Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biomater Adv ; 159: 213815, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38447383

RESUMO

Infection is one of the main issues connected to implantation of biomedical devices and represents a very difficult issue to tackle, for clinicians and for patients. This study aimed at tackling infection through antibacterial nanostructured silver coatings manufactured by Ionized Jet Deposition (IJD) for application as new and advanced coating systems for medical devices. Films composition and morphology depending on deposition parameters were investigated and their performances evaluated by correlating these properties with the antibacterial and antibiofilm efficacy of the coatings, against Escherichia coli and Staphylococcus aureus strains and with their cytotoxicity towards human cell line fibroblasts. The biocompatibility of the coatings, the nanotoxicity, and the safety of the proposed approach were evaluated, for the first time, in vitro and in vivo by rat subcutaneous implant models. Different deposition times, corresponding to different thicknesses, were selected and compared. All silver coatings exhibited a highly homogeneous surface composed of nanosized spherical aggregates. All coatings having a thickness of 50 nm and above showed high antibacterial efficacy, while none of the tested options caused cytotoxicity when tested in vitro. Indeed, silver films impacted on bacterial strains viability and capability to adhere to the substrate, in a thickness-dependent manner. The nanostructure obtained by IJD permitted to mitigate the toxicity of silver, conferring strong antibacterial and anti-adhesive features, without affecting the coatings biocompatibility. At the explant, the coatings were still present although they showed signs of progressive dissolution, compatible with the release of silver, but no cracking, delamination or in vivo toxicity was observed.


Assuntos
Nanoestruturas , Prata , Humanos , Ratos , Animais , Prata/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química , Antibacterianos/farmacologia , Antibacterianos/química , Staphylococcus aureus , Escherichia coli
2.
J Contemp Dent Pract ; 24(12): 944-950, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38317391

RESUMO

AIM: To assess the potential for systemic toxicity when silver nanoparticle-coated mini-implants were implanted in Wistar albino rats conducted as a comparative study in the animal model by assessing the blood biochemistry, liver and kidney function, and histology of the implanted site. MATERIALS AND METHODS: The surface of the mini-implant was coated with a green-mediated silver nanoparticle. Uncoated mini-implants were placed in two groups of eight Wistar albino rats, and silver nanoparticle-coated mini-implants were placed in another eight rats. The bone's general conditions, blood biochemistry assessing for ALT, AST, GPT, GOT, and histological sections using H and E stain and Masson's Trichrome stain were examined at 7, 14, and 28-day intervals. RESULTS: The creatinine, urea, ALP, and ALT showed no signs of systemic toxicity during the 28-day follow-up period in the Wistar rats both in the test and control groups. The histological evaluation, which was conducted using HE and MTS stain, revealed osteogenesis and adequate healing of the insertion site in the group where coated mini-implant was placed. The bone sample revealed no abnormalities in the control group with uncoated mini-implants. CONCLUSION: Green synthesized silver nanoparticle-coated mini-implant does not cause systemic toxicity as indicated by no abnormalities in the levels of creatinine, urea, ALT, ALP, GPT, and GOT. The bone histology indicates that the coated mini-implants placed in animal bone healed with adequate osteogenesis. CLINICAL SIGNIFICANCE: Silver nanoparticles have potential for antimicrobial activity. Mini-implants placed as temporary anchorage devices in orthodontics often fail due to inflammation and plaque. Silver nanoparticle-coated mini-implants would reduce the risk of mini-implant failure as it would have antimicrobial potential and eliminate this cause for failure of mini-implants. How to cite this article: Sreenivasagan S, Subramanian AK, Mohanraj KG, et al. Assessment of Toxicity of Green Synthesized Silver Nanoparticle-coated Titanium Mini-implants with Uncoated Mini-implants: Comparison in an Animal Model Study. J Contemp Dent Pract 2023;24(12):944-950.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Ratos , Animais , Prata/toxicidade , Nanopartículas Metálicas/toxicidade , Titânio/toxicidade , Osseointegração , Creatinina/farmacologia , Ratos Wistar , Modelos Animais , Anti-Infecciosos/farmacologia , Ureia/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Propriedades de Superfície
3.
Mater Sci Eng C Mater Biol Appl ; 128: 112286, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34474837

RESUMO

The number of total knee and/or hip replacements are expected to exceed 5 million a year by 2030; the incidence of biofilm-associated complications can vary from 1% in primary implants to 5.6% in case of revision. The purpose of this study was to test the ability of sHA-DA, a partially sulphated hyaluronic acid (sHA) functionalized with a dopamine (DA) moiety, to prevent acute bacterial growth in an in vivo model of an intra-operatively highly contaminated implant. Previously, in vitro studies showed that the DA moiety guarantees good performance as binding agent for titanium surface adhesion, while the negatively charged sHA has both a high efficiency in electrostatic binding of positively charged antibiotics, and bone regenerative effects. The in vitro testing also highlighted the effectiveness of the sHA-DA system in inhibiting bacterial spreading through a sustained release of the antibiotic payload from the implant coating. In this study the chemical stability of the sHA-DA to ß-ray sterilization was demonstrated, based on evaluation by NMR, SEC-TDA Omnisec and HPLC-MS analysis, thus supporting the approach of terminal sterilization of the coated implant with no loss of efficacy. Furthermore, an in vivo study in rabbits was performed according to UNI EN ISO 10993-6 to assess the histocompatibility of titanium nails pre-coated with sHA-DA. The implants, placed in the femoral medullary cavity and harvested after 12 weeks, proved to be histocompatible and to allow bone growth in adhesion to the metal surface. Finally, an in vivo model of bacterial contamination was set up by injecting 1 mL of bacterial suspension containing 104 or 106 CFU of methicillin-resistant Staphylococcus aureus (MRSA) into the femoral medullary cavity of 30 rabbits. Titanium nails either uncoated or pre-coated with sHA-DA and loaded directly by the surgeon with 5% vancomycin were implanted in the surgical site. After 1 week, only the animals treated with pre-coated nails did not show the presence of systemic or local bacterial infection, as confirmed by microbiology and histology (Smeltzer score). Further insights into the animal model setup are crucial, however the results obtained suggest that the system can be effective in preventing the onset of the bacterial infective process.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Animais , Antibacterianos/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Dopamina , Ácido Hialurônico/farmacologia , Coelhos , Titânio/farmacologia
4.
J Interv Cardiol ; 2021: 2629393, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34113221

RESUMO

OBJECTIVES: To assess the impact of different guidewires on stent coating integrity in jailed wire technique (JWT) for bifurcation treatment. BACKGROUND: JWT is commonly adopted to protect side branch in provisional one-stent strategy for coronary bifurcation lesions. However, this technique may cause defects in stent coatings. The degree of coating damage caused by different types of jailed wires remains unknown. METHODS: A fluid model with a bifurcation was established to mimic the condition in vivo. One-stent strategy was performed with three types of guidewire (nonpolymer-jacketed wire, intermediate polymer-jacketed wire, and full polymer-jacketed wire) tested for JWT. Scanning electron microscopy (SEM) was used to evaluate stent coating integrity and wire structure. The degrees of coating defects were recorded as no, slight, moderate, and severe defects. RESULTS: A total of 27 samples were tested. Analyses of SEM images showed a significant difference in the degree of coating damage among the three types of wire after the procedure of JWT (P < 0.001). Nonpolymer-jacketed wire could inevitably cause a severe defect in stent coatings, while full polymer-jacketed wire caused the least coating damages. Besides, there were varying degrees of coil deformation in nonpolymer-jacketed wires, while no surface damage or jacket shearing was observed in full polymer-jacketed wires. CONCLUSIONS: Although nonpolymer-jacketed wire has long been recommended for JWT, our bench-side study suggests that full polymer-jacketed wire may be a better choice. Further clinical studies are needed to confirm our findings.


Assuntos
Intervenção Coronária Percutânea/instrumentação , Ajuste de Prótese , Stents/efeitos adversos , Materiais Revestidos Biocompatíveis/farmacologia , Estenose Coronária/diagnóstico por imagem , Estenose Coronária/cirurgia , Falha de Equipamento , Humanos , Teste de Materiais/métodos , Microscopia Eletrônica de Varredura/métodos , Modelos Anatômicos , Intervenção Coronária Percutânea/métodos , Polímeros/farmacologia , Desenho de Prótese , Ajuste de Prótese/efeitos adversos , Ajuste de Prótese/métodos
5.
Cells ; 10(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466339

RESUMO

The extension of the lesion following spinal cord injury (SCI) poses a major challenge for regenerating axons, which must grow across several centimetres of damaged tissue in the absence of ordered guidance cues. Biofunctionalized electroconducting microfibres (MFs) that provide biochemical signals, as well as electrical and mechanical cues, offer a promising therapeutic approach to help axons overcome this blind journey. We used poly(3,4-ethylenedioxythiophene)-coated carbon MFs functionalized with cell adhesion molecules and growth factors to bridge the spinal cord after a partial unilateral dorsal quadrant lesion (PUDQL) in mice and followed cellular responses by intravital two-photon (2P) imaging through a spinal glass window. Thy1-CFP//LysM-EGFP//CD11c-EYFP triple transgenic reporter animals allowed real time simultaneous monitoring of axons, myeloid cells and microglial cells in the vicinity of the implanted MFs. MF biocompatibility was confirmed by the absence of inflammatory storm after implantation. We found that the sprouting of sensory axons was significantly accelerated by the implantation of functionalized MFs after PUDQL. Their implantation produced better axon alignment compared to random and misrouted axon regeneration that occurred in the absence of MF, with a most striking effect occurring two months after injury. Importantly, we observed differences in the intensity and composition of the innate immune response in comparison to PUDQL-only animals. A significant decrease of immune cell density was found in MF-implanted mice one month after lesion along with a higher ratio of monocyte-derived dendritic cells whose differentiation was accelerated. Therefore, functionalized carbon MFs promote the beneficial immune responses required for neural tissue repair, providing an encouraging strategy for SCI management.


Assuntos
Materiais Revestidos Biocompatíveis/farmacologia , Traumatismos da Medula Espinal , Medula Espinal , Alicerces Teciduais , Animais , Camundongos , Camundongos Transgênicos , Medula Espinal/metabolismo , Medula Espinal/patologia , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/cirurgia
6.
Mater Sci Eng C Mater Biol Appl ; 110: 110623, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32204065

RESUMO

The presence of various functional groups in the structure of gelatin nanofibers (GNFs) has made it a suitable candidate for biomedical applications, yet its fast dissolution in aqueous media has been a real challenge for years. In the present work, we propose an efficient procedure to improve the durability of the GNFs. The electrospun GNFs were coated with poly(ethylene glycol dimethacrylate) (pEGDMA) using initiated chemical vapor deposition (iCVD) as a completely dry polymerization method. Morphological and chemical analysis revealed that an ultrathin layer formed around nanofibers (iCVD-GNFs) which has covalently bonded to gelatin chains. Against the instant dissolution of GNFs, the in vitro biodegradability test showed the iCVD-GNFs, to a large extent, preserve their morphology after 14 days of immersion and did not lose its integrity even after 31 days. In vitro cell culture studies, also, revealed cytocompatibility of the iCVD-GNFs for human fibroblast cells (hFC), as well as higher cell proliferation on the iCVD-GNFs compared to control made from tissue culture plate (TCP). Furthermore, contact angle measurements indicated that the hydrophilic GNFs became hydrophobic after the iCVD, yet FE-SEM images of cell-seeded iCVD-GNFs showed satisfactory cell adhesion. Taken together, the proposed method paves a promising way for the production of water-resistant GNFs utilized in biomedical applications; for instance, tissue engineering scaffolds and wound dressings.


Assuntos
Materiais Revestidos Biocompatíveis , Fibroblastos/metabolismo , Gelatina , Teste de Materiais , Membranas Artificiais , Nanofibras/química , Linhagem Celular , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Fibroblastos/citologia , Gelatina/química , Gelatina/farmacologia , Humanos , Metacrilatos/química , Metacrilatos/farmacologia
7.
Nanoscale ; 12(3): 1759-1778, 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31895375

RESUMO

Ultrasmall superparamagnetic iron oxide nanoparticles with a size <5 nm are emerging nanomaterials for their excellent biocompatibility, chemical stability, and tunable surface modifications. The applications explored include dual-modal or multi-modal imaging, drug delivery, theranostics and, more recently, magnetic resonance angiography. Good biocompatibility and biosafety are regarded as the preliminary requirements for their biomedical applications and further exploration in this field is still required. We previously synthesized and characterized ultrafine (average core size of 3 nm) silica-coated superparamagnetic iron oxide fluorescent nanoparticles, named sub-5 SIO-Fl, uniform in size, shape, chemical properties and composition. The cellular uptake and in vitro biocompatibility of the as-synthesized nanoparticles were demonstrated in a human colon cancer cellular model. Here, we investigated the biocompatibility of sub-5 SIO-Fl nanoparticles in human Amniotic Mesenchymal Stromal/Stem Cells (hAMSCs). Kinetic analysis of cellular uptake showed a quick nanoparticle internalization in the first hour, increasing over time and after long exposure (48 h), the uptake rate gradually slowed down. We demonstrated that after internalization, sub-5 SIO-Fl nanoparticles neither affect hAMSC growth, viability, morphology, cytoskeletal organization, cell cycle progression, immunophenotype, and the expression of pro-angiogenic and immunoregulatory paracrine factors nor the osteogenic and myogenic differentiation markers. Furthermore, sub-5 SIO-Fl nanoparticles were intravenously injected into mice to investigate the in vivo biodistribution and toxicity profile for a time period of 7 weeks. Our findings showed an immediate transient accumulation of nanoparticles in the kidney, followed by the liver and lungs, where iron contents increased over a 7-week period. Histopathology, hematology, serum pro-inflammatory response, body weight and mortality studies demonstrated a short- and long-term biocompatibility and biosafety profile with no apparent acute and chronic toxicity caused by these nanoparticles in mice. Overall, these results suggest the feasibility of using sub-5 SIO-Fl nanoparticles as a promising agent for stem cell magnetic targeting as well as for diagnostic and therapeutic applications in oncology.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis , Nanopartículas de Magnetita/química , Teste de Materiais , Células-Tronco Mesenquimais/metabolismo , Dióxido de Silício , Animais , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Feminino , Humanos , Células-Tronco Mesenquimais/citologia , Camundongos , Desenvolvimento Muscular/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Dióxido de Silício/química , Dióxido de Silício/farmacologia
8.
J Invasive Cardiol ; 32(1): 18-24, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31611426

RESUMO

BACKGROUND: A meta-analysis of trials in endovascular therapy suggested an increased mortality associated with treatment exposure to paclitaxel. Multiple publications and corrections of prior data were performed, and the United States Food and Drug Administration has issued multiple advisories regarding paclitaxel use. We analyzed how this controversy impacted device purchasing and related utilization patterns in the period immediately following publication of the meta-analysis. METHODS AND RESULTS: Ascension Healthcare System purchase data over a 14-month period were synthesized across centers for both paclitaxel and non-paclitaxel devices. A fixed-effects regression model and a binary regression model with facility-level controls were used to compare purchasing patterns before and after the meta-analysis. Purchase volumes of each paclitaxel device fell. Pooled purchase volumes of all paclitaxel devices decreased from a 14-month peak of 631 devices in October 2018 to a 14-month nadir of 359 devices in February 2019. An F-test comparing the pooled-month specific fixed effects for the months before vs after the publication of the meta-analysis has an F-statistic of 11.64, suggesting that average purchasing levels in the two periods are statistically different (P<.001). Utilization of non-paclitaxel devices did not decline. CONCLUSIONS: Purchase volumes of paclitaxel devices decreased immediately during the months following publication of the related meta-analysis. Total Ascension-wide paclitaxel device purchase volume in February 2019 demonstrated a 43.1% reduction from peak monthly purchase volume during the assessed period and a 32.5% reduction compared with November 2019, the last month preceding publication of the meta-analysis.


Assuntos
Stents Farmacológicos , Procedimentos Endovasculares , Oclusão de Enxerto Vascular , Efeitos Adversos de Longa Duração , Paclitaxel , Doença Arterial Periférica/cirurgia , Vigilância de Produtos Comercializados , Antineoplásicos Fitogênicos/economia , Antineoplásicos Fitogênicos/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Qualidade de Produtos para o Consumidor , Stents Farmacológicos/efeitos adversos , Stents Farmacológicos/economia , Stents Farmacológicos/estatística & dados numéricos , Procedimentos Endovasculares/efeitos adversos , Procedimentos Endovasculares/instrumentação , Oclusão de Enxerto Vascular/diagnóstico , Oclusão de Enxerto Vascular/mortalidade , Humanos , Efeitos Adversos de Longa Duração/etiologia , Efeitos Adversos de Longa Duração/mortalidade , Metanálise como Assunto , Neointima/prevenção & controle , Paclitaxel/economia , Paclitaxel/farmacologia , Vigilância de Produtos Comercializados/economia , Vigilância de Produtos Comercializados/métodos
9.
Biomed Pharmacother ; 119: 109404, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31526972

RESUMO

Currently, bio-mimetic material synthetic processes are involved in bone implant design which is closely related to natural bone. In this work, Zinc, Cerium and Selenium substituted hydroxyapatite/ Poly (sorbitol sebacate glutamate) (Zn, Ce, Se-HAP/PSSG, M-HAP/PSSG) composite was prepared by sol-gel method as a bio-mimetic materials for bone implantation. The physiochemical characterizations of M-HAP/PSSG was analyzed by Fourier transform infra red (FT-IR), X-ray diffraction (XRD), Scanning electron microscopy (SEM) equipped with energy dispersive X-ray analysis (EDX) and High resolution transmission electron microscopy (HRTEM). Then, the prepared M-HAP/PSSG composite was compared with HAP/PSSG, Zn-HAP/PSSG, Ce-HAP/PSSG and Se-HAP/PSSG composites in order to evaluate the influence of single minerals on HAP matrix. Then the coating ability of the final better M-HAP/PSSG composite on surface treated titanium (Ti) was investigated to evaluate the perfection of implant material. The higher micro-hardness was observed on M-HAP/PSSG composite coated Ti (305.92 ±â€¯20.42) due to the presence of multi-minerals as well as the co-polymer PSSG when compared with M-HAP coated Ti plate (273.0 ±â€¯15.75). The bio-compatibility and osteogenic activity evaluation of all prepared composite on human osteoblasts MG-63 cells shows that the better cell attachment, proliferation and differentiation was observed by M-HAP/PSSG bio-composites when compared with other composites. Histological staining and X-ray photographs of in-vivo rat model confirms that the formation of new tibial bone when the defected rat was treated with M-HAP/PSSG composite coated Ti implant. In conclusion, the bio-composite M-HAP/PSSG is better scaffold for coating on the surface of Ti implant for orthopedic implantation.


Assuntos
Osso e Ossos/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/farmacologia , Durapatita/farmacologia , Implantes Experimentais , Minerais/farmacologia , Sorbitol/farmacologia , Titânio/farmacologia , Fosfatase Alcalina/metabolismo , Animais , Antibacterianos/farmacologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Durapatita/química , Dureza , Humanos , Masculino , Testes de Sensibilidade Microbiana , Osteogênese/efeitos dos fármacos , Ratos Wistar , Regeneração/efeitos dos fármacos , Sorbitol/síntese química , Sorbitol/química , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática , Natação , Difração de Raios X
10.
Int J Nanomedicine ; 14: 4613-4624, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31308651

RESUMO

Background: Bacterial infection is a common and serious complication in orthopedic implants following traumatic injury, which is often associated with extensive soft tissue damage and contaminated wounds. Multidrug-resistant bacteria have been found in these infected wounds, especially in patients who have multi trauma and prolonged stay in intensive care units.Purpose: The objective of this study was to develop a coating on orthopedic implants that is effective against drug-resistant bacteria. Methods and results: We applied nanoparticles (30-70nm) of the trace element selenium (Se) as a coating through surface-induced nucleation-deposition on titanium implants and investigated the antimicrobial activity against drug resistant bacteria including Methicillin-resistant Staphylococcus aureus (MRSA) and Methicillin-resistant Staphylococcus epidermidis (MRSE) in vitro and in an infected femur model in rats.The nanoparticles were shown in vitro to have antimicrobial activity at concentrations as low as 0.5ppm. The nanoparticle coatings strongly inhibited biofilm formation on the implants and reduced the number of viable bacteria in the surrounding tissue following inoculation of implants with biofilm forming doses of bacteria. Conclusion: This study shows a proof of concept for a selenium nanoparticle coatings as a potential anti-infective barrier for orthopedic medical devices in the setting of contamination with multi-resistant bacteria. It also represents one of the few (if only) in vivo assessment of selenium nanoparticle coatings on reducing antibiotic-resistant orthopedic implant infections.


Assuntos
Anti-Infecciosos/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Nanopartículas/química , Ortopedia , Próteses e Implantes , Selênio/farmacologia , Staphylococcus epidermidis/efeitos dos fármacos , Animais , Biofilmes/efeitos dos fármacos , Placas Ósseas , Parafusos Ósseos , Células Cultivadas , Contagem de Colônia Microbiana , Humanos , Masculino , Nanopartículas/ultraestrutura , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Ratos Sprague-Dawley , Titânio/farmacologia
11.
Colloids Surf B Biointerfaces ; 173: 109-120, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30273871

RESUMO

Biologically safe Ti-based quaternary Ti-Nb-Zr-Si thin film metallic glass (TFMG) was fabricated by sputtering on Titanium alloy (Ti6Al4V or Ti alloy) substrates. A preliminary assessment regarding glass forming ability, thermal stability and corrosion behavior was performed. The amorphous nature of the film is evidenced from the X-ray Diffraction (XRD) and Transmission Electron Microscope (TEM) and Selected Area Electron Diffraction (SAED) patterns. Ion scattering spectroscopy (ISS) and X-ray Photoelectron Spectroscopy (XPS) were used to analyse the chemical composition of surface which indicated oxygen on the top surface of the film and confirms the presence of Ti, Nb, Si, Zr without any other impurities. The surface morphology of the film showed a smooth surface as observed from scanning electron microscope (SEM) and atomic force microscope (AFM) analysis. It is found that the TFMG can sustain in the body-fluid, exhibiting superior corrosion resistance and electrochemical stability than the bare titanium. The cytotoxicity studies with L929 fibroblast cells showed that coatings were graded as zero and non-cytotoxic in nature. No hemolysis was observed on the coated surface indicating a better hemocompatibility. Assay using SaOS-2 bone cells showed good growth on the coated surfaces. The calcium assay showed that the SaOS-2 cells grown and differentiated on the control (Tissue Culture Polystyrene) TCPS surface had the highest mineral level. Higher alkaline phosphatase activity is obtained in SaOS-2 osteoblast cell cultures on TFMG than the control.


Assuntos
Ligas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/farmacologia , Osteoblastos/efeitos dos fármacos , Alicerces Teciduais , Fosfatase Alcalina/metabolismo , Ligas/química , Animais , Biomarcadores/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Materiais Revestidos Biocompatíveis/química , Eritrócitos/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Camundongos , Nióbio/química , Nióbio/farmacologia , Osteoblastos/citologia , Osteoblastos/metabolismo , Silício/química , Silício/farmacologia , Propriedades de Superfície , Titânio/química , Titânio/farmacologia , Zircônio/química , Zircônio/farmacologia
12.
Prog Orthod ; 19(1): 35, 2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30221309

RESUMO

BACKGROUND: The antimicrobial properties of orthodontic wire and brackets with nitrogen-doped titanium dioxide (N-doped TiO2) coating have been studied in the past. However, the evaluation period had been short and limited to 30 days. The aim of the present study was to extend the evaluation period (up to 90 days) of assessing the long-term antimicrobial effects of stainless steel orthodontic brackets coated with nitrogen-doped titanium dioxide (N-doped TiO2). METHODS: A total of 40 stainless steel pre-adjusted premolar brackets were equally divided into two groups; namely the control group (n=20, uncoated brackets) and the experimental group (n=20, coated brackets). RF magnetron sputtering was used to apply a thin film of TiO2 on the bracket surface. The crystalline structure of the thin film was assessed using X-ray diffraction. The antimicrobial property of the brackets against Streptococcus mutans (S. mutans) was evaluated using the survival rate by colony-forming units (CFU) at four intervals: 24 hours (T0), 30 days (T1), 60 days (T2), and 90 days (T3). 2-way ANOVA Repeated Measures was used to compare the effects between the groups over the time. RESULTS: There was no significant interaction between group and time (p = 0.568). The orthodontic brackets coated with the N-doped TiO2 thin film showed a significant CFU reduction (37.71 ± 5.21, 37.81 ± 5.03, 37.98 ± 5.37, and 37.74 ± 5.21 at T0, T1, T2, and T3, respectively) compared to the uncoated brackets (400.91 ± 14.67, 401.58 ± 14.01, 400.31 ± 14.68, and 402.04 ± 13.98 at T0, T1, T2, and T3, respectively) through visible light (p < 0.001). CONCLUSION: N-doped TiO2 coated orthodontic brackets showed strong antimicrobial property against S. mutans over a period of 90 days, which is effective in preventing enamel decalcification during orthodontic therapy.


Assuntos
Anti-Infecciosos/farmacologia , Braquetes Ortodônticos/microbiologia , Streptococcus mutans/efeitos dos fármacos , Titânio/farmacologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Contagem de Colônia Microbiana , Humanos , Teste de Materiais , Nanopartículas , Desenho de Aparelho Ortodôntico , Streptococcus mutans/crescimento & desenvolvimento , Propriedades de Superfície , Fatores de Tempo , Difração de Raios X
13.
Mater Sci Eng C Mater Biol Appl ; 87: 10-21, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29549938

RESUMO

In this study, the ultrasound-assisted pulse electrodeposition was introduced to fabricate the graphene oxide (GO)-hydroxyapatite (HA) coating on TiO2 nanotubes. The results of the X-ray diffraction (XRD), Fourier Transform Infrared spectroscope (FTIR), Transmission Electron Microscope (TEM) and micro-Raman spectroscopy showed the successful synthesis of GO. The Scanning Electron Microscope (SEM) images revealed that in the presence of ultrasonic waves and GO sheets a more compact HA-based coating with refined microstructure could be formed on the pretreated titanium. The results of micro-Raman analysis confirmed the successful incorporation of the reinforcement filler of GO into the coating electrodeposited by the ultrasound-assisted method. The FTIR analysis showed that the GO-HA coating was consisted predominantly of the B-type carbonated HA (CHA) phase. The pretreatment of the substrate and incorporation of the GO sheets into the HA coating had a significant effect on improving the bonding strength at the coating-substrate interface. Moreover, the results of the fibroblast cell culture and 3­(4,5­dimethylthiazolyl­2)­2, 5­diphenyltetrazolium bromide (MTT) assay after 2 days demonstrated a higher percentage of cell activity for the GO-HA coated sample. Finally, the 7-day exposure to simulated body fluid (SBF) showed a faster rate of apatite precipitation on the GO-HA coating, as compared to the HA coating and pretreated titanium.


Assuntos
Materiais Revestidos Biocompatíveis , Durapatita , Técnicas Eletroquímicas , Fibroblastos/metabolismo , Grafite , Teste de Materiais , Titânio , Ondas Ultrassônicas , Animais , Linhagem Celular , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Durapatita/química , Durapatita/farmacologia , Fibroblastos/citologia , Grafite/química , Grafite/farmacologia , Camundongos , Titânio/química , Titânio/farmacologia
14.
Microb Pathog ; 112: 190-194, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28966064

RESUMO

Orthodontic brackets made from stainless steel were introduced in dentistry, though they have less ability in reducing enamel demineralization and are not successful in preventing microbial as well as biofilm growth. In this study, we evaluated the significant role of different brackets in reducing enamel demineralization indirectly. Results from different tests indicate the significant reduction in adhesion, biofilm formation and slow growth of tested bacterial species on brackets coated with Ag + TiO2 and found to be statistically significant lower than control. There was no loss in cell viability in all brackets indicating that the cells are biocompatible with different bracket materials. Scanning electron microscopy showed less bacteria attached with the surface coated with Ag + TiO2 indicated that bacteria were losing adherent nature on coated surface. In conclusion, TiO2+Ag coating on stainless steel brackets possessed anti-adherent properties and also have demonstrable antibacterial properties therefore helps in preventing dental caries and plaque accumulation indirectly. The cell compatibility of TiO2+Ag coated brackets is superior to the uncoated samples therefore can be used in orthodontics as it not only provide suitable antimicrobial activity and resistance to biofilm formation but also sustained the cell viability of human gingival fibroblast (HGF) cell lines.


Assuntos
Antibacterianos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/farmacologia , Braquetes Ortodônticos/microbiologia , Porphyromonas gingivalis/efeitos dos fármacos , Prata/farmacologia , Streptococcus mutans/efeitos dos fármacos , Titânio/química , Antibacterianos/química , Biofilmes/crescimento & desenvolvimento , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ligas Dentárias/química , Cárie Dentária/microbiologia , Cárie Dentária/prevenção & controle , Esmalte Dentário/efeitos dos fármacos , Esmalte Dentário/microbiologia , Fibroblastos , Gengiva , Humanos , Teste de Materiais , Viabilidade Microbiana/efeitos dos fármacos , Microscopia Eletrônica de Varredura , Prata/química , Aço Inoxidável/química , Propriedades de Superfície , Titânio/farmacologia , Desmineralização do Dente/microbiologia , Desmineralização do Dente/prevenção & controle
16.
Acta Biomater ; 58: 181-195, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28536061

RESUMO

To successfully develop biomedical applications for magnetic nanoparticles, it is imperative that these nanoreagents maintain their magnetic properties in vivo and that their by-products are safely metabolized. When placed in biological milieu or internalized into cells, nanoparticle aggregation degree can increase which could affect magnetic properties and metabolization. To evaluate these aggregation effects, we synthesized citric acid-coated iron oxide nanoparticles whose magnetic susceptibility can be modified by aggregation in agar dilutions and dextran-layered counterparts that maintain their magnetic properties unchanged. Macrophage models were used for in vitro uptake and metabolization studies, as these cells control iron homeostasis in the organism. Electron microscopy and magnetic susceptibility studies revealed a cellular mechanism of nanoparticle degradation, in which a small fraction of the particles is rapidly degraded while the remaining ones maintain their size. Both nanoparticle types produced similar iron metabolic profiles but these profiles differed in each macrophage model. Thus, nanoparticles induced iron responses that depended on macrophage programming. In vivo studies showed that nanoparticles susceptible to changes in magnetic properties through aggregation effects had different behavior in lungs, liver and spleen. Liver ferritin levels increased in these animals showing that nanoparticles are degraded and their by-products incorporated into normal metabolic routes. These data show that nanoparticle iron metabolization depends on cell type and highlight the necessity to assess nanoparticle aggregation in complex biological systems to develop effective in vivo biomedical applications. STATEMENT OF SIGNIFICANCE: Magnetic iron oxide nanoparticles have great potential for biomedical applications. It is however imperative that these nanoreagents preserve their magnetic properties once inoculated, and that their degradation products can be eliminated. When placed in a biological milieu nanoparticles can aggregate and this can affect their magnetic properties and their degradation. In this work, we showed that iron oxide nanoparticles trigger the iron metabolism in macrophages, the main cell type involved in iron homeostasis in the organism. We also show that aggregation can affect nanoparticle magnetic properties when inoculated in animal models. This work confirms iron oxide nanoparticle biocompatibility and highlights the necessity to assess in vivo nanoparticle aggregation to successfully develop biomedical applications.


Assuntos
Ácido Cítrico , Materiais Revestidos Biocompatíveis , Ferritinas/sangue , Ferro/sangue , Macrófagos/metabolismo , Nanopartículas de Magnetita , Animais , Linhagem Celular , Ácido Cítrico/química , Ácido Cítrico/farmacocinética , Ácido Cítrico/farmacologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacocinética , Materiais Revestidos Biocompatíveis/farmacologia , Feminino , Humanos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapêutico , Camundongos , Células THP-1
17.
Khirurgiia (Mosk) ; (3): 70-75, 2017.
Artigo em Russo | MEDLINE | ID: mdl-28374716

RESUMO

The aim of the study was to evaluate the effectiveness of the suture with a coating of triclosan on the dynamics of postoperative course in emergency surgical patients, comparing the postoperative period in the application of the suture with coating and without it. DESIGN: A prospective cohort with a solid retrospective control group. The efficiency of the application of the suture with a coating of triclosan on the flow dynamics in the early postoperative period 678 emergency surgical patients, comparing the postoperative period when using the coated suture material (292 patients) and without (386 patients). EVALUATION CRITERIA: Time of normalization of body temperature and restore the function of the gastrointestinal tract, the duration of hospital treatment, the need for antibiotic prophylaxis and antibiotic therapy, the incidence of postoperative complications (in general and SSI). It was found a statistically significant effect of the application of the suture with triclosan to reduce the incidence of SSI. The economic effect of using SMT is only by reducing the average duration of hospital treatment amounted to 1 723 238 rubles in one year.


Assuntos
Procedimentos Cirúrgicos Operatórios , Infecção da Ferida Cirúrgica , Suturas , Triclosan/farmacologia , Técnicas de Fechamento de Ferimentos , Adulto , Anti-Infecciosos Locais/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Estudos de Coortes , Análise Custo-Benefício , Serviços Médicos de Emergência/economia , Serviços Médicos de Emergência/métodos , Feminino , Humanos , Masculino , Teste de Materiais/métodos , Pessoa de Meia-Idade , Avaliação de Resultados em Cuidados de Saúde/métodos , Estudos Prospectivos , Federação Russa , Procedimentos Cirúrgicos Operatórios/efeitos adversos , Procedimentos Cirúrgicos Operatórios/métodos , Infecção da Ferida Cirúrgica/economia , Infecção da Ferida Cirúrgica/etiologia , Infecção da Ferida Cirúrgica/prevenção & controle , Resultado do Tratamento , Técnicas de Fechamento de Ferimentos/efeitos adversos , Técnicas de Fechamento de Ferimentos/economia
18.
PLoS One ; 11(6): e0157626, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27333300

RESUMO

Staphylococcus comprises up to two-thirds of all pathogens in orthopaedic implant infections with two species respectively Staphylococcus aureus and Staphylococcus epidermidis, being the predominate etiological agents isolated. Further, with the emergence of methicillin-resistant S. aureus (MRSA), treatment of S. aureus implant infections has become more difficult, thus representing a devastating complication. Use of local delivery system consisting of S.aureus specific phage along with linezolid (incorporated in biopolymer) allowing gradual release of the two agents at the implant site represents a new, still unexplored treatment option (against orthopaedic implant infections) that has been studied in an animal model of prosthetic joint infection. Naked wire, hydroxypropyl methylcellulose (HPMC) coated wire and phage and /or linezolid coated K-wire were surgically implanted into the intra-medullary canal of mouse femur bone of respective groups followed by inoculation of S.aureus ATCC 43300(MRSA). Mice implanted with K-wire coated with both the agents i.e phage as well as linezolid (dual coated wires) showed maximum reduction in bacterial adherence, associated inflammation of the joint as well as faster resumption of locomotion and motor function of the limb. Also, all the coating treatments showed no emergence of resistant mutants. Use of dual coated implants incorporating lytic phage (capable of self-multiplication) as well as linezolid presents an attractive and aggressive early approach in preventing as well as treating implant associated infections caused by methicillin resistant S. aureus strains as assessed in a murine model of experimental joint infection.


Assuntos
Bacteriófagos/metabolismo , Materiais Revestidos Biocompatíveis/farmacologia , Linezolida/farmacologia , Linezolida/uso terapêutico , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Equipamentos Ortopédicos/microbiologia , Próteses e Implantes/efeitos adversos , Infecções Relacionadas à Prótese/tratamento farmacológico , Animais , Carga Bacteriana/efeitos dos fármacos , Calcitonina/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Farmacorresistência Bacteriana/efeitos dos fármacos , Edema/complicações , Edema/patologia , Articulações/diagnóstico por imagem , Articulações/microbiologia , Articulações/patologia , Articulações/cirurgia , Atividade Motora/efeitos dos fármacos , Mutação/genética , Infecções Relacionadas à Prótese/microbiologia , Infecções Relacionadas à Prótese/patologia , Cicatrização/efeitos dos fármacos
19.
Sci Rep ; 6: 23423, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-26996815

RESUMO

The purpose of this work was to fabricate a multilayer laminin γ2 DNA coating on a titanium surface and evaluate its biological properties. A multilayer laminin γ2 DNA coating was fabricated on titanium using a layer-by-layer assembly technique. The rate of coating degradation was evaluated by detecting the amount of cDNA remaining. Surface analysis using X-ray photoelectron spectroscopy, atomic force microscopy, and surface contact angle measurements revealed the multilayer structure to consist of cationic lipid and confirmed that a laminin γ2 DNA layer could be fabricated on titanium via the layer-by-layer assembly process. The transfection efficiency was highest for five layers in the multilayer structure. HEK293 cells cultured on the multilayer films displayed significantly higher adhesion activity than the control group. The expression of laminin γ2 and the co-localization of integrin ß4 and plectin were more obvious in HN4 cells cultured on the multilayer laminin γ2 DNA coating, while weak immunoreactivities were observed in the control group. We concluded that the DNA-loaded multilayer provided a surface with good biocompatibility and that the multilayer laminin γ2 DNA coating might be effective in improving cell adhesion and the formation of hemidesmosomes on titanium surfaces.


Assuntos
Materiais Revestidos Biocompatíveis/farmacologia , DNA/genética , Técnicas de Transferência de Genes , Laminina/farmacologia , Titânio/farmacologia , Adesão Celular , Proliferação de Células , Materiais Revestidos Biocompatíveis/química , DNA/química , Células HEK293 , Humanos , Laminina/química , Laminina/metabolismo , Teste de Materiais , Espectroscopia Fotoeletrônica , Propriedades de Superfície , Titânio/química , Transfecção
20.
Nanomedicine ; 12(1): 1-12, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26238080

RESUMO

Covered stents are stents wrapped with a thin polymeric membrane, and are typically used to treat vessel aneurysms and seal perforated arteries. Current covered stents suffer from restenosis due to limitations in material and fabrication methods which leaves metallic struts directly exposed to blood. We have developed a biocompatible and haemocompatible nanocomposite polymer, polyhedral oligomeric silsesquioxane poly(carbonate-urea) urethane (POSS-PCU). We devised a novel combination of ultrasonic spray atomisation system and dip-coating process to produce small calibre covered stents with metal struts fully embedded within the membrane, which also yields greater coating uniformity. Stent-polymer bonding was enhanced via silanisation and coating of reactive pre-polymer. Platelet studies supported the non-thrombogenicity of POSS-PCU. Biomechanical performances including diametrical compliance, bending strength, radial strength and recoil were evaluated and optimised. This proof-of-principle manufacturing technique could lead to the development of next-generation small calibre adult and paediatric covered stents. These stents are currently undergoing preclinical trial. From the Clinical Editor: The use of stents to treat vascular diseases is now the standard of care in the clinical setting. Nonetheless, a major problem of the current stents is the risk of restenosis and thrombosis. The authors developed a nanocomposite material using polyhedral oligomeric silsesquioxane and poly(carbonate-urea) urethane (POSS-PCU) and incorporated into metallic stents. Preliminary data have already shown promising results. It is envisaged that this would further lead to better stent technology in the future.


Assuntos
Prótese Vascular , Materiais Revestidos Biocompatíveis/síntese química , Materiais Revestidos Biocompatíveis/farmacologia , Nanocompostos/química , Ativação Plaquetária/efeitos dos fármacos , Adesividade Plaquetária/efeitos dos fármacos , Stents , Adesividade , Células Cultivadas , Força Compressiva , Módulo de Elasticidade , Análise de Falha de Equipamento , Dureza , Humanos , Teste de Materiais , Nanocompostos/ultraestrutura , Tamanho da Partícula , Desenho de Prótese , Propriedades de Superfície , Resistência à Tração , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA