Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Mol Pharmacol ; 96(2): 272-296, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31221824

RESUMO

Tamoxifen is used to prevent and treat estrogen receptor-positive (ER+) breast cancer (BC); however, its chronic use can increase uterine cancer risk and induce tamoxifen resistance. Novel melatonin-tamoxifen drug conjugates may be promising to treat BC and may help offset the adverse effects of tamoxifen usage alone due to the presence of melatonin. We synthesized and screened five drug conjugates (C2, C4, C5, C9, and C15 linked) for their effects on BC cell (MCF-7, tamoxifen-resistant MCF-7, mouse mammary carcinoma, MDA-MB-231, and BT-549) viability, migration, and binding affinity to melatonin receptor 1 (MT1R) and estrogen receptor 1 (ESR1). C4 and C5 demonstrated the most favorable pharmacological characteristics with respect to binding profiles (affinity for ESR1 and MT1R) and their potency/efficacy to inhibit BC cell viability and migration in four phenotypically diverse invasive ductal BC cell lines. C4 and C5 were further assessed for their actions against tamoxifen-resistant MCF-7 cells and a patient-derived xenograft triple-negative BC cell line (TU-BcX-4IC) and for their mechanisms of action using selective mitogen-activated protein kinase kinase MEK1/2, MEK5, and phosphoinositide 3-kinase (PI3K) inhibitors. C4 and C5 inhibited tamoxifen-resistant MCF-7 cells with equal potency (IC50 = 4-8 µM) and efficacy (∼90% inhibition of viability and migration) but demonstrated increased potency (IC50 = 80-211 µM) and efficacy (∼140% inhibition) to inhibit migration versus cell viability (IC50 = 181-304 mM; efficacy ∼80% inhibition) in TU-BcX-4IC cells. Unique pharmacokinetic profiles were observed, with C4 having greater bioavailability than C5. Further assessment of C4 and C5 demonstrates that they create novel pharmacophores within each BC cell that is context specific and involves MEK1/2/pERK1/2, MEK5/pERK5, PI3K, and nuclear factor κB. These melatonin-tamoxifen drug conjugates show promise as novel anticancer drugs and further preclinical and clinical evaluation is warranted.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Receptor alfa de Estrogênio/metabolismo , Melatonina/administração & dosagem , Receptor MT1 de Melatonina/metabolismo , Tamoxifeno/administração & dosagem , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Disponibilidade Biológica , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células MCF-7 , Melatonina/farmacocinética , Melatonina/farmacologia , Camundongos , Tamoxifeno/farmacocinética , Tamoxifeno/farmacologia
3.
Sleep ; 21(1): 52-68, 1998.
Artigo em Inglês | MEDLINE | ID: mdl-9485533

RESUMO

The present investigation used a placebo-controlled, double-blind, crossover design to assess the sleep-promoting effect of three melatonin replacement delivery strategies in a group of patients with age-related sleep-maintenance insomnia. Subjects alternated between treatment and "washout" conditions in 2-week trials. The specific treatment strategies for a high physiological dose (0.5 mg) of melatonin were: (1) EARLY: An immediate-release dose taken 30 minutes before bedtime; (2) CONTINUOUS: A controlled-release dose taken 30 minutes before bedtime; (3) LATE: An immediate-release dose taken 4 hours after bedtime. The EARLY and LATE treatments yielded significant and unambiguous reductions in core body temperature. All three melatonin treatments shortened latencies to persistent sleep, demonstrating that high physiological doses of melatonin can promote sleep in this population. Despite this effect on sleep latency, however, melatonin was not effective in sustaining sleep. No treatment improved total sleep time, sleep efficiency, or wake after sleep onset. Likewise, melatonin did not improve subjective self-reports of nighttime sleep and daytime alertness. Correlational analyses comparing sleep in the placebo condition with melatonin production revealed that melatonin levels were not correlated with sleep. Furthermore, low melatonin producers were not preferentially responsive to melatonin replacement. Total sleep time and sleep efficiency were correlated with the timing of the endogenous melatonin rhythm, and particularly with the phase-relationship between habitual bedtime and the phase of the circadian timing system.


Assuntos
Ritmo Circadiano , Melatonina/uso terapêutico , Distúrbios do Início e da Manutenção do Sono/diagnóstico , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Temperatura Corporal/fisiologia , Protocolos Clínicos , Estudos Cross-Over , Método Duplo-Cego , Feminino , Humanos , Masculino , Melatonina/sangue , Melatonina/farmacocinética , Pessoa de Meia-Idade , Polissonografia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA