Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Drug Metab Dispos ; 51(10): 1308-1315, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37286362

RESUMO

Recent studies have demonstrated downregulation of breast cancer resistance protein (BCRP/ABCG2) in placenta obtained from women with preeclampsia (PE). BCRP is highly expressed in placenta and plays an important role in preventing xenobiotics from entering the fetal compartment. Although PE is often therapeutically managed with drugs that are substrates of BCRP, there are limited studies on the impact of PE on fetal drug exposure. Due to ethical concerns, use of preclinical models is an important approach. Thus, by using proteomic and traditional methods, we characterized transporter changes in an immunologic rat model of PE to determine its utility and predictive value for future drug disposition studies. PE was induced by daily administration of low-dose endotoxin (0.01-0.04 mg/kg) to rats on gestational days (GD) 13-16, urine was collected, and rats were sacrificed on GD17 or GD18. PE rats shared similar phenotype to PE patients, including proteinuria, and increased levels of tumor necrosis factor α and interleukin 6. Transcript and protein levels of Bcrp were significantly downregulated in placenta of PE rats on GD18. multidrug resistance 1a, multidrug resistance 1b, and organic anion transporting polypeptide 2B1 mRNA were also decreased in PE. Proteomics revealed activation of various hallmarks of PE including immune activation, oxidative stress, endoplasmic reticulum stress and apoptosis. Overall, our results demonstrated that the immunologic PE rat model exhibits numerous similarities to human PE along with dysregulation of placental transporters. Therefore, this model may be useful in examining the impact of PE on the maternal and fetal disposition of BCRP substrates. SIGNIFICANCE STATEMENT: Fully characterizing preclinical models of disease is necessary to determine their validity to human conditions. Combining traditional and proteomic methods of model characterization, we identified numerous phenotypic similarities between our model of preeclampsia and human disease. The alignment with human pathophysiological changes allows for more confident use of this preclinical model.


Assuntos
Placenta , Pré-Eclâmpsia , Gravidez , Ratos , Feminino , Humanos , Animais , Placenta/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/patologia , Proteômica , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Neoplasias/metabolismo , Preparações Farmacêuticas/metabolismo
2.
Clin Transl Sci ; 16(6): 987-1001, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36967488

RESUMO

The objective of the current study was to identify potential drug-drug interactions (DDIs) with the drug candidate fb-PMT, a novel anticancer thyrointegrin αvß3 antagonist. This was accomplished by using several in vitro assays to study interactions of fb-PMT with both cytochrome P450 (CYP) enzymes and drug transporters, two common mechanisms leading to adverse drug effects. In vitro experiments showed that fb-PMT exhibited weak reversible inhibition of CYP2C19 and CYP3A4. In addition, fb-PMT did not show time-dependent inhibition with any of the seven CYP isoforms tested, including 1A2, 2B6, 2C8, 2C9, 2C19, 2D6, and 3A4. Human liver microsomal incubations demonstrated that fb-PMT is stable. Potential transporter-mediated DDIs with fb-PMT were assessed with two ATP binding cassette (ABC) family transporters (P-glycoprotein and breast cancer resistance protein) using Caco2 cells and seven solute carrier family (SLC) transporters (organic cation transporter OCT2, organic anion transporters OAT1 and OAT3, organic anion transporter peptides OATP1B1 and OATP1B3, and the multidrug and toxic extrusion proteins MATE1 and MATE2-K using transfected HEK293 cells). Fb-PMT was not a substrate for any of the nine transporters tested in this study, nor did it inhibit the activity of seven of the transporters tested. However, fb-PMT inhibited the uptake of rosuvastatin by both OATP1B1 and OATP1B3 with half-maximal inhibitory concentrations greater than 3 and less than 10 µM. In summary, data suggest that the systemic administration of fb-PMT is unlikely to lead to DDIs through CYP enzymes or ABC and SLC transporters in humans.


Assuntos
Transportadores de Ânions Orgânicos Sódio-Independentes , Transportadores de Ânions Orgânicos , Humanos , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Células CACO-2 , Células HEK293 , Proteínas de Neoplasias/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Interações Medicamentosas , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Ânions Orgânicos/metabolismo
3.
Toxicol Appl Pharmacol ; 463: 116427, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36801311

RESUMO

The nucleoside analog entecavir (ETV) is a first-line pharmacotherapy for chronic hepatitis B in adult and pediatric patients. However, due to insufficient data on placental transfer and its effects on pregnancy, ETV administration is not recommended for women after conception. To expand knowledge of safety, we focused on evaluating the contribution of nucleoside transporters (NBMPR sensitive ENTs and Na+ dependent CNTs) and efflux transporters, P-glycoprotein (ABCB1), breast cancer resistance protein (ABCG2), and multidrug resistance-associated transporter 2 (ABCC2), to the placental kinetics of ETV. We observed that NBMPR and nucleosides (adenosine and/or uridine) inhibited [3H]ETV uptake into BeWo cells, microvillous membrane vesicles, and fresh villous fragments prepared from the human term placenta, while Na+ depletion had no effect. Using a dual perfusion study in an open-circuit setup, we showed that maternal-to-fetal and fetal-to-maternal clearances of [3H]ETV in the rat term placenta were decreased by NBMPR and uridine. Net efflux ratios calculated for bidirectional transport studies performed in MDCKII cells expressing human ABCB1, ABCG2, or ABCC2 were close to the value of one. Consistently, no significant decrease in fetal perfusate was observed in the closed-circuit setup of dual perfusion studies, suggesting that active efflux does not significantly reduce maternal-to-fetal transport. In conclusion, ENTs (most likely ENT1), but not CNTs, ABCB1, ABCG2, and ABCC2, contribute significantly to the placental kinetics of ETV. Future studies should investigate the placental/fetal toxicity of ETV, the impact of drug-drug interactions on ENT1, and interindividual variability in ENT1 expression on the placental uptake and fetal exposure to ETV.


Assuntos
Neoplasias da Mama , Placenta , Animais , Criança , Feminino , Humanos , Gravidez , Ratos , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Neoplasias da Mama/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Transporte de Nucleosídeos/metabolismo , Proteínas de Transporte de Nucleosídeos/farmacologia , Nucleosídeos/metabolismo , Nucleosídeos/farmacologia , Placenta/metabolismo , Ratos Wistar , Uridina
4.
AAPS J ; 24(3): 45, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35314909

RESUMO

Inhibitory effects of asunaprevir, daclatasvir, grazoprevir, paritaprevir, simeprevir, and voxilaprevir, direct-acting antiviral (DAA) drugs for the treatment of chronic hepatitis C virus (HCV) infection, were evaluated in vitro against a range of clinically important drug transporters. In vitro inhibition studies were conducted using transporter transfected cells and membrane vesicles. The risk of clinical drug-drug interactions (DDIs) was assessed using simplified static models recommended by regulatory agencies. Furthermore, we refined and developed static models to predict complex DDIs with several statins (pitavastatin, rosuvastatin, atorvastatin, and pravastatin) by mechanistically assessing differential inhibitory effects of perpetrator drugs on multiple transporters, such as organic anion transporting polypeptides (OATP1B), breast cancer resistance protein (BCRP), multidrug resistance protein 2 (MRP2), organic anion transporter 3 (OAT3), and cytochrome P450 CYP3A enzyme, as they are known to contribute to absorption, distribution, metabolism and excretion (ADME) of above statins. These models successfully predicted a total of 46 statin DDIs, including above DAA drugs and their fix-dose combination regimens. Predicted plasma area under curve ratio (AUCR) with and without perpetrator drugs was within ~ 2-fold of observed values. In contrast, simplified static R-value model resulted in increased false negative and false positive predictions when different prediction cut-off values were applied. Our studies suggest that mechanistic static model is a promising and useful tool to provide more accurate prediction of the risk and magnitude of DDIs with statins in early drug development and may help to improve the management of clinical DDIs for HCV drugs to ensure effective and safe HCV therapy. GRAPHICAL ABSTRACT.


Assuntos
Hepatite C Crônica , Inibidores de Hidroximetilglutaril-CoA Redutases , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Antivirais , Interações Medicamentosas , Hepacivirus/metabolismo , Hepatite C Crônica/tratamento farmacológico , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Neoplasias/metabolismo
5.
Bioorg Chem ; 116: 105326, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34536930

RESUMO

Multidrug resistance constitutes a serious obstacle of the treatment success of cancer by chemotherapy. Mostly it is driven by expression of ABC transport proteins that actively efflux the anticancer agents out of the cell. This work describes the design and synthesis of 12 new pyrimidopyrimidines, as well as their inhibition of ABCG2 a transporter referred also to as breast cancer resistance protein, the selectivity versus ABCB1 (P-glycoprotein/P-gp) and ABCC1 as well as the investigation of their accumulation in single cells. From these results, N-(3,5-dimethoxyphenyl)-2-methyl-7-phenyl-5-(p-tolyl)pyrimido[4,5-d]pyrimidin-4-amine 7 h was identified as promising hit that deserves further investigation showing a selective and effective inhibition of ABCG2 with IC50 equal to 0.493 µM only 2-fold less active than Ko143.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Proteínas de Neoplasias/antagonistas & inibidores , Pirimidinas/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Estrutura Molecular , Proteínas de Neoplasias/metabolismo , Pirimidinas/síntese química , Pirimidinas/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
6.
Curr Drug Metab ; 22(10): 784-794, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33622223

RESUMO

BACKGROUND: Letermovir is approved for prophylaxis of cytomegalovirus infection and disease in cytomegalovirus-seropositive hematopoietic stem-cell transplant (HSCT) recipients. OBJECTIVE: HSCT recipients are required to take many drugs concomitantly. The pharmacokinetics, absorption, distribution, metabolism, and excretion of letermovir and its potential to inhibit metabolizing enzymes and transporters in vitro were investigated to inform on the potential for drug-drug interactions (DDIs). METHODS: A combination of in vitro and in vivo studies described the absorption, distribution, metabolism, and routes of elimination of letermovir, as well as the enzymes and transporters involved in these processes. The effect of letermovir to inhibit and induce metabolizing enzymes and transporters was evaluated in vitro and its victim and perpetrator DDI potentials were predicted by applying the regulatory guidance for DDI assessment. RESULTS: Letermovir was a substrate of CYP3A4/5 and UGT1A1/3 in vitro. Letermovir showed concentration- dependent uptake into organic anionic transporting polypeptide (OATP)1B1/3-transfected cells and was a substrate of P-glycoprotein (P-gp). In a human ADME study, letermovir was primarily recovered as unchanged drug and minor amounts of a direct glucuronide in feces. Based on the metabolic pathway profiling of letermovir, there were few oxidative metabolites in human matrix. Letermovir inhibited CYP2B6, CYP2C8, CYP3A, and UGT1A1 in vitro, and induced CYP3A4 and CYP2B6 in hepatocytes. Letermovir also inhibited OATP1B1/3, OATP2B1, OAT3, OCT2, BCRP, BSEP, and P-gp. CONCLUSION: The body of work presented in this manuscript informed on the potential for DDIs when letermovir is administered both intravenously and orally in HSCT recipients.


Assuntos
Acetatos , Biotransformação , Infecções por Citomegalovirus/tratamento farmacológico , Citomegalovirus/imunologia , Vias de Eliminação de Fármacos/fisiologia , Interações Medicamentosas , Quinazolinas , Distribuição Tecidual/fisiologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Acetatos/metabolismo , Acetatos/farmacocinética , Adulto , Animais , Antivirais/metabolismo , Antivirais/farmacocinética , Citocromo P-450 CYP3A/metabolismo , Glucuronosiltransferase/metabolismo , Voluntários Saudáveis , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Masculino , Conduta do Tratamento Medicamentoso/normas , Proteínas de Neoplasias/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Quinazolinas/metabolismo , Quinazolinas/farmacocinética , Ratos
7.
J Clin Pharmacol ; 60(12): 1606-1616, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33045114

RESUMO

Elagolix is an oral gonadotropin-releasing hormone receptor antagonist indicated for the management of endometriosis-associated pain and in combination with estradiol/norethindrone acetate indicated for the management of heavy menstrual bleeding associated with uterine leiomyomas (fibroids) in premenopausal women. Elagolix coadministered with estradiol/norethindrone acetate is in late-stage development for the management of heavy menstrual bleeding associated with uterine fibroids. Based on the in vitro profile of elagolix metabolism and disposition, 9 drug-drug interaction (DDI) studies evaluating the victim and perpetrator characteristics of elagolix were conducted in 144 healthy volunteers. As a victim of cytochrome P450 (CYPs) and transporter-mediated DDIs, elagolix area under the curve (AUC) increased by ∼2-fold following coadministration with ketoconazole and by ∼5- and ∼2-fold with single and multiple doses of rifampin, respectively. As a perpetrator, elagolix decreased midazolam AUC (90% confidence interval) by 54% (50%-59%) and increased digoxin AUC by 32% (23%-41%). Elagolix decreased rosuvastatin AUC by 40% (29%-50%). No clinically significant changes in exposure on coadministration with sertraline or fluconazole occurred. A elagolix 150-mg once-daily regimen should be limited to 6 months with strong CYP3A inhibitors and rifampin because of the potential increase in bone mineral density loss, as described in the drug label. A 200-mg twice-daily regimen is recommended for no more than 1 month with strong CYP3A inhibitors and not recommended with rifampin. Elagolix is contraindicated with strong organic anion transporter polypeptide B1 inhibitors (eg, cyclosporine and gemfibrozil). Consider increasing the doses of midazolam and rosuvastatin when coadministered with elagolix, and individualize therapy based on patient response. Clinical monitoring is recommended for P-glycoprotein substrates with a narrow therapeutic window (eg, digoxin). Dose adjustments are not required for sertraline, fluconazole, bupropion (or any CYP2B6 substrate), or elagolix when coadministered.


Assuntos
Hidrocarbonetos Fluorados/administração & dosagem , Hidrocarbonetos Fluorados/farmacocinética , Pirimidinas/administração & dosagem , Pirimidinas/farmacocinética , Receptores LHRH/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/agonistas , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Adulto , Citocromo P-450 CYP2B6/metabolismo , Indutores do Citocromo P-450 CYP2B6/administração & dosagem , Indutores do Citocromo P-450 CYP2B6/farmacocinética , Inibidores do Citocromo P-450 CYP2C9/administração & dosagem , Inibidores do Citocromo P-450 CYP2C9/farmacocinética , Citocromo P-450 CYP3A/metabolismo , Indutores do Citocromo P-450 CYP3A/administração & dosagem , Indutores do Citocromo P-450 CYP3A/farmacocinética , Inibidores do Citocromo P-450 CYP3A/administração & dosagem , Inibidores do Citocromo P-450 CYP3A/farmacocinética , Esquema de Medicação , Interações Medicamentosas , Feminino , Voluntários Saudáveis , Humanos , Hidrocarbonetos Fluorados/sangue , Hidrocarbonetos Fluorados/farmacologia , Transportador 1 de Ânion Orgânico Específico do Fígado/antagonistas & inibidores , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/metabolismo , Pré-Menopausa , Pirimidinas/sangue , Pirimidinas/farmacologia , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/antagonistas & inibidores , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/metabolismo , Adulto Jovem
8.
Pharmacol Res Perspect ; 8(1): e00544, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31988753

RESUMO

Prediction of the intestinal absorption of new chemical entities (NCEs) is still difficult, in part because drug efflux transporters, including breast cancer resistance protein (BCRP) and P-glycoprotein (P-gp), restrict their intestinal permeability. We have demonstrated that the absorptive quotient (AQ) obtained from the in vitro Caco-2 permeability study would be a valuable parameter for estimating the impact of BCRP on the intestinal absorption of drugs. In this study, in order to assess the correlation between the in vitro AQ for BCRP and in vivo contribution of BCRP on drug absorption, we evaluated the oral absorption of various compounds by portal-systemic blood concentration (P-S) difference method in wild-type (WT), Bcrp(-/-), and Mdr1a/1b(-/-) mice. In addition, we also calculated a rate of BCRP contribution (Rbcrp ). Ciprofloxacin and nitrofurantoin showed the low Rbcrp value (0.05 and 0.15), and their apparent fractions of intestinal absorption in WT mice were 46.5% and 63.7%, respectively. These results suggest that BCRP hardly affects their intestinal absorption in mice. On the other hand, the apparent fraction of intestinal absorption of topotecan and sulfasalazine was significantly lower in WT mice than in Bcrp(-/-) mice. Moreover, their Rbcrp values were 0.42 and 0.79, respectively, indicating the high contribution of BCRP to their oral absorption. Furthermore, in vivo Rbcrp calculated in this study was almost comparable to in vitro AQ obtained from Caco-2 permeability study. This study provides useful concepts in assessing the contribution of BCRP on intestinal absorption in drug discovery and development process.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Ciprofloxacina/farmacocinética , Proteínas de Neoplasias/metabolismo , Nitrofurantoína/farmacocinética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Administração Intravenosa , Animais , Células CACO-2 , Ciprofloxacina/administração & dosagem , Ciprofloxacina/sangue , Humanos , Absorção Intestinal , Masculino , Camundongos , Modelos Animais , Nitrofurantoína/administração & dosagem , Nitrofurantoína/sangue
9.
Fundam Clin Pharmacol ; 34(1): 109-119, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31411766

RESUMO

As an alternative to vitamin K antagonists (VKAs), direct oral anticoagulants (DOACs) are increasingly prescribed in combination with riociguat in the treatment of chronic thromboembolic pulmonary hypertension (CTEPH). Pharmacokinetics of riociguat and DOACs are influenced by efflux transporters, such as P-glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP). This work aimed to assess P-gp and BCRP-mediated drug-drug interactions of riociguat with DOACs using in vitro models. Bidirectional permeabilities of apixaban and rivaroxaban were investigated across MDCK-MDR1 and MDCK-BCRP models, in the absence and in the presence of increasing concentrations of riociguat (0.5-100 µm). Calculated efflux ratios were subsequently used to determine riociguat inhibition percentages and half maximal inhibitory concentration (IC50). P-gp-mediated efflux of apixaban and rivaroxaban was inhibited by 8% and 21%, respectively, in the presence of 100 µm riociguat. BCRP-mediated transport of apixaban and rivaroxaban was inhibited by 36% and 77%, respectively. IC50s of riociguat on MDCK-MDR1 and MDCK-BCRP models were higher than 100 µm for apixaban and higher than 100 µm and 46.5 µm for rivaroxaban, respectively. This work showed an in vitro inhibition of BCRP-mediated DOACs transport by riociguat. In vivo studies may be required to determine the clinical relevance of these transporter-mediated interactions.


Assuntos
Anticoagulantes/farmacocinética , Pirazóis/farmacologia , Pirazóis/farmacocinética , Piridonas/farmacocinética , Pirimidinas/farmacologia , Rivaroxabana/farmacocinética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Anticoagulantes/administração & dosagem , Transporte Biológico/efeitos dos fármacos , Cães , Interações Medicamentosas , Concentração Inibidora 50 , Células Madin Darby de Rim Canino , Pirazóis/administração & dosagem , Piridonas/administração & dosagem , Pirimidinas/administração & dosagem , Rivaroxabana/administração & dosagem
10.
J Clin Pharmacol ; 60(1): 107-116, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31378968

RESUMO

Lanabecestat is a human ß-site amyloid precursor protein-cleaving enzyme 1 inhibitor in development to slow disease progression in patients with early Alzheimer's disease. The study evaluated the breast cancer resistance protein (BCRP) inhibition potential of lanabecestat on the pharmacokinetics (PK) of rosuvastatin, a probe for BCRP activity, in healthy white subjects who were not carriers of SLCO1B1 (c.521T>C), not homozygotes for ABCG2 (c.421C>A or c.34G>A), and not heterozygotes of ABCG2 (c.421C>A and c.34G>A). The safety of lanabecestat + rosuvastatin, the effects of rosuvastatin on the PK of lanabecestat, and the effects of multiple genetic polymorphisms on rosuvastatin exposure were assessed. Geometric mean ratios of the maximum observed rosuvastatin concentration (Cmax ), area under the rosuvastatin concentration-versus-time curve (AUC) from time 0 to infinity, and time of maximum observed drug concentration (tmax ) when rosuvastatin was administered alone and with lanabecestat were contained within 0.8-1.25, as were lanabecestat AUC at steady state and tmax at steady state when lanabecestat was administered alone or with rosuvastatin. Lanabecestat Cmax at steady state increased 8% in the presence of rosuvastatin. Except for an approximately 80% increase of rosuvastatin AUC (P < .05) in the heterozygotes of ABCG2 c.421C>A relative to the CC genotype, there were no statistically significant associations between rosuvastatin exposure and polymorphisms assessed. Lanabecestat + rosuvastatin was associated with few treatment-emergent adverse events, all of which resolved and were mild. Lanabecestat does not meaningfully impact BCRP activity; therefore, restriction of concomitant administration with BCRP substrates, such as rosuvastatin, may be unnecessary.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacocinética , Imidazóis/farmacologia , Imidazóis/farmacocinética , Proteínas de Neoplasias/metabolismo , Rosuvastatina Cálcica/farmacocinética , Compostos de Espiro/farmacologia , Compostos de Espiro/farmacocinética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Adulto , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Estudos Cross-Over , Interações Medicamentosas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/genética , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/metabolismo , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/efeitos adversos , Feminino , Genótipo , Voluntários Saudáveis , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Polimorfismo Genético , Rosuvastatina Cálcica/administração & dosagem , Rosuvastatina Cálcica/efeitos adversos , População Branca , Adulto Jovem
11.
Regul Toxicol Pharmacol ; 108: 104433, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31362032

RESUMO

PF614, a novel trypsin activated abuse protection (TAAP) prodrug of oxycodone, is being studied as chronic pain analgesic with extended release and abuse resistant properties. A series of nonclinical safety studies were conducted to support PF614 introduction to clinical trials. Ames assays (PF614 and its metabolites), comet assay (PF614 ≤ 50 mg/kg/day oral gavage in rats) and micronucleus assay (PF614 ≤ 175 mg/kg/day oral gavage in rats) were negative. hERG assay IC50 for PF614 was ≥300 µM. PF614 (0.1 and 10 µM) showed a low permeability in Caco-2 cells (≤1.17 x 10-6 cm/s) and was not a P-gp or BCRP substrate or inhibitor. The mean percent unbound PF614 among all concentrations in plasma ranged from 91.2 to 98.4, 79.4 to 100, and 52.9-79.9% in rat, dog, and human, respectively. Also, PF614 was metabolically stable in rat, dog, and human hepatocytes with no metabolites identified. Safety pharmacology study in dog indicated moderately lower heart rate at ≥ 2 mg/kg oral gavage doses. Toxicity studies of PF614 in rat and dog with daily oral doses of 25 and 18 mg/kg, respectively, for 14 Days were well tolerated with favorable safety profile supporting its further clinical evaluation.


Assuntos
Formulações de Dissuasão de Abuso , Analgésicos Opioides/toxicidade , Oxicodona/toxicidade , Pró-Fármacos/toxicidade , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Células CACO-2 , Cães , Eletrocardiografia/efeitos dos fármacos , Feminino , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Masculino , Testes de Mutagenicidade , Proteínas de Neoplasias/metabolismo , Ratos , Regulador Transcricional ERG/metabolismo , Tripsina
12.
J Pharm Pharmacol ; 71(7): 1133-1141, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31037729

RESUMO

OBJECTIVES: Antidepressants need to penetrate the blood-brain barrier (BBB) to exert their functions in the central nervous system. Breast cancer resistance protein (BCRP), an efflux transporter abundantly expressed in the BBB, prevents the accumulation of many drugs in the brain. This study aimed to identify whether five commonly used antidepressants (sertraline, duloxetine, fluoxetine, amitriptyline and mirtazapine) are BCRP substrates. METHODS: A combination of bidirectional transport and intracellular accumulation experiments was conducted on BCRP-overexpressing MDCKII and wild-type (WT) cells, and in situ brain perfusion was conducted in rats. KEY FINDINGS: The bidirectional transport study revealed that the net efflux ratio (NER) of sertraline reached 2.08 but decreased to 1.06 when co-incubated with Ko143, a selective BCRP inhibitor. Conversely, the other four antidepressants did not appear to be BCRP substrates, due to their low NER values (<1.5). The accumulation of sertraline in MDCKII-BCRP cells was significantly lower than that in MDCKII-WT cells. The presence of Ko143 significantly increased the sertraline accumulation in MDCKII-BCRP cells but not in MDCKII-WT cells. Brain perfusion showed that the permeability of 1 and 5 µm sertraline was significantly higher in the presence of Ko143. CONCLUSIONS: Taken together, BCRP is involved in sertraline efflux.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Antidepressivos/metabolismo , Amitriptilina/metabolismo , Animais , Antidepressivos/química , Transporte Biológico/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Linhagem Celular Tumoral , Cloridrato de Duloxetina/metabolismo , Fluoxetina/metabolismo , Humanos , Mirtazapina/metabolismo , Proteínas de Neoplasias , Ratos , Ratos Sprague-Dawley , Sertralina/metabolismo
13.
Drug Metab Dispos ; 46(8): 1179-1189, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29880631

RESUMO

We aim to establish an in vivo preclinical model to enable simultaneous assessment of inhibition potential of an investigational drug on clinically relevant drug transporters, organic anion-transporting polypeptide (OATP)1B, breast cancer resistance protein (BCRP), P-glycoprotein (P-gp), and organic anion transporter (OAT)3. Pharmacokinetics of substrate cocktail consisting of pitavastatin (OATP1B substrate), rosuvastatin (OATP1B/BCRP/OAT3), sulfasalazine (BCRP), and talinolol (P-gp) were obtained in cynomolgus monkey-alone or in combination with transporter inhibitors. Single-dose rifampicin (30 mg/kg) significantly (P < 0.01) increased the plasma exposure of all four drugs, with a marked effect on pitavastatin and rosuvastatin [area under the plasma concentration-time curve (AUC) ratio ∼21-39]. Elacridar, BCRP/P-gp inhibitor, increased the AUC of sulfasalazine, talinolol, as well as rosuvastatin and pitavastatin. An OAT1/3 inhibitor (probenecid) significantly (P < 0.05) impacted the renal clearance of rosuvastatin (∼8-fold). In vitro, rifampicin (10 µM) inhibited uptake of pitavastatin, rosuvastatin, and sulfasalazine by monkey and human primary hepatocytes. Transport studies using membrane vesicles suggested that all probe substrates, except talinolol, are transported by cynoBCRP, whereas talinolol is a cynoP-gp substrate. Elacridar and rifampicin inhibited both cynoBCRP and cynoP-gp in vitro, indicating potential for in vivo intestinal efflux inhibition. In conclusion, a probe substrate cocktail was validated to simultaneously evaluate perpetrator impact on multiple clinically relevant transporters using the cynomolgus monkey. The results support the use of the cynomolgus monkey as a model that could enable drug-drug interaction risk assessment, before advancing a new molecular entity into clinical development, as well as providing mechanistic insights on transporter-mediated interactions.


Assuntos
Transporte Biológico/fisiologia , Interações Medicamentosas/fisiologia , Preparações Farmacêuticas/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Células HEK293 , Hepatócitos/metabolismo , Humanos , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Macaca fascicularis , Masculino , Taxa de Depuração Metabólica/fisiologia , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo
14.
Eur J Pharm Sci ; 117: 35-40, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29428540

RESUMO

Inhibition of the biosynthesis of noradrenaline is a currently explored strategy for the treatment of hypertension, congestive heart failure and pulmonary arterial hypertension. While some dopamine ß-hydroxylase (DBH) inhibitors cross the blood-brain barrier (BBB) and cause central as well as peripheral effects (nepicastat), others have limited access to the brain (etamicastat, zamicastat). In this context, peripheral selectivity is clinically advantageous, in order to prevent alterations of noradrenaline levels in the CNS and the occurrence of adverse central effects. A limited brain exposure results from the combination of several factors, such as a reduced passive permeability or affinity for efflux transporters, but efflux liabilities may also lead to unwanted drug-drug interactions (DDIs) in the presence of co-administered substrates or inhibitors. Thus, the purpose of the study herein presented was to explore the interaction of P-glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP), the two major efflux transporters of the BBB that hamper the entry of several drugs to the brain, with the DBH inhibitors, etamicastat, nepicastat and zamicastat. Madin-Darby canine kidney cells (MDCK II) and transfected lines with human MDR1 (MDCK-MDR1) and ABCG2 (MDCK-BCRP) genes were used as a BBB surrogate model. P-gp and BCRP substrates and/or inhibitors were identified through intracellular accumulation and bidirectional permeability assays. The obtained data revealed that zamicastat is a concentration-dependent dual P-gp and BCRP inhibitor with IC50 values of 73.8 ±â€¯7.2 µM and 17.0 ±â€¯2.7 µM, while etamicastat and nepicastat inhibited BCRP to greater extent than P-gp, with IC50 values of 47.7 ±â€¯1.8 µM and 59.2 ±â€¯9.4 µM, respectively. Additionally, etamicastat was identified as P-gp and BCRP dual substrate, as demonstrated by net flux ratios of 5.84 and 3.87 and decreased >50% by verapamil and Ko143. Conversely, nepicastat revealed to be a P-gp-only substrate, with a net flux ratio of 2.01, reduced to 0.92 in the presence of verapamil. Furthermore, nepicastat displayed a consistently higher apparent permeability (>8.49 × 10-6 cm s-1) than etamicastat (<0.58 × 10-6 cm s-1). The identification of etamicastat as a dual efflux substrate suggests that P-gp and BCRP may be partially responsible for the limited central exposure of this compound, in association with its low passive permeability. Moreover, the weak efflux inhibitory potencies of etamicastat and nepicastat revealed a low DDI risk, while the dual P-gp/BCRP inhibition of zamicastat could be studied in the future with synergically effluxed compounds, for which BBB penetration is severely impaired.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Benzopiranos/farmacologia , Dopamina beta-Hidroxilase/antagonistas & inibidores , Imidazóis/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Tionas/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Cães , Interações Medicamentosas , Células Madin Darby de Rim Canino , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo
15.
Int J Mol Sci ; 17(10)2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27754421

RESUMO

[18F]Fluciclovine (trans-1-amino-3-[18F]fluorocyclobutanecarboxylic acid; anti-[18F]FACBC), a positron emission tomography tracer used for the diagnosis of recurrent prostate cancer, is transported via amino acid transporters (AATs) with high affinity (Km: 97-230 µM). However, the mechanism underlying urinary excretion is unknown. In this study, we investigated the involvement of AATs and drug transporters in renal [18F]fluciclovine reuptake. [14C]Fluciclovine (trans-1-amino-3-fluoro[1-14C]cyclobutanecarboxylic acid) was used because of its long half-life. The involvement of AATs in [14C]fluciclovine transport was measured by apical-to-basal transport using an LLC-PK1 monolayer as model for renal proximal tubules. The contribution of drug transporters herein was assessed using vesicles/cells expressing the drug transporters P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), multidrug resistance-associated protein 4 (MRP4), organic anion transporter 1 (OAT1), organic anion transporter 3 (OAT3) , organic cation transporter 2 (OCT2), organic anion transporting polypeptide 1B1 (OATP1B1), and organic anion transporting polypeptide 1B3 (OATP1B3). The apical-to-basal transport of [14C]fluciclovine was attenuated by l-threonine, the substrate for system alanine-serine-cysteine (ASC) AATs. [14C]Fluciclovine uptake by drug transporter-expressing vesicles/cells was not significantly different from that of control vesicles/cells. Fluciclovine inhibited P-gp, MRP4, OAT1, OCT2, and OATP1B1 (IC50 > 2.95 mM). Therefore, system ASC AATs may be partly involved in the renal reuptake of [18F]fluciclovine. Further, given that [18F]fluciclovine is recognized as an inhibitor with millimolar affinity for the tested drug transporters, slow urinary excretion of [18F]fluciclovine may be mediated by system ASC AATs, but not by drug transporters.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Ácidos Carboxílicos/metabolismo , Ciclobutanos/metabolismo , Rim/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transporte Biológico , Linhagem Celular , Células HEK293 , Humanos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas de Neoplasias/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo
16.
Toxicol Appl Pharmacol ; 305: 66-74, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27288731

RESUMO

In humans, the ATP-binding cassette efflux transporter ABCG2 contributes to the fetoprotective barrier function of the placenta, potentially limiting the toxicity of transporter substrates to the fetus. During testing of chemicals including pesticides, developmental toxicity studies are performed in rabbit. Despite its toxicological relevance, ABCG2-mediated transport of pesticides in rabbit placenta has not been yet elucidated. We therefore generated polarized MDCK II cells expressing the ABCG2 transporter from rabbit placenta (rbABCG2) and evaluated interaction of the efflux transporter with selected insecticides, fungicides, and herbicides. The Hoechst H33342 accumulation assay indicated that 13 widely used pesticidal active substances including azoxystrobin, carbendazim, chlorpyrifos, chlormequat, diflufenican, dimethoate, dimethomorph, dithianon, ioxynil, methiocarb, propamocarb, rimsulfuron and toclofos-methyl may be rbABCG2 inhibitors and/or substrates. No such evidence was obtained for chlorpyrifos-methyl, epoxiconazole, glyphosate, imazalil and thiacloprid. Moreover, chlorpyrifos (CPF), dimethomorph, tolclofos-methyl and rimsulfuron showed concentration-dependent inhibition of H33342 excretion in rbABCG2-transduced MDCKII cells. To further evaluate the role of rbABCG2 in pesticide transport across the placenta barrier, we generated polarized MDCKII-rbABCG2 monolayers. Confocal microscopy confirmed correct localization of rbABCG2 protein in the apical plasma membrane. In transepithelial flux studies, we showed the time-dependent preferential basolateral to apical (B>A) directed transport of [(14)C] CPF across polarized MDCKII-rbABCG2 monolayers which was significantly inhibited by the ABCG2 inhibitor fumitremorgin C (FTC). Using this novel in vitro cell culture model, we altogether showed functional secretory activity of the ABCG2 transporter from rabbit placenta and identified several pesticides like the insecticide CPF as potential rbABCG2 substrates.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Praguicidas/farmacologia , Placenta/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Animais , Transporte Biológico , Cães , Feminino , Células Madin Darby de Rim Canino , Gravidez , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA