabolism causes higher entropy generation and hints correlations that can be helpful in future ageing research. Faster shortening of the telomere lengths in men was the major reason of the estimation of the shorter life span for men.


Assuntos
Envelhecimento/genética , Dieta/efeitos adversos , Longevidade/genética , Fatores Sexuais , Telômero/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Dieta Cetogênica , Dieta Mediterrânea , Dieta Vegana , Dieta Ocidental , Ingestão de Energia/genética , Entropia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Encurtamento do Telômero/genética , Adulto Jovem
17.
Aging (Albany NY) ; 12(23): 24057-24080, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33276343

RESUMO

The existence of a sex gap in human health and longevity has been widely documented. Autosomal DNA methylation differences between males and females have been reported, but so far few studies have investigated if DNA methylation is differently affected by aging in males and females. We performed a meta-analysis of 4 large whole blood datasets, comparing 4 aspects of epigenetic age-dependent remodeling between the two sexes: differential methylation, variability, epimutations and entropy. We reported that a large fraction (43%) of sex-associated probes undergoes age-associated DNA methylation changes, and that a limited number of probes show age-by-sex interaction. We experimentally validated 2 regions mapping in FIGN and PRR4 genes and showed sex-specific deviations of their methylation patterns in models of decelerated (centenarians) and accelerated (Down syndrome) aging. While we did not find sex differences in the age-associated increase in epimutations and entropy, we showed that the number of probes having an age-related increase in methylation variability is 15 times higher in males compared to females. Our results can offer new epigenetic tools to study the interaction between aging and sex and can pave the way to the identification of molecular triggers of sex differences in longevity and age-related diseases prevalence.


Assuntos
Envelhecimento/genética , Metilação de DNA , Epigênese Genética , ATPases Associadas a Diversas Atividades Celulares/genética , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Ilhas de CpG , Bases de Dados Genéticas , Síndrome de Down/diagnóstico , Síndrome de Down/genética , Feminino , Humanos , Longevidade/genética , Masculino , Proteínas Associadas aos Microtúbulos/genética , Pessoa de Meia-Idade , Domínios Proteicos Ricos em Prolina , Fatores Sexuais , Adulto Jovem
18.
Methods Mol Biol ; 2144: 103-110, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32410028

RESUMO

Lipids are an essential macromolecule used for diverse functions including use for structural components of membranes, energy storage, and signaling molecules. The regulation of cellular lipid stores is critical for maintaining organismal metabolic homeostasis. Lipid homeostasis can decline with age, which can lead to poor health outcomes and accelerate the progression of disease states. C. elegans represents an excellent model to study age-related decline in lipid homeostasis due to its short lifespan and remarkably well-conserved metabolic pathways. Due to their ease of use and similarities, there have been numerous developments in methodologies to study intracellular lipid abundance and tissue distribution in C. elegans.


Assuntos
Metabolismo dos Lipídeos/genética , Longevidade/genética , Redes e Vias Metabólicas/genética , Biologia Molecular/métodos , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Homeostase/genética , Lipídeos/genética , Longevidade/fisiologia , Transdução de Sinais/genética , Coloração e Rotulagem
19.
Methods Mol Biol ; 2144: 131-144, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32410031

RESUMO

The gut microbiome is an important driver of host physiology and development. Altered abundance or membership of this microbe community can influence host health and disease progression, including the determination of host lifespan and healthspan. Here, we describe a robust pipeline to measure microbiome abundance and composition in the C. elegans gut that can be applied to examine the role of the microbiome on host aging or other physiologic processes.


Assuntos
Envelhecimento/genética , Caenorhabditis elegans/microbiologia , Microbioma Gastrointestinal/genética , Ensaios de Triagem em Larga Escala/métodos , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Longevidade/genética
20.
BMC Genomics ; 20(1): 695, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31481029

RESUMO

BACKGROUND: Little is known about the genetic architecture of economically important traits in Brown Swiss cattle because only few genome-wide association studies (GWAS) have been carried out in this breed. Moreover, most GWAS have been performed for single traits, thus not providing detailed insights into potentially existing pleiotropic effects of trait-associated loci. RESULTS: To compile a comprehensive catalogue of large-effect quantitative trait loci (QTL) segregating in Brown Swiss cattle, we carried out association tests between partially imputed genotypes at 598,016 SNPs and daughter-derived phenotypes for more than 50 economically important traits, including milk production, growth and carcass quality, body conformation, reproduction and calving traits in 4578 artificial insemination bulls from two cohorts of Brown Swiss cattle (Austrian-German and Swiss populations). Across-cohort multi-trait meta-analyses of the results from the single-trait GWAS revealed 25 quantitative trait loci (QTL; P < 8.36 × 10- 8) for economically relevant traits on 17 Bos taurus autosomes (BTA). Evidence of pleiotropy was detected at five QTL located on BTA5, 6, 17, 21 and 25. Of these, two QTL at BTA6:90,486,780 and BTA25:1,455,150 affect a diverse range of economically important traits, including traits related to body conformation, calving, longevity and milking speed. Furthermore, the QTL at BTA6:90,486,780 seems to be a target of ongoing selection as evidenced by an integrated haplotype score of 2.49 and significant changes in allele frequency over the past 25 years, whereas either no or only weak evidence of selection was detected at all other QTL. CONCLUSIONS: Our findings provide a comprehensive overview of QTL segregating in Brown Swiss cattle. Detected QTL explain between 2 and 10% of the variation in the estimated breeding values and thus may be considered as the most important QTL segregating in the Brown Swiss cattle breed. Multi-trait association testing boosts the power to detect pleiotropic QTL and assesses the full spectrum of phenotypes that are affected by trait-associated variants.


Assuntos
Bovinos/genética , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas/genética , Animais , Cruzamento , Bovinos/crescimento & desenvolvimento , Bovinos/metabolismo , Bovinos/fisiologia , Feminino , Pleiotropia Genética , Longevidade/genética , Masculino , Leite/metabolismo , Fenótipo , Polimorfismo de Nucleotídeo Único , Reprodução/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA