Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 508
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3946, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729950

RESUMO

Disease modeling with isogenic Induced Pluripotent Stem Cell (iPSC)-differentiated organoids serves as a powerful technique for studying disease mechanisms. Multiplexed coculture is crucial to mitigate batch effects when studying the genetic effects of disease-causing variants in differentiated iPSCs or organoids, and demultiplexing at the single-cell level can be conveniently achieved by assessing natural genetic barcodes. Here, to enable cost-efficient time-series experimental designs via multiplexed bulk and single-cell RNA-seq of hybrids, we introduce a computational method in our Vireo Suite, Vireo-bulk, to effectively deconvolve pooled bulk RNA-seq data by genotype reference, and thereby quantify donor abundance over the course of differentiation and identify differentially expressed genes among donors. Furthermore, with multiplexed scRNA-seq and bulk RNA-seq, we demonstrate the usefulness and necessity of a pooled design to reveal donor iPSC line heterogeneity during macrophage cell differentiation and to model rare WT1 mutation-driven kidney disease with chimeric organoids. Our work provides an experimental and analytic pipeline for dissecting disease mechanisms with chimeric organoids.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas , Organoides , RNA-Seq , Análise de Célula Única , Organoides/metabolismo , Análise de Célula Única/métodos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Humanos , Diferenciação Celular/genética , RNA-Seq/métodos , Análise de Sequência de RNA/métodos , Macrófagos/metabolismo , Macrófagos/citologia , Animais , Análise da Expressão Gênica de Célula Única
2.
Sci Rep ; 14(1): 12171, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806547

RESUMO

Upon implanting tissue-engineered heart valves (TEHVs), blood-derived macrophages are believed to orchestrate the remodeling process. They initiate the immune response and mediate the remodeling of the TEHV, essential for the valve's functionality. The exact role of another macrophage type, the tissue-resident macrophages (TRMs), has not been yet elucidated even though they maintain the homeostasis of native tissues. Here, we characterized the response of hTRM-like cells in contact with a human tissue engineered matrix (hTEM). HTEMs comprised intracellular peptides with potentially immunogenic properties in their ECM proteome. Human iPSC-derived macrophages (iMφs) could represent hTRM-like cells in vitro and circumvent the scarcity of human donor material. iMφs were derived and after stimulation they demonstrated polarization towards non-/inflammatory states. Next, they responded with increased IL-6/IL-1ß secretion in separate 3/7-day cultures with longer production-time-hTEMs. We demonstrated that iMφs are a potential model for TRM-like cells for the assessment of hTEM immunocompatibility. They adopt distinct pro- and anti-inflammatory phenotypes, and both IL-6 and IL-1ß secretion depends on hTEM composition. IL-6 provided the highest sensitivity to measure iMφs pro-inflammatory response. This platform could facilitate the in vitro immunocompatibility assessment of hTEMs and thereby showcase a potential way to achieve safer clinical translation of TEHVs.


Assuntos
Células-Tronco Pluripotentes Induzidas , Macrófagos , Engenharia Tecidual , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/imunologia , Engenharia Tecidual/métodos , Macrófagos/imunologia , Macrófagos/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Células Cultivadas , Matriz Extracelular/metabolismo , Diferenciação Celular , Alicerces Teciduais/química
3.
Part Fibre Toxicol ; 21(1): 16, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38509617

RESUMO

BACKGROUND: Organomodified nanoclays (ONC), two-dimensional montmorillonite with organic coatings, are increasingly used to improve nanocomposite properties. However, little is known about pulmonary health risks along the nanoclay life cycle even with increased evidence of airborne particulate exposures in occupational environments. Recently, oropharyngeal aspiration exposure to pre- and post-incinerated ONC in mice caused low grade, persistent lung inflammation with a pro-fibrotic signaling response with unknown mode(s) of action. We hypothesized that the organic coating presence and incineration status of nanoclays determine the inflammatory cytokine secretary profile and cytotoxic response of macrophages. To test this hypothesis differentiated human macrophages (THP-1) were acutely exposed (0-20 µg/cm2) to pristine, uncoated nanoclay (CloisNa), an ONC (Clois30B), their incinerated byproducts (I-CloisNa and I-Clois30B), and crystalline silica (CS) followed by cytotoxicity and inflammatory endpoints. Macrophages were co-exposed to lipopolysaccharide (LPS) or LPS-free medium to assess the role of priming the NF-κB pathway in macrophage response to nanoclay treatment. Data were compared to inflammatory responses in male C57Bl/6J mice following 30 and 300 µg/mouse aspiration exposure to the same particles. RESULTS: In LPS-free media, CloisNa exposure caused mitochondrial depolarization while Clois30B exposure caused reduced macrophage viability, greater cytotoxicity, and significant damage-associated molecular patterns (IL-1α and ATP) release compared to CloisNa and unexposed controls. LPS priming with low CloisNa doses caused elevated cathepsin B/Caspage-1/IL-1ß release while higher doses resulted in apoptosis. Clois30B exposure caused dose-dependent THP-1 cell pyroptosis evidenced by Cathepsin B and IL-1ß release and Gasdermin D cleavage. Incineration ablated the cytotoxic and inflammatory effects of Clois30B while I-CloisNa still retained some mild inflammatory potential. Comparative analyses suggested that in vitro macrophage cell viability, inflammasome endpoints, and pro-inflammatory cytokine profiles significantly correlated to mouse bronchioalveolar lavage inflammation metrics including inflammatory cell recruitment. CONCLUSIONS: Presence of organic coating and incineration status influenced inflammatory and cytotoxic responses following exposure to human macrophages. Clois30B, with a quaternary ammonium tallow coating, induced a robust cell membrane damage and pyroptosis effect which was eliminated after incineration. Conversely, incinerated nanoclay exposure primarily caused elevated inflammatory cytokine release from THP-1 cells. Collectively, pre-incinerated nanoclay displayed interaction with macrophage membrane components (molecular initiating event), increased pro-inflammatory mediators, and increased inflammatory cell recruitment (two key events) in the lung fibrosis adverse outcome pathway.


Assuntos
Catepsina B , Lipopolissacarídeos , Masculino , Humanos , Camundongos , Animais , Catepsina B/metabolismo , Catepsina B/farmacologia , Lipopolissacarídeos/farmacologia , Ensaios de Triagem em Larga Escala , Inflamação/induzido quimicamente , Inflamação/metabolismo , Macrófagos , Citocinas/metabolismo , Interleucina-1beta/metabolismo
4.
Fitoterapia ; 175: 105861, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38354824

RESUMO

Humulus lupulus extracts have in their composition different molecules, such as polyphenols, α-acids, ß-acids, and hydrocarbons, which contribute to the plant's medicinal properties. These molecules are associated with antimicrobial, antioxidant and anti-inflammatory activities. OBJECTIVE: This work focuses on the evaluation of H. lupulus biological activities, with the aim of evaluating its potential for inclusion in cosmetic formulations. METHODS: Two distinct aqueous extracts and two hydrolates obtained via hydrodistillation were evaluated. These include the flower parts (FE, FH) and the mix of aboveground parts (ME, MH). The chemical profiles for both aqueous extracts and hydrolates were identified by high performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS). Antimicrobial, antioxidant, cytotoxicity, and anti-inflammatory activity were tested in vitro using standard methods. RESULTS: Rutin was the major compound found in FE (40.041 µg mg-1 of extract) and ME (2.909 µg mg-1 of extract), while humulenol II was the most abundant compound in hydrolates (FH: 20.83%; MH: 46.80%). Furthermore, FE was able to inhibit the growth of Staphylococcus aureus and Staphylococcus epidermis with MIC values of 50% and 25% (v/v), respectively. FH showed the same effect in Staphylococcus aureus (50% v/v). FH evidenced poor antioxidant potential in DPPH scavenging test and demonstrated significant antioxidant and anti-inflammatory effects by reducing (***p < 0.001) intracellular reactive oxygen species (ROS), NO (nitric oxide) levels (***p < 0.001) and cyclooxygenase-2 (COX-2) protein expression (***p < 0.001) in lipopolysaccharide (LPS)-stimulated macrophages. Nevertheless, it is important to note that FH exhibited cytotoxicity at high concentrations in 3T3 fibroblasts and RAW 264.7 macrophages. CONCLUSION: The studied H. lupulus aqueous extracts and hydrolates revealed that FH stands out as the most promising bioactive source for cosmetic formulations. However, future research addressing antimicrobial activity is necessary to confirm its potential incorporation into dermatological and cosmetic formulations.


Assuntos
Anti-Inflamatórios , Antioxidantes , Cosméticos , Humulus , Extratos Vegetais , Humulus/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antioxidantes/farmacologia , Anti-Inflamatórios/farmacologia , Camundongos , Animais , Células RAW 264.7 , Flores/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Macrófagos/efeitos dos fármacos , Testes de Sensibilidade Microbiana
5.
J Immunol ; 212(6): 1012-1021, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38251913

RESUMO

It is becoming clear that every organ is seeded by a population of fetal liver-derived macrophages that are replaced at different rates by monocyte-derived macrophages. Using the Ms4a3tdTomato reporter mouse that reports on monocyte-derived alveolar macrophages (Mo-AMs) and our ability to examine AM function using our multichannel intravital microscopy, we examined the fetal-liver derived alveolar macrophage (FL-AM) and Mo-AM populations within the same mouse under various environmental conditions. The experiments unveiled that AMs migrated from alveolus to alveolus and phagocytosed bacteria identically regardless of ontogenic origin. Using 50 PFU of influenza A virus (IAV) determined using the Madin-Darby canine kidney (MDCK) cell line, we noted that both populations were susceptible to IAV-induced immunoparalysis, which also led to impaired phagocytosis of secondary bacterial infections. Both FL-AMs and Mo-AMs were trained by ß-glucan to resist IAV-induced paralysis. Over time (40 wk), Mo-AMs began to outperform FL-AMs, although both populations were still sensitive to IAV. Our data also show that clodronate depletion of AMs leads to replenishment, but by FL-AMs, and these macrophages do show some functional impairment for a limited time. Overall, the system is designed such that new macrophages rapidly assume the function of tissue-resident macrophages when both populations are examined in an identical environment. These data do differ from artificial depletion methods that compare Mo-AMs and FL-AMs.


Assuntos
Coinfecção , Vírus da Influenza A , Animais , Cães , Camundongos , Pulmão , Macrófagos , Macrófagos Alveolares , Fagocitose , Fígado
6.
Microbiol Spectr ; 12(1): e0308023, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38014940

RESUMO

IMPORTANCE: This study is the first of its kind that suggests exosomes as a nano-carrier loaded with atovaquone (ATQ), which could be considered as a new strategy for improving the effectiveness of ATQ against acute and chronic phases of Toxoplasma gondii.


Assuntos
Exossomos , Toxoplasma , Atovaquona/farmacologia , Atovaquona/uso terapêutico , Macrófagos
7.
Pharm Biol ; 62(1): 22-32, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38100537

RESUMO

CONTEXT: Sepsis-induced acute lung injury (ALI) is a severe condition with limited effective therapeutics; nicotinamide mononucleotide (NMN) has been reported to exert anti-inflammatory activities. OBJECTIVE: This study explores the potential mechanisms by which NMN ameliorates sepsis-induced ALI in vivo and in vitro. MATERIALS AND METHODS: Cultured MH-S cells and a murine model were used to evaluate the effect of NMN on sepsis-induced ALI. MH-S cells were stimulated with LPS (1 µg/mL) and NMN (500 µM) for 12 h grouping as control, LPS, and LPS + NMN. Cell viability, apoptotic status, and M1/2 macrophage-related markers were detected. The mice were pretreated intraperitoneally with NMN (500 mg/kg) and/or EX-527 (5 mg/kg) 1 h before LPS injection and randomized into 7 groups (n = 8): control, LPS, LPS + NMN, NMN, LPS + NMN + EX-527 (a SIRT1 inhibitor), LPS + EX-527, and EX-527. After 12 h, lung histopathology, W/D ratio, MPO activity, NAD+ and ATP levels, M1/2 macrophage-related markers, and expression of the SIRT1/NF-κB pathway were detected. RESULTS: In MH-S cells, NMN significantly decreased the apoptotic rate from 12.25% to 5.74%. In septic mice, NMN improved the typical pathologic findings in lungs and reduced W/D ratio and MPO activity, but increased NAD+ and ATP levels. Additionally, NMN suppressed M1 but promoted M2 polarization, and upregulated the expression of SIRT1, with inhibition of NF-κB-p65 acetylation and phosphorylation. Furthermore, inhibition of SIRT1 reversed the effects of NMN-induced M2 macrophage polarization. CONCLUSIONS: NMN protects against sepsis-induced ALI by promoting M2 macrophage polarization via the SIRT1/NF-κB pathway, it might be an effective strategy for preventing or treating sepsis-induced ALI.


Assuntos
Lesão Pulmonar Aguda , Sepse , Animais , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/prevenção & controle , Trifosfato de Adenosina/metabolismo , Endotoxinas/toxicidade , Lipopolissacarídeos/toxicidade , Pulmão , Macrófagos/metabolismo , NAD/metabolismo , NF-kappa B/metabolismo , Mononucleotídeo de Nicotinamida/farmacologia , Sepse/induzido quimicamente , Sepse/complicações , Sepse/tratamento farmacológico , Sirtuína 1
8.
Medicina (Kaunas) ; 59(11)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38004077

RESUMO

Background and Objectives: This study evaluated the in vitro anti-adipogenic and anti-inflammatory properties of black cumin (Nigella sativa L.) seed extract (BCS extract) as a potential candidate for developing herbal formulations targeting metabolic disorders. Materials and Methods: We evaluated the BCS extract by assessing its 2,2-diphenyl-1-picrohydrazyl (DPPH) radical scavenging activity, levels of prostaglandin E2 (PGE2) and nitric oxide (NO), and mRNA expression levels of key pro-inflammatory mediators. We also quantified the phosphorylation of nuclear factor kappa light chain enhancer of activated B cells (NF-κB) and mitogen-activated protein kinases (MAPK) signaling molecules. To assess anti-adipogenic effects, we used differentiated 3T3-L1 cells and BCS extract in doses from 10 to 100 µg/mL. We also determined mRNA levels of key adipogenic genes, including peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer binding protein α (C/BEPα), adipocyte protein 2 (aP2), lipoprotein lipase (LPL), fatty acid synthase (FAS), and sterol-regulated element-binding protein 1c (SREBP-1c) using real-time quantitative polymerase chain reaction (qPCR). Results: This study showed a concentration-dependent DPPH radical scavenging activity and no toxicity at concentrations up to 30 µg/mL in Raw264.7 cells. BCS extract showed an IC50 of 328.77 ± 20.52 µg/mL. Notably, pre-treatment with BCS extract (30 µg/mL) significantly enhanced cell viability in lipopolysaccharide (LPS)-treated Raw264.7 cells. BCS extract treatment effectively inhibited LPS-induced production of PGE2 and NO, as well as the expression of monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2), inducible NO synthase (iNOS), interleukin (IL)-1ß and IL-6, possibly by limiting the phosphorylation of p38, p65, inhibitory κBα (I-κBα), and c-Jun N-terminal kinase (JNK). It also significantly attenuated lipid accumulation and key adipogenic genes in 3T3-L1 cells. Conclusions: This study highlights the in vitro anti-adipogenic and anti-inflammatory potential of BCS extract, underscoring its potential as a promising candidate for managing metabolic disorders.


Assuntos
Doenças Metabólicas , Nigella sativa , Humanos , Animais , Camundongos , Nigella sativa/metabolismo , Células 3T3-L1 , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Macrófagos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Adipócitos , Sementes , RNA Mensageiro/metabolismo , Doenças Metabólicas/metabolismo , Óxido Nítrico/metabolismo
9.
Int J Mol Sci ; 24(16)2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37628994

RESUMO

Tumor-associated macrophages are key components of the tumor microenvironment and play important roles in the progression of head and neck cancer, leading to the development of effective strategies targeting immune cells in tumors. Our study demonstrated the prognostic potential of a new scoring system (Macroscore) based on the combination of the ratio and the sum of the high and low densities of M1 (CD80+) and M2 (CD163+) macrophages in a series of head and neck cancer patients, including a training population (n = 54) and a validation population (n = 19). Interestingly, the Macroscore outperformed TNM criteria and p16 status, showing a significant association with poor patient prognosis, and demonstrated significant predictive value for overall survival. Additionally, 3D coculture spheroids were established to analyze the crosstalk between cancer cells and monocytes/macrophages. Our data revealed that cancer cells can induce monocyte differentiation into protumoral M2 macrophages, creating an immunosuppressive microenvironment. This coculture also induced the production of immunosuppressive cytokines, such as IL10 and IL8, known to promote M2 polarization. Finally, we validated the ability of the macrophage subpopulations to induce apoptosis (M1) or support proliferation (M2) of cancer cells. Overall, our research highlights the potential of the Macroscore as a valuable prognostic biomarker to enhance the clinical management of patients and underscores the relevance of a spheroid model in gaining a better understanding of the mechanisms underlying cancer cell-macrophage interactions.


Assuntos
Neoplasias de Cabeça e Pescoço , Humanos , Técnicas de Cocultura , Comunicação Celular , Macrófagos , Macrófagos Associados a Tumor , Imunossupressores , Microambiente Tumoral
10.
Microbiol Spectr ; 11(4): e0166723, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37470715

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen that can establish acute and chronic infections in individuals who lack fully functional innate immunity. In particular, phagocytosis by neutrophils and macrophages is a key mechanism that modulates host control and clearance of P. aeruginosa. Individuals with neutropenia or cystic fibrosis are highly susceptible to P. aeruginosa infection, thus underscoring the importance of the host innate immune response. Cell-to-cell contact between host innate immune cells and the pathogen, a first step in phagocytic uptake, is facilitated by simple and complex glycan structures present at the host cell surface. We have previously shown that endogenous polyanionic N-linked glycans localized to the cell surface of phagocytes mediate the binding and subsequent phagocytosis of P. aeruginosa cells. However, the suite of glycans that P. aeruginosa cells bind to on host phagocytic cells remains poorly characterized. Here, we demonstrate, with the use of exogenous N-linked glycans and a glycan array, that P. aeruginosa PAO1 cells preferentially attach to a subset of glycans, including a bias toward monosaccharide versus more complex glycan structures. Consistent with these findings, we were able to competitively inhibit bacterial adherence and uptake by the addition of exogenous N-linked mono- and disaccharide glycans. We discuss our findings in the context of previous reports of P. aeruginosa glycan binding. IMPORTANCE P. aeruginosa cells bind to a variety of glycans as part of their interaction with host cells, and a number of P. aeruginosa-encoded receptors and target ligands have been described that allow this microbe to bind to such glycans. Here, we extend this work by studying the glycans used by P. aeruginosa PAO1 cells to bind to phagocytic cells and by using a glycan array to characterize the suite of such molecules that can facilitate host cell binding by this microbe. This study provides an increased understanding of the glycans bound by P. aeruginosa and furthermore provides a useful data set for future studies of P. aeruginosa-glycan interactions.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Humanos , Pseudomonas aeruginosa/metabolismo , Fagocitose , Macrófagos , Fagócitos , Polissacarídeos/metabolismo , Infecções por Pseudomonas/microbiologia
11.
J Nucl Med ; 64(9): 1378-1384, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37474271

RESUMO

Macrophages play an important role throughout the body. Antiinflammatory macrophages expressing the macrophage mannose receptor (MMR, CD206) are involved in disease development, ranging from oncology to atherosclerosis and rheumatoid arthritis. [68Ga]Ga-NOTA-anti-CD206 single-domain antibody (sdAb) is a PET tracer targeting CD206. This first-in-human study, as its primary objective, evaluated the safety, biodistribution, and dosimetry of this tracer. The secondary objective was to assess its tumor uptake. Methods: Seven patients with a solid tumor of at least 10 mm, an Eastern Cooperative Oncology Group score of 0 or 1, and good renal and hepatic function were included. Safety was evaluated using clinical examination and blood sampling before and after injection. For biodistribution and dosimetry, PET/CT was performed at 11, 90, and 150 min after injection; organs showing tracer uptake were delineated, and dosimetry was evaluated. Blood samples were obtained at selected time points for blood clearance. Metabolites in blood and urine were assessed. Results: Seven patients were injected with, on average, 191 MBq of [68Ga]Ga-NOTA-anti-CD206-sdAb. Only 1 transient adverse event of mild severity was considered to be possibly, although unlikely, related to the study drug (headache, Common Terminology Criteria for Adverse Events grade 1). The blood clearance was fast, with less than 20% of the injected activity remaining after 80 min. There was uptake in the liver, kidneys, spleen, adrenals, and red bone marrow. The average effective dose from the radiopharmaceutical was 4.2 mSv for males and 5.2 mSv for females. No metabolites were detected. Preliminary data of tumor uptake in cancer lesions showed higher uptake in the 3 patients who subsequently progressed than in the 3 patients without progression. One patient could not be evaluated because of technical failure. Conclusion: [68Ga]Ga-NOTA-anti-CD206-sdAb is safe and well tolerated. It shows rapid blood clearance and renal excretion, enabling high contrast-to-noise imaging at 90 min after injection. The radiation dose is comparable to that of routinely used PET tracers. These findings and the preliminary results in cancer patients warrant further investigation of this tracer in phase II clinical trials.


Assuntos
Neoplasias , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Masculino , Feminino , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Radioisótopos de Gálio , Distribuição Tecidual , Neoplasias/diagnóstico por imagem , Neoplasias/metabolismo , Radiometria , Macrófagos/metabolismo
12.
Trends Immunol ; 44(7): 496-498, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37258361

RESUMO

Tissue and inflammatory contexts are well appreciated to shape macrophage function to promote health or disease. However, there has been minimal progress towards understanding how these contexts modify signaling-to-transcription networks. Integration of mechanistic modeling and data-driven approaches will be crucial for investigating how cell state impacts macrophage decision-making.


Assuntos
Promoção da Saúde , Transdução de Sinais , Humanos , Macrófagos/metabolismo , Redes Reguladoras de Genes
13.
mSphere ; 8(3): e0010423, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37017523

RESUMO

Coxiella burnetii is an intracellular bacterium that causes the human disease Q fever. C. burnetii forms a large, acidic Coxiella-containing vacuole (CCV) and uses a type 4B secretion system to secrete effector proteins into the host cell cytoplasm. While the CCV membrane is rich in sterols, cholesterol accumulation in the CCV is bacteriolytic, suggesting that C. burnetii regulation of lipid transport and metabolism is critical for successful infection. The mammalian lipid transport protein ORP1L (oxysterol binding protein-like protein 1 Long) localizes to the CCV membrane and mediates CCV-endoplasmic reticulum (ER) membrane contact sites. ORP1L functions in lipid sensing and transport, including cholesterol efflux from late endosomes and lysosomes (LELs), and the ER. Its sister isoform, ORP1S (oxysterol binding protein-like protein 1 Short) also binds cholesterol but has cytoplasmic and nuclear localization. In ORP1-null cells, we found that CCVs were smaller than in wild-type cells, highlighting the importance of ORP1 in CCV development. This effect was consistent between HeLa cells and murine alveolar macrophages (MH-S cells). CCVs in ORP1-null cells had higher cholesterol content than CCVs in wild-type cells at 4 days of infection, suggesting ORP1 functions in cholesterol efflux from the CCV. While the absence of ORP1 led to a C. burnetii growth defect in MH-S cells, there was no growth defect in HeLa cells. Together, our data demonstrated that C. burnetii uses the host sterol transport protein ORP1 to promote CCV development, potentially by using ORP1 to facilitate cholesterol efflux from the CCV to diminish the bacteriolytic effects of cholesterol. IMPORTANCE Coxiella burnetii is an emerging zoonotic pathogen and bioterrorism threat. No licensed vaccine exists in the United States, and the chronic form of the disease is difficult to treat and potentially lethal. Postinfectious sequelae of C. burnetii infection, including debilitating fatigue, place a significant burden on individuals and communities recovering from an outbreak. C. burnetii must manipulate host cell processes in order to promote infection. Our results establish a link between host cell lipid transport processes and C. burnetii's avoidance of cholesterol toxicity during infection of alveolar macrophages. Elucidating the mechanisms behind bacterial manipulation of the host will yield insight for new strategies to combat this intracellular pathogen.


Assuntos
Coxiella burnetii , Humanos , Animais , Camundongos , Vacúolos/metabolismo , Células HeLa , Macrófagos/microbiologia , Proteínas de Transporte/metabolismo , Colesterol/metabolismo , Lipídeos , Mamíferos
14.
Methods Mol Biol ; 2641: 17-26, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37074638

RESUMO

The NLRP3 inflammasome is a critical component of innate immunity that activates caspase-1 to induce inflammation in response to a wide spectrum of endogenous and exogenous stimuli. NLRP3 inflammasome activation has been shown by assays for the cleavage of caspase-1 and gasdermin D, the maturation of IL-1ß and IL-18, and ASC speck formation in innate immune cells such as macrophages and monocytes. Recently, NEK7 has been revealed as an essential regulator for NLRP3 inflammasome activation by forming high-molecular-weight complexes with NLRP3. Blue native polyacrylamide gel electrophoresis (BN-PAGE) has been used to study multi-protein complexes in many experimental systems. Here, we provide a detailed protocol to detect NLRP3 inflammasome activation and NLRP3-NEK7 complex assembly in mouse macrophages by Western blot and BN-PAGE.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Camundongos , Macrófagos , Monócitos , Caspase 1 , Interleucina-1beta , Quinases Relacionadas a NIMA/genética
15.
Methods Mol Biol ; 2641: 189-202, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37074652

RESUMO

Inflammasomes are multiprotein complexes that can be activated by a wide array of infectious and inflammatory agents. Inflammasome activation culminates in the maturation and secretion of pro-inflammatory cytokines, as well as lytic cell death, known as pyroptosis. During pyroptosis, the entire contents of a cell are released into the extracellular space, propagating the local innate immune response. One component of particular interest is the alarmin high mobility group box-1 (HMGB1). Extracellular HMGB1 is a potent inflammatory stimulus, acting upon multiple receptors to drive inflammation. In this series of protocols, we will outline how to trigger and assess pyroptosis in primary macrophages, with a focus on the assessment of HMGB1 release.


Assuntos
Proteína HMGB1 , Piroptose , Proteína HMGB1/metabolismo , Morte Celular , Macrófagos/metabolismo , Inflamassomos/metabolismo
16.
Molecules ; 28(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37049676

RESUMO

Polysaccharides with molecular weights ranging from 1.75 × 103 to 1.14 × 104 g/mol were obtained from the fruit bodies of Ganoderma lucidum. The multiple fingerprints and macrophage immunostimulatory activity of these fractions were analyzed as well as the fingerprint-activity relationship. The correlation analysis of molecular weight and immune activity demonstrated that polysaccharides with molecular weights of 4.27 × 103~5.27 × 103 and 1 × 104~1.14 × 104 g/mol were the main active fractions. Moreover, the results showed that galactose, mannose, and glucuronic acid were positively related to immunostimulatory activity. Additionally, partial least-squares regression and grey correlation degree analyses indicated that three peaks (P2, P3, P8) in the oligosaccharide fragment fingerprint significantly affected the immune activity of the polysaccharides. Hence, these ingredients associated with activity could be considered as markers to assess Ganoderma lucidum polysaccharides and their related products, and the study also provides a reference for research on the spectrum-effect relationship of polysaccharides in the future.


Assuntos
Ganoderma , Reishi , Quimiometria , Polissacarídeos/farmacologia , Polissacarídeos/análise , Macrófagos , Imunomodulação
17.
Biomed Pharmacother ; 160: 114363, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36746096

RESUMO

Allergic rhinitis (AR) is globally prevalent and its pathogenesis remains unclear. Alternative activation of macrophages is suggested in AR and thought to be involved in natural immunoregulatory processes in AR. Aberrant activation of Nod-like receptor protein 3 (NLRP3) inflammasome is linked with AR. Human placenta extract (HPE) is widely used in clinics due to its multiple therapeutic potential carried by diverse bioactive molecules in it. We aim to investigate the effect of HPE on AR and the possible underlying mechanism. Ovalbumin (OVA)-induced AR rat model was set up and treated by HPE or cetirizine. General manifestation of AR was evaluated along with the histological and biochemical analysis performed on rat nasal mucosa. A proteomic analysis was performed on AR rat mucosa. Mouse alveolar macrophages (MH-S cells) were cultured under OVA stimulation to investigate the regulation of macrophages polarization. The morphological changes and the expression of NLRP3 inflammasome and immunity-related GTPase M (IRGM) in nasal mucosa as well as in MH-S cells were evaluated respectively. The results of our study showed the general manifestation of AR along with the histological changes in nasal mucosa of AR rats were improved by HPE. HPE suppresses NLRP3 inflammasome and the decline of IRGM in AR rats and MH-S cells. HPE regulates macrophage polarization through IRGM/NLRP3. We demonstrated that HPE had protection for AR and the protection is achieved partly through suppressing M1 while promoting M2, the process which is mediated by IRGM via inhibiting NLRP3 inflammasome in AR.


Assuntos
Extratos Placentários , Rinite Alérgica , Humanos , Feminino , Ratos , Camundongos , Animais , Gravidez , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas NLR/metabolismo , Extratos Placentários/metabolismo , Extratos Placentários/uso terapêutico , Proteômica , Placenta/metabolismo , Rinite Alérgica/tratamento farmacológico , Rinite Alérgica/metabolismo , Mucosa Nasal/metabolismo , Macrófagos/metabolismo , Modelos Animais de Doenças , Ovalbumina , Citocinas/metabolismo , Proteínas de Ligação ao GTP/metabolismo
18.
Front Immunol ; 14: 1111123, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36776851

RESUMO

Introduction: Inhalation of nanomaterials may induce inflammation in the lung which if left unresolved can manifest in pulmonary fibrosis. In these processes, alveolar macrophages have an essential role and timely modulation of the macrophage phenotype is imperative in the onset and resolution of inflammatory responses. This study aimed to investigate, the immunomodulating properties of two industrially relevant high aspect ratio nanomaterials, namely nanocellulose and multiwalled carbon nanotubes (MWCNT), in an alveolar macrophage model. Methods: MH-S alveolar macrophages were exposed at air-liquid interface to cellulose nanocrystals (CNC), cellulose nanofibers (CNF) and two MWCNT (NM-400 and NM-401). Following exposure, changes in macrophage polarization markers and secretion of inflammatory cytokines were analyzed. Furthermore, the potential contribution of epigenetic regulation in nanomaterial-induced macrophage polarization was investigated by assessing changes in epigenetic regulatory enzymes, miRNAs, and rRNA modifications. Results: Our data illustrate that the investigated nanomaterials trigger phenotypic changes in alveolar macrophages, where CNF exposure leads to enhanced M1 phenotype and MWCNT promotes M2 phenotype. Furthermore, MWCNT exposure induced more prominent epigenetic regulatory events with changes in the expression of histone modification and DNA methylation enzymes as well as in miRNA transcript levels. MWCNT-enhanced changes in the macrophage phenotype were correlated with prominent downregulation of the histone methyltransferases Kmt2a and Smyd5 and histone deacetylases Hdac4, Hdac9 and Sirt1 indicating that both histone methylation and acetylation events may be critical in the Th2 responses to MWCNT. Furthermore, MWCNT as well as CNF exposure led to altered miRNA levels, where miR-155-5p, miR-16-1-3p, miR-25-3p, and miR-27a-5p were significantly regulated by both materials. PANTHER pathway analysis of the identified miRNA targets showed that both materials affected growth factor (PDGF, EGF and FGF), Ras/MAPKs, CCKR, GnRH-R, integrin, and endothelin signaling pathways. These pathways are important in inflammation or in the activation, polarization, migration, and regulation of phagocytic capacity of macrophages. In addition, pathways involved in interleukin, WNT and TGFB signaling were highly enriched following MWCNT exposure. Conclusion: Together, these data support the importance of macrophage phenotypic changes in the onset and resolution of inflammation and identify epigenetic patterns in macrophages which may be critical in nanomaterial-induced inflammation and fibrosis.


Assuntos
MicroRNAs , Nanotubos de Carbono , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Nanotubos de Carbono/toxicidade , Nanotubos de Carbono/química , Epigênese Genética , Macrófagos/metabolismo , Inflamação/metabolismo , Celulose/metabolismo
19.
J Dermatol Sci ; 109(3): 108-116, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36841722

RESUMO

BACKGROUND: Treponema pallidum (Tp) is a widespread and destructive pathogen that leads to syphilis. As the acknowledged executor of host immunity, macrophage plays vital roles in combating the invasion and migration of Tp. However, the mechanisms of these processes are largely unknown, especially the critical driver genes and associated modifications. OBJECTIVE: We aimed to systematically dissect the global N6-methyladenosine (m6A) RNA modification patterns in Tp-infected macrophages. METHODS: The RNA of Tp-infected/non-infected macrophage was extracted, followed by mRNA sequencing and methylated RNA immunoprecipitation (MeRIP) sequencing. Bioinformatics analysis was executed by m6A peaks and motifs identification, Gene ontology and signaling pathways analysis of differentially expressed genes, and comprehensive comparison. The m6A levels were measured by RNA Methylation Assay, and m6A modified genes were determined by qPCR. RESULTS: Totally, 2623 unique and 3509 common m6A peaks were proved along with related transcripts in Tp-infected macrophages. The common m6A-related genes were enriched in the signals of oxidative stress, cell differentiation, and angiogenesis, while unique genes in those of metabolism, inflammation, and infection. And differentially expressed transcripts revealed various biological processes and pathways associated with catabolic and infection. They also experienced comprehensive analysis due to hyper-/hypo-methylation. And the m6A level of macrophage was elevated, along with qPCR validation of specific genes. CONCLUSION: With a particular m6A transcriptome-wide map, our study provides unprecedented insights into the RNA modification of macrophage stimulated by Tp in vitro, which partially differs from other infections and may provide clues to explore the immune process for syphilis.


Assuntos
Sífilis , Treponema pallidum , Humanos , Treponema pallidum/genética , Sífilis/genética , Transcriptoma , Adenosina , Macrófagos
20.
EMBO Rep ; 24(3): e56310, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36597777

RESUMO

Macrophages undergo plasma membrane fusion and cell multinucleation to form multinucleated giant cells (MGCs) such as osteoclasts in bone, Langhans giant cells (LGCs) as part of granulomas or foreign-body giant cells (FBGCs) in reaction to exogenous material. How multinucleation per se contributes to functional specialization of mature mononuclear macrophages remains poorly understood in humans. Here, we integrate comparative transcriptomics with functional assays in purified mature mononuclear and multinucleated human osteoclasts, LGCs and FBGCs. Strikingly, in all three types of MGCs, multinucleation causes a pronounced downregulation of macrophage identity. We show enhanced lysosome-mediated intracellular iron homeostasis promoting MGC formation. The transition from mononuclear to multinuclear state is accompanied by cell specialization specific to each polykaryon. Enhanced phagocytic and mitochondrial function associate with FBGCs and osteoclasts, respectively. Moreover, human LGCs preferentially express B7-H3 (CD276) and can form granuloma-like clusters in vitro, suggesting that their multinucleation potentiates T cell activation. These findings demonstrate how cell-cell fusion and multinucleation reset human macrophage identity as part of an advanced maturation step that confers MGC-specific functionality.


Assuntos
Macrófagos , Osteoclastos , Humanos , Macrófagos/metabolismo , Osteoclastos/metabolismo , Osso e Ossos , Células Gigantes , Antígenos B7/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA