Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Radiat Prot Dosimetry ; 200(10): 938-944, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38855821

RESUMO

An assessment of radioactivity concentration of reinforced cement concrete types of house was conducted in the valley region of Manipur, India. The average radioactivity concentration of 226Ra, 232Th, and 40K of portland cements are 39 (range: 32-52) Bqkg-1, 36 (range: 22-62) Bqkg-1, and 1812 (1254-2424) Bqkg-1; for concrete are 36 (range: 26-45) Bqkg-1, 65 (range: 45-86) Bqkg-1, and 660 (639-681) Bqkg-1; for sand are 45 (30-61) Bqkg-1, 114 (range: 55-212) Bqkg-1, and 1859 (range: 1413-2232) Bqkg-1; and for bricks are 30 (range: 24-37) Bqkg-1, 148 (range:79-184) Bqkg-1, and 1444 (range: 1093-2103) Bqkg-1, respectively. The annual effective dose was observed with an average value of 1.9 (range: 0.9-3.3) mSvy-1. However, gamma index was observed with an average value of 1.1 (range: 0.5-2.0).


Assuntos
Materiais de Construção , Radioisótopos de Potássio , Monitoramento de Radiação , Rádio (Elemento) , Tório , Materiais de Construção/análise , Índia , Monitoramento de Radiação/métodos , Tório/análise , Rádio (Elemento)/análise , Radioisótopos de Potássio/análise , Radiação de Fundo , Humanos , Doses de Radiação
2.
J Environ Manage ; 364: 121362, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38878568

RESUMO

Hazardous substances in demolition waste are often deemed a barrier to a circular economy owing to concerns about their fate in recycled materials. However, with the growing demand for recycling materials, it is essential to find circular solutions for construction materials but still protect health and the environment by managing hazardous substances. In this study, selected hazardous substance groups were analysed from demolition waste samples. Most of the concentrations did not raise any concerns when the safety of recycling materials was considered. However, the detection limits of laboratory chemical analysis can be discussed, as bromine was found in samples by an X-ray fluorescence (XRF)-analyser, but only one laboratory detected brominated flame retardants (BRFs). New technologies and practices are needed to follow the chemical content of materials used in the construction phase. Detecting hazardous substances in recyclable materials is the only way to achieve harmless material cycles.


Assuntos
Materiais de Construção , Retardadores de Chama , Substâncias Perigosas , Reciclagem , Substâncias Perigosas/análise , Retardadores de Chama/análise , Materiais de Construção/análise
3.
Artigo em Inglês | MEDLINE | ID: mdl-38541314

RESUMO

This article reports the results of an investigation into the activity concentration of natural radionuclides in raw building materials for underground parking lots, together with the assessment of the radiation hazard for the public related to exposure to ionizing radiations. To this purpose, high-purity germanium (HPGe) γ-ray spectrometry was employed in order to quantify the average specific activity of 226Ra, 232Th, and 40K natural radioisotopes. With the aim to assess any possible radiological health risk for the population, the absorbed γ-dose rate (D), the annual effective dose equivalent outdoor (AEDEout) and indoor (AEDEin), the activity concentration index (I), and the alpha index (Iα) were also estimated, resulting in values that were lower than the maximum recommended ones for humans. Finally, the extent of the correlations existing between the observed radioactivity and radiological parameters and of these parameters with the analyzed samples was quantified through statistical analyses, including Pearson's correlation, a principal component analysis (PCA), and a hierarchical cluster analysis (HCA). As a result, three clusters of the investigated samples were recognized based on their chemical composition and mineralogical nature. Noteworthily, this paper covers a certain gap in science since its topic does not appear in literature in this form. Thus, the authors underline the importance of this work to global knowledge in the environmental research and public health fields.


Assuntos
Monitoramento de Radiação , Radioatividade , Rádio (Elemento) , Poluentes Radioativos do Solo , Humanos , Monitoramento de Radiação/métodos , Radioisótopos/análise , Saúde Radiológica , Espectrometria gama , Materiais de Construção/análise , Tório/análise , Radioisótopos de Potássio/análise , Rádio (Elemento)/análise , Poluentes Radioativos do Solo/análise
4.
Appl Radiat Isot ; 207: 111266, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38461629

RESUMO

Brazil is the fourth largest cement consumer in the world and the largest producer in Latin America, around 1.3% of global production. The main inputs in the manufacture of cement are limestone and clay. Few studies have been carried out in the country on the risk of these materials used in civil construction. Therefore, the objective of this present work is to evaluate the radiological danger that they can present to society. Gamma spectrometry analysis on 16 samples of different brands of cement used as construction material in Rio de Janeiro (Brazil) was performed in this study, using an HPGe detector and the Genie 2000 data acquisition software. Samples were set to count for an accumulation time of 14,400 s (4 h) and all measurements were corrected to eliminate background and backscattering. Activity concentrations are determined for 226Ra was from (41.2 ± 1.6 to 174.9 ± 3.9) Bq kg-1, 232Th was from (15.7 ± 0.5 to 43.1 ± 0.7) Bq kg-1 and 40K was from (82.6 ± 7.2 to 254 ± 17) Bq kg-1. To assess radiological health risks: mean values of Radium Activity Equivalent 150.0 ± 3.4 Bq kg-1, Annual Gonadal Dose Equivalent 468 ± 11 µSv year-1 and Lifetime Excess Cancer Risk (ELCR) 2.42 ± 0.06 were calculated. Total Absorbed Dose Rates ranged from 72.2 ± 1.7 to 225.1 ± 5.2 nGy h-1. The damage to collective health was also estimated from the annual effective dose rates with an estimated total cost of damage to health of US$ 130 million. Values are generally within global limits reported by UNSCEAR.


Assuntos
Monitoramento de Radiação , Radioatividade , Rádio (Elemento) , Poluentes Radioativos do Solo , Radioisótopos de Potássio/análise , Tório/análise , Monitoramento de Radiação/métodos , Brasil , Materiais de Construção/análise , Rádio (Elemento)/análise , Poluentes Radioativos do Solo/análise , Espectrometria gama
5.
Environ Res ; 251(Pt 2): 118735, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38518905

RESUMO

Inert construction and demolition waste from Hong Kong (HK public fills) has been used for marine trial reclamation in the Guanghai Bay (GHWT) of the Chinese Mainland. However, an environmental assessment of HK public fills is necessary due to higher radioactivity in HK soils than typical global levels. Here, radiation dose rate, gamma radionuclides and gross beta of HK public fills were analyzed. The origin information was explored using natural primordial radionuclides as fingerprints. Our data show that radiation dose rate of HK public fills before disposal was 0.14-0.54 (0.33 ± 0.03) µSv/h (n = 16,722 data with 2787 ships) in 2014, which is less than the GHWT background. Monthly detection of 238U, 226Ra, 210Pb, 232Th, 228Th, 40K, and gross beta in HK public fills was conducted on three random ships. Their specific activities were <6.27-155.5, 58.7-98.7, <7.83-238.2,97.9-168.6, 87.1-136.0, 463.1-1,018, and 1047-1658 Bq/kgDW, respectively. These results suggest that the radioactivity levels of HK public fills are essentially the same as the GHWT background. The study assessed potential risks using various indices icluding Raeq (Radium equivalent activity), Hex (External radiation hazard index), Hin (Internal radiation hazard index), Iγ (Gamma index), AUI (Activity utilization index), AUI (Activity utilization index), E (Annual effective dose), AGDE (Annual gonadal dose equivalent), RLI (Representative level index), Din (Indoor air absorbed dose rate), Dout (Outdoor air absorbed dose rate), and ELCR (Excess lifetime cancer risk). The study suggests that HK public fills should be used for the trial reclamation rather than building-house materials. This provides valuable insights for the resource utilization and minimizing environmental pollution of HK public fills. The aim is to offer fundamental technical assistance for future waste resource utilization, ecological protection, and restoration in the Guangdong-Hong Kong-Macao Greater Bay Area.


Assuntos
Baías , Hong Kong , Monitoramento de Radiação/métodos , Materiais de Construção/análise
6.
Environ Res ; 251(Pt 1): 118457, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38382666

RESUMO

Because of their high electrocatalytic activity, sensitivity, selectivity, and long-term stability in electrochemical sensors and biosensors, numerous nanomaterials are being used as suitable electrode materials thanks to developments in nanotechnology. Electrochemical sensors and biosensors are two areas where two-dimensional layered materials (2DLMs) are finding increasing utility due to their unusual structure and physicochemical features. Nanosensors, by their unprecedented sensitivity and minute scale, can probe deeper into the structural integrity of piles, capturing intricacies that traditional tools overlook. These advanced devices detect anomalies, voids, and minute defects in the pile structure with unparalleled granularity. Their effectiveness lies in detection and their capacity to provide real-time feedback on pile health, heralding a shift from reactive to proactive maintenance methodologies. Harvesting data from these nanosensors, data was incorporated into a probabilistic model, executing the reliability index calculations through Monte Carlo simulations. Preliminary outcomes show a commendable enhancement in the predictability of vertical bearing capacity, with the coefficient of variation dwindling by up to 12%. The introduction of nanosensors facilitates instantaneous monitoring and fortifies the long-term stability of pile foundations. This study accentuates the transformative potential of nanosensors in geotechnical engineering.


Assuntos
Nanotecnologia , Reprodutibilidade dos Testes , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Método de Monte Carlo , Materiais de Construção/análise , Nanoestruturas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA