Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 638
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Environ Geochem Health ; 46(8): 279, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958829

RESUMO

The present study focused on to determine the concentration and health risk of heavy metals (Cu, Pb, Zn, Cd, Hg, Cr) in e-waste contaminated soils collected from different provinces of Pakistan. Further, the impact of heavy metals on soil enzyme activities and microbial community was also investigated. The concentration (mg/kg) of Hg, Zn, Fe, Cu, Pb, Cd, and Cr ranged between 0-0.258, 2.284-6.587, 3.005-40.72, 8.67-36.88, 12.05-35.03, 1.03-2.43, and 33.13-60.05, respectively. The results revealed that Lahore site of Punjab province indicated more concentration of heavy metals as compared to other sites. The level of Cr at all sites whereas Hg at only two sites exceeds the World Health Organization standards (WHO) for soil. Soil enzyme activity exhibited dynamic trend among the sites. Maximum enzyme activity was observed for urease followed by phosphatase and catalase. Contamination factor (Cf), Pollution load index (PLI), and geo-accumulation index (Igeo) results showed that all the sites are highly contaminated with Cu, Cd, and Pb. Hazard index (HI) was less than 1 for children and adults suggesting non-carcinogenic health risk. Principle component analysis results depicted relation among Cr, Fr, catalase, and actinomycetes; Cd, OM, urease, and bacteria, and Pb, Cu, Zn, Hg, and phosphatase, suggesting soil enzymes and microbial community profiles were influenced by e-waste pollution. Therefore, there is a dire need to introduce sustainable e-waste recycling techniques as well as to make stringent e-waste management policies to reduce further environmental contamination.


Assuntos
Resíduo Eletrônico , Metais Pesados , Microbiologia do Solo , Poluentes do Solo , Metais Pesados/análise , Paquistão , Poluentes do Solo/análise , Medição de Risco , Humanos , Monitoramento Ambiental/métodos , Instalações de Eliminação de Resíduos , Solo/química
2.
Sci Total Environ ; 943: 173761, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38851355

RESUMO

Acephate is commonly used as a seed treatment (ST) in precision agriculture, but its impact on pollinators, earthworms, and soil microorganisms remains unclear. This study aimed to compare the fate of acephate seed dressing (SD) and seed coating (SC) treatments and assess potential risks to bees, earthworms, and soil microorganisms. Additionally, a follow-up study on maize seeds treated with acephate in a greenhouse was conducted to evaluate the maize growth process and the dissipation dynamics of the insecticide. The results indicated that acephate SC led to greater uptake and translocation in maize plants, resulting in lower residue levels in the soil. However, high concentrations of acephate metabolites in the soil had a negative impact on the body weight of earthworms, whereas acephate itself did not. The potential risk to bees from exposure to acephate ST was determined to be low, but dose-dependent effects were observed. Furthermore, acephate ST had no significant effect on soil bacterial community diversity and abundance compared to a control. This study provides valuable insights into the uptake and translocation of acephate SD and SC, and indicates that SC is safer than SD in terms of adverse effects on bees and nontarget soil organisms.


Assuntos
Agricultura , Inseticidas , Oligoquetos , Fosforamidas , Sementes , Microbiologia do Solo , Zea mays , Animais , Abelhas/fisiologia , Agricultura/métodos , Inseticidas/toxicidade , Poluentes do Solo/toxicidade , Compostos Organotiofosforados/toxicidade , Solo/química
3.
Curr Microbiol ; 81(7): 207, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38831110

RESUMO

The current study aimed to evaluate the plant growth-promoting (PGP) potential of endophytic strain Bacillus subtilis KU21 isolated from the roots of Rosmarinus officinalis. The strain exhibited multiple traits of plant growth promotion viz., phosphate (P) solubilization, nitrogen fixation, indole-3-acetic acid (IAA), siderophore, hydrogen cyanide (HCN), lytic enzymes production, and 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. The isolate also exhibited antagonistic activity against phytopathogenic fungi, i.e., Fusarium oxysporum, Fusarium graminiarum, and Rhizoctonia solani. The P-solubilization activity of B. subtilis KU21 was further elucidated via detection of glucose dehydrogenase (gdh) gene involved in the production of gluconic acid which is responsible for P-solubilization. Further, B. subtilis KU21 was evaluated for in vivo growth promotion studies of tomato (test crop) under net house conditions. A remarkable increase in seed germination, plant growth parameters, nutrient acquisition, and soil quality parameters (NPK) was observed in B. subtilis KU21-treated plants over untreated control. Hence, the proposed module could be recommended for sustainable tomato production in the Northwest Himalayan region without compromising soil health and fertility.


Assuntos
Bacillus subtilis , Endófitos , Raízes de Plantas , Rosmarinus , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/isolamento & purificação , Bacillus subtilis/metabolismo , Endófitos/isolamento & purificação , Endófitos/metabolismo , Endófitos/genética , Endófitos/classificação , Rosmarinus/química , Rosmarinus/microbiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Solanum lycopersicum/microbiologia , Solanum lycopersicum/crescimento & desenvolvimento , Fusarium/crescimento & desenvolvimento , Fusarium/genética , Fusarium/metabolismo , Microbiologia do Solo , Desenvolvimento Vegetal , Germinação , Ácidos Indolacéticos/metabolismo , Rhizoctonia/crescimento & desenvolvimento , Rhizoctonia/efeitos dos fármacos , Fixação de Nitrogênio , Fosfatos/metabolismo
4.
Microb Pathog ; 192: 106690, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38759935

RESUMO

The soil comprising organic matter, nutrients, serve as substrate for plant growth and various organisms. In areas where there are large plantations, there is a huge leaf litter fall. The leaf litter upon decomposition releases nutrients and helps in nutrient recycling, for which the soil engineers such as earthworms, ants and termites are important key players. In this context, the present study was conducted to assess the characteristics of the vermicast obtained by vermicomposting neem leaf litter in terms of microbial flora, plant growth promoting properties and antagonistic activities of the vermicast against phytopathogens. Vermicomposting of neem leaf litter was done using two epigeic earthworm species Eisenia fetida and Eudrilus eugeniae. The vermicast exhibited antagonistic potential against plant pathogens. Out of the four vermiwash infusions studied, the 75 % formulation reduced the disease incidence against mealybug by 82 % in the tree Neolamarkia cadamba. The result of the study suggests that vermicast made from neem leaf litter may be a potent combination of a biofertilizer and a pesticide.


Assuntos
Azadirachta , Fertilizantes , Oligoquetos , Praguicidas , Folhas de Planta , Azadirachta/química , Animais , Oligoquetos/microbiologia , Folhas de Planta/microbiologia , Praguicidas/farmacologia , Compostagem , Microbiologia do Solo , Solo/química , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
5.
BMC Plant Biol ; 24(1): 423, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38760709

RESUMO

BACKGROUND: Soil salinity is one of the major menaces to food security, particularly in dealing with the food demand of the ever-increasing global population. Production of cereal crops such as wheat is severely affected by soil salinity and improper fertilization. The present study aimed to examine the effect of selected microbes and poultry manure (PM) on seedling emergence, physiology, nutrient uptake, and growth of wheat in saline soil. A pot experiment was carried out in research area of Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan. Saline soil (12 dS m- 1 w/w) was developed by spiking using sodium chloride, and used in experiment along with two microbial strains (i.e., Alcaligenes faecalis MH-2 and Achromobacter denitrificans MH-6) and PM. Finally, wheat seeds (variety Akbar-2019) were sown in amended and unamended soil, and pots were placed following a completely randomized design. The wheat crop was harvested after 140 days of sowing. RESULTS: The results showed a 10-39% increase (compared to non-saline control) in agronomic, physiological, and nutritive attributes of wheat plants when augmented with PM and microbes. Microbes together with PM significantly enhanced seedling emergence (up to 38%), agronomic (up to 36%), and physiological (up to 33%) in saline soil as compared to their respective unamended control. Moreover, the co-use of microbes and PM also improved soil's physicochemical attributes and enhanced N (i.e., 21.7%-17.1%), P (i.e., 24.1-29.3%), and K (i.e., 28.7%-25.3%) availability to the plant (roots and shoots, respectively). Similarly, the co-use of amendments also lowered the Na+ contents in soil (i.e., up to 62%) as compared to unamended saline control. This is the first study reporting the effects of the co-addition of newly identified salt-tolerant bacterial strains and PM on seedling emergence, physiology, nutrient uptake, and growth of wheat in highly saline soil. CONCLUSION: Our findings suggest that co-using a multi-trait bacterial culture and PM could be an appropriate option for sustainable crop production in salt-affected soil.


Assuntos
Esterco , Aves Domésticas , Salinidade , Solo , Triticum , Triticum/crescimento & desenvolvimento , Solo/química , Animais , Microbiologia do Solo , Plântula/crescimento & desenvolvimento , Fertilizantes/análise , Alcaligenes faecalis/crescimento & desenvolvimento
6.
Sci Total Environ ; 932: 172916, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38697544

RESUMO

The details of how soil microorganisms contribute to stable soil organic carbon pools are a pressing knowledge gap with direct implications for soil health and climate mitigation. It is now recognized that microbial necromass contributes substantially to the formation of stable soil carbon. However, the quantification of necromass in soils has largely been limited to model molecules such as aminosugar biomarkers. The abundance and chemical composition of other persistent microbial residues remain unresolved, particularly concerning how these pools may vary with microbial community structure, soil texture, and management practices. Here we use yearlong soil incubation experiments with an isotopic tracer to quantify the composition of persistent residues derived from microbial communities inhabiting sand or silt dominated soil with annual (corn) or perennial (switchgrass) monocultures. Persistent microbial residues were recovered in diverse soil biomolecular pools including metabolites, proteins, lipids, and mineral-associated organic matter (MAOM). The relative abundances of microbial contributions to necromass pools were consistent across cropping systems and soil textures. The greatest residue accumulation was not recovered in MAOM but in the light density fraction of soil debris that persisted after extraction by chemical fractionation using organic solvents. Necromass abundance was positively correlated with microbial biomass abundance and revealed a possible role of cell wall morphology in enhancing microbial carbon persistence; while gram-negative bacteria accounted for the greatest contribution to microbial-derived carbon by mass at one year, residues from gram-positive Actinobacteria and Firmicutes showed greater durability. Together these results offer a quantitative assessment of the relative importance of diverse molecular classes for generating durable soil carbon.


Assuntos
Carbono , Microbiologia do Solo , Solo , Solo/química , Carbono/análise , Microbiota , Monitoramento Ambiental
7.
Environ Res ; 252(Pt 2): 118949, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38631472

RESUMO

Anthropogenic activities are leaving lots of chemical footprints on the soil. It alters the physiochemical characteristics of the soil thereby modifying the natural soil microbiome. The prevalence of antimicrobial-resistance microbes in polluted soil has gained attention due to its obvious public health risks. This study focused on assessing the prevalence and distribution of antibiotic-resistance genes in polluted soil ecosystems impacted by industrial enterprises in southern Russia. Metagenomic analysis was conducted on soil samples collected from polluted sites using various approaches, and the prevalence of antibiotic-resistance genes was investigated. The results revealed that efflux-encoding pump sequences were the most widely represented group of genes, while genes whose products replaced antibiotic targets were less represented. The level of soil contamination increased, and there was an increase in the total number of antibiotic-resistance genes in proteobacteria, but a decrease in actinobacteria. The study proposed an optimal mechanism for processing metagenomic data in polluted soil ecosystems, which involves mapping raw reads by the KMA method, followed by a detailed study of specific genes. The study's conclusions provide valuable insights into the prevalence and distribution of antibiotic-resistance genes in polluted soils and have been illustrated in heat maps.


Assuntos
Metais Pesados , Hidrocarbonetos Policíclicos Aromáticos , Microbiologia do Solo , Poluentes do Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Metais Pesados/análise , Metais Pesados/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Resistência Microbiana a Medicamentos/genética , Federação Russa , Metagenômica , Genes Bacterianos , Farmacorresistência Bacteriana/genética , Monitoramento Ambiental
8.
Sci Total Environ ; 928: 172375, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38604372

RESUMO

Using waste from sewage systems, particularly human excreta, could save resources and increase soil fertility, contributing to nutrient management. However, because of the pathogenic content in human feces, this resource can pose health risks to farmers and consumers. Therefore, this work analyzed the behavior of the microorganisms: Escherichia coli ATCC13706 and human adenovirus (HAdV-2) in the soil and the internal part of the plant tissue during the vegetative stage after applying spiked composted human feces as biofertilizer. In a greenhouse, we simulated the application of the biofertilizer in lettuce cultivation by spiking three concentrations of E. coli (6.58, 7.31, and 8.01 log10 CFU.g-1) and HAdV-2 (3.81, 3.97, and 5.92 log10 PFU.g-1). As a result, we achieved faster decay in soil at higher concentrations of E. coli. We estimated linear decay rates of -0.07279, -0.09092, and -0.115 days, corresponding to T90s of 13.7, 11.0, and 8.6 days from higher to smaller concentrations of E. coli, respectively. The estimated periods for the inactivation of 4 logarithmic units of E. coli bacteria in soil are longer than the cultivation period of lettuce for all concentrations studied. Concerning the bacterial contamination in plants, we found E. coli in the internal part of the leaves at the highest concentration tested during the first three weeks of the experiment. Furthermore, HAdV-2 was found in roots at a stable concentration of 2-2.3 log10 PFU.g-1 in five of the six samples analyzed. Therefore, bacterial infection could pose a risk, even if fresh greens are washed before consumption, especially for short-term cultures. Regarding viral infection, a positive result in the roots after disinfection may pose a risk to root and tubercule vegetables. These discoveries highlight the importance of conducting comprehensive evaluations of hygiene practices in incorporating organic amendments in crops, explicitly aiming to minimize the risk of post-contamination.


Assuntos
Adenovírus Humanos , Escherichia coli , Fezes , Fertilizantes , Lactuca , Microbiologia do Solo , Lactuca/microbiologia , Lactuca/virologia , Fezes/microbiologia , Fezes/virologia , Humanos , Adenovírus Humanos/fisiologia , Produção Agrícola/métodos , Compostagem , Reciclagem , Solo/química
9.
Nat Commun ; 15(1): 3321, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637578

RESUMO

Trait-based frameworks are promising tools to understand the functional consequences of community shifts in response to environmental change. The applicability of these tools to soil microbes is limited by a lack of functional trait data and a focus on categorical traits. To address this gap for an important group of soil microorganisms, we identify trade-offs underlying a fungal economics spectrum based on a large trait collection in 28 saprobic fungal isolates, derived from a common grassland soil and grown in culture plates. In this dataset, ecologically relevant trait variation is best captured by a three-dimensional fungal economics space. The primary explanatory axis represents a dense-fast continuum, resembling dominant life-history trade-offs in other taxa. A second significant axis reflects mycelial flexibility, and a third one carbon acquisition traits. All three axes correlate with traits involved in soil carbon cycling. Since stress tolerance and fundamental niche gradients are primarily related to the dense-fast continuum, traits of the 2nd (carbon-use efficiency) and especially the 3rd (decomposition) orthogonal axes are independent of tested environmental stressors. These findings suggest a fungal economics space which can now be tested at broader scales.


Assuntos
Micélio , Solo , Fungos , Carbono , Microbiologia do Solo , Ecossistema
10.
Environ Res ; 251(Pt 1): 118601, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38447608

RESUMO

Urban green spaces play a crucial role in cities by providing near-natural environments that greatly impacts the health of residents. However, these green spaces have recently been scrutinized as potential reservoirs of antibiotic resistance genes (ARGs), posing significant ecological risks. Despite this concern, our understanding of the distribution, sources, and ecological risks associated with ARGs remains limited. In this study, we investigated the spatial distribution of soil ARGs using spatial interpolation and auto-correlation analysis. To apportion the source of soil ARGs in urban green spaces of Tianjin, Geo-detector method (GDM) was employed. Furthermore, we evaluated the ecological risk posed by ARGs employing risk quotients (RQ). The results of our study showed a significantly higher abundance of Quinolone resistance genes in the soil of urban green spaces in Tianjin. These genes were mainly found in the northwest, central, and eastern regions of the city. Our investigation identified three main factors contributing to the presence of soil ARGs: antibiotic production, precipitation, livestock breeding, and hospital. The results of ecological risk in RQ value showed a high risk associated with Quinolone resistance genes, followed by Aminoglycoside, Tetracycline, Multidrug, MLSB, Beta Lactam, Sulfonamide, and Chloramphenicol. Mantel-test and correlation analysis revealed that the ecological risk of ARGs was greatly influenced by soil properties and heavy metals. This study provides a new perspective on source apportionment and the ecological risk assessment of soil ARGs in urban green spaces.


Assuntos
Cidades , Microbiologia do Solo , Medição de Risco , China , Resistência Microbiana a Medicamentos/genética , Monitoramento Ambiental , Solo/química , Antibacterianos/análise , Farmacorresistência Bacteriana/genética
11.
J Environ Manage ; 355: 120508, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38457896

RESUMO

Crude oil contamination has inflicted severe damage to soil ecosystems, necessitating effective remediation strategies. This study aimed to compare the efficacy of four different techniques (biostimulation, bioaugmentation, bioaugmentation + biostimulation, and natural attenuation) for remediating agricultural soil contaminated with crude oil using soil microcosms. A consortium of previously characterized bacteria Xanthomonas boreopolis, Microbacterium schleiferi, Pseudomonas aeruginosa, and Bacillus velezensis was constructed for bioaugmentation. The microbial count for the constructed consortium was recorded as 2.04 ± 0.11 × 108 CFU/g on 60 d in augmented and stimulated soil samples revealing their potential to thrive in chemically contaminated-stress conditions. The microbial consortium through bioaugmentation + biostimulation approach resulted in 79 ± 0.92% degradation of the total polyaromatic hydrocarbons (2 and 3 rings âˆ¼ 74%, 4 and 5 rings âˆ¼ 83% loss) whereas, 91 ± 0.56% degradation of total aliphatic hydrocarbons (C8-C16 ∼ 90%, C18-C28 ∼ 92%, C30 to C40 ∼ 88% loss) was observed in 60 d. Further, after 60 d of microcosm treatment, the treated soil samples were used for phytotoxicity assessment using wheat (Triticum aestivum), black chickpea (Cicer arietinum), and mustard (Brassica juncea). The germination rates for wheat (90%), black chickpea (100%), and mustard (100%) were observed in 7 d with improved shoot-root length and biomass in both bioaugmentation and biostimulation approaches. This study projects a comprehensive approach integrating bacterial consortium and nutrient augmentation strategies and underscores the vital role of innovative environmental management practices in fostering sustainable remediation of oil-contaminated soil ecosystems. The formulated bacterial consortium with a nutrient augmentation strategy can be utilized to restore agricultural lands towards reduced phytotoxicity and improved plant growth.


Assuntos
Petróleo , Poluentes do Solo , Biodegradação Ambiental , Solo/química , Ecossistema , Poluentes do Solo/análise , Hidrocarbonetos/metabolismo , Microbiologia do Solo
12.
New Phytol ; 242(6): 2401-2410, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38494698

RESUMO

The rhizosphere microbiome plays critical roles in plant growth and provides promising solutions for sustainable agriculture. While the rhizosphere microbiome frequently fluctuates with the soil environment, recent studies have demonstrated that a small proportion of the microbiome is consistently assembled in the rhizosphere of a specific plant genotype regardless of the soil condition, which is determined by host genetics. Based on these breakthroughs, which involved exploiting the plant-beneficial function of the rhizosphere microbiome, we propose to divide the rhizosphere microbiome into environment-dominated and plant genetic-dominated components based on their different assembly mechanisms. Subsequently, two strategies to explore the different rhizosphere microbiome components for agricultural production are suggested, that is, the precise management of the environment-dominated rhizosphere microbiome by agronomic practices, and the elucidation of the plant genetic basis of the plant genetic-dominated rhizosphere microbiome for breeding microbiome-assisted crop varieties. We finally present the major challenges that need to be overcome to implement strategies for modulating these two components of the rhizosphere microbiome.


Assuntos
Agricultura , Microbiota , Rizosfera , Agricultura/métodos , Produtos Agrícolas/microbiologia , Desenvolvimento Sustentável , Microbiologia do Solo
13.
Nat Microbiol ; 9(2): 421-433, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38316928

RESUMO

Soil microbiomes are highly diverse, and to improve their representation in biogeochemical models, microbial genome data can be leveraged to infer key functional traits. By integrating genome-inferred traits into a theory-based hierarchical framework, emergent behaviour arising from interactions of individual traits can be predicted. Here we combine theory-driven predictions of substrate uptake kinetics with a genome-informed trait-based dynamic energy budget model to predict emergent life-history traits and trade-offs in soil bacteria. When applied to a plant microbiome system, the model accurately predicted distinct substrate-acquisition strategies that aligned with observations, uncovering resource-dependent trade-offs between microbial growth rate and efficiency. For instance, inherently slower-growing microorganisms, favoured by organic acid exudation at later plant growth stages, exhibited enhanced carbon use efficiency (yield) without sacrificing growth rate (power). This insight has implications for retaining plant root-derived carbon in soils and highlights the power of data-driven, trait-based approaches for improving microbial representation in biogeochemical models.


Assuntos
Microbiota , Rizosfera , Raízes de Plantas/microbiologia , Microbiologia do Solo , Solo/química , Plantas , Carbono
14.
Environ Sci Pollut Res Int ; 31(3): 3763-3774, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38091217

RESUMO

Imidacloprid (IM) is a systemic insecticide persistent in the environment and possesses a negative impact on the non-targeted ecosystem. The objective of the present study was to evaluate the dissipation and degradation mechanism of IM residues in grape rhizosphere soil and to investigate its residual effect on soil enzyme activity at different IM spiking levels. The half-life of IM residue in soil was 27, 36, and 43.5 days at a spiking level of 1, 10, and 50 mg kg-1, respectively following a bi-phasic first + first-order dissipation kinetics. UHPLC-Orbitrap™-MS analysis by targeted metabolomics approach revealed that IM metabolites such as IM-amine analogue, guanidine (reduction), 5-hydroxy IM (hydroxylation), IM-Urea (oxidation), reduced NO analogue of IM (oxidation), and olefin of guanidine IM (dehydrogenation) were identified and proposed the degradation mechanism in grape rhizosphere soil. Toxicity of IM residues on five extracellular enzymes, viz., dehydrogenase, acid phosphatase, alkaline phosphatase, ß-glucosidase, and urease revealed that activity of dehydrogenase, acid phosphatase, and alkaline phosphatase remained unaffected at 60th day of sampling. The ß-glucosidase and urease were negatively affected throughout the incubation period indicating the influence of IM residues on carbon and nitrogen mineralization in soil. Thus, long-term exposure of IM to grape rhizosphere through soil drenching could affect soil enzyme activity which has a negative effect on the soil nutrient cycle and soil microbiome.


Assuntos
Celulases , Neonicotinoides , Nitrocompostos , Poluentes do Solo , Vitis , Rizosfera , Ecossistema , Fosfatase Alcalina/metabolismo , Vitis/metabolismo , Solo/química , Urease , Cromatografia Líquida de Alta Pressão , Fosfatase Ácida , Oxirredutases/metabolismo , Guanidinas , Microbiologia do Solo , Poluentes do Solo/análise
15.
Environ Res ; 245: 118020, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38151149

RESUMO

Enhancing crop yield to accommodate the ever-increasing world population has become critical, and diminishing arable land has pressured current agricultural practices. Intensive farming methods have been using more pesticides and insecticides (biocides), culminating in soil deposition, negatively impacting the microbiome. Hence, a deeper understanding of the interaction and impact of pesticides and insecticides on microbial communities is required for the scientific community. This review highlights the recent findings concerning the possible impacts of biocides on various soil microorganisms and their diversity. This review's bibliometric analysis emphasised the recent developments' statistics based on the Scopus document search. Pesticides and insecticides are reported to degrade microbes' structure, cellular processes, and distinct biochemical reactions at cellular and biochemical levels. Several biocides disrupt the relationship between plants and their microbial symbionts, hindering beneficial biological activities that are widely discussed. Most microbial target sites of or receptors are biomolecules, and biocides bind with the receptor through a ligand-based mechanism. The biomarker action mechanism in response to biocides relies on activating the receptor site by specific biochemical interactions. The production of electrophilic or nucleophilic species, free radicals, and redox-reactive agents are the significant factors of biocide's metabolic reaction. Most studies considered for the review reported the negative impact of biocides on the soil microbial community; hence, technological development is required regarding eco-friendly pesticide and insecticide, which has less or no impact on the soil microbial community.


Assuntos
Desinfetantes , Herbicidas , Inseticidas , Microbiota , Praguicidas , Inseticidas/toxicidade , Herbicidas/toxicidade , Solo/química , Microbiologia do Solo
16.
Sci Total Environ ; 912: 169358, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38135064

RESUMO

Grazing exclusion has been implemented worldwide as a nature-based solution for restoring degraded grassland ecosystems that arise from overgrazing. However, the effect of grazing exclusion on soil nitrogen cycle processes, subsequent greenhouse gas emissions and underlying mechanisms remain unclear. Here, we investigated the effect of four-year grazing exclusion on plant communities, soil properties, and soil nitrogen cycle-related functional gene abundance in an alpine meadow on the Qinghai-Tibet Plateau. Using an automated continuous-flow incubation system, we performed an incubation experiment and measured soil-borne N2O, N2, and CO2 fluxes to three successive "hot moment" events (precipitation, N deposition, and oxic-to-anoxic transition) between grazing-excluded and grazing soil. Higher soil N contents (total nitrogen, NH4+, NO3-) and extracellular enzyme activities (ß-1,4-glucosidase, ß-1,4-N-acetyl-glucosaminidase, cellobiohydrolase) are observed under grazing exclusion. The aboveground and litter biomass of plant community was significantly increased by grazing exclusion, but grazing exclusion decreased the average number of plant species and microbial diversity. The N2O + N2 fluxes observed under grazing exclusion were higher than those observed under free grazing. The N2 emissions and N2O/(N2O + N2) ratios observed under grazing exclusion were higher than those observed under free grazing in oxic conditions. Instead, higher N2O fluxes and lower denitrification functional gene abundances (nirS, nirK, nosZ, and nirK + nirS) under anoxia were found under grazing exclusion than under free grazing. The N2O site-preference value indicates that under grazing exclusion, bacterial denitrification contributes more to higher N2O production compared with under free grazing (81.6 % vs. 59.9 %). We conclude that grazing exclusion could improve soil fertility and plant biomass, nevertheless it may lower plant and microbial diversity and increase potential N2O emission risk via the alteration of the denitrification end-product ratio. This indicates that not all grassland management options result in a mutually beneficial situation among wider environmental goals such as greenhouse gas mitigation, biodiversity, and social welfare.


Assuntos
Desnitrificação , Gases de Efeito Estufa , Tibet , Ecossistema , Pradaria , Solo , Microbiologia do Solo , Óxido Nitroso/análise
17.
Microb Ecol ; 87(1): 12, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38072911

RESUMO

Industrial microbes and bio-derived products have emerged as an integral component of the bioeconomy, with an array of agricultural, bioenergy, and biomedical applications. However, the rapid development of microbial biotechnology raises concerns related to environmental escape of laboratory microbes, detection and tracking thereof, and resultant impact upon native ecosystems. Indeed, though wild-type and genetically modified microbes are actively deployed in industrial bioprocesses, an understanding of microbial interactivity and impact upon the environment is severely lacking. In particular, the persistence and sustained ecosystem impact of industrial microbes following laboratory release or unintentional laboratory escape remains largely unexplored. Herein, we investigate the applicability of soil-sorghum mesocosms for the ecological risk assessment of the industrial microbe, Saccharomyces cerevisiae. We developed and applied a suite of diagnostic and bioinformatic analyses, including digital droplet PCR, microscopy, and phylogenomic analyses to assess the impacts of a terrestrial ecosystem perturbation event over a 30-day time course. The platform enables reproducible, high-sensitivity tracking of S. cerevisiae in a complex soil microbiome and analysis of the impact upon abiotic soil characteristics and soil microbiome population dynamics and diversity. The resultant data indicate that even though S. cerevisiae is relatively short-lived in the soil, a single perturbation event can have sustained impact upon mesocosm soil composition and underlying microbial populations in our system, underscoring the necessity for more comprehensive risk assessment and development of mitigation and biocontainment strategies in industrial bioprocesses.


Assuntos
Ecossistema , Microbiota , Saccharomyces cerevisiae/genética , Microbiologia do Solo , Solo , Medição de Risco
18.
J Environ Manage ; 348: 119303, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37832303

RESUMO

Animal husbandry is increasing yearly due to the growing demand for meat and livestock products, among other reasons. To meet these demands, prophylactic antibiotics are used in the livestock industry (i.e., poultry farming) to promote health and stimulate animal growth. However, antibiotics are not fully metabolized by animals, and they are evacuated to the environment with excreta. Animal manure is used as fertilizer to reduce the volume of waste generated in the livestock sector. However, manure often contains microorganisms harboring antibiotic resistance genes (ARGs). Then, the microbiome of manure applicate to the soil may contribute to the spread of antibiotic resistance in the environment, including autochthonous soil-dwelling microorganisms. The present study was conducted during the crops growing season in Poland (May to September 2019) to determine the influence of poultry manure as well as poultry manure supplemented with selected antibiotics on the diversity of the soil microbiome in treatments that had not been previously fertilized with manure and the ability of antibiotic-resistant bacteria to transfer ARGs to other soil bacteria. Antibiotic concentrations were elevated at the beginning of the study and decreased over time. Poultry manure induced significant changes in the structure of microbial communities in soil; the diversity of the soil microbiome decreased, and the abundance of bacterial genera Bradyrhizobium, Streptomyces, and Pseudomonas, which are characteristic of the analyzed manure, increased. Over time, soil microbial diversity was restored to the state observed before the application of manure. Genes conferring resistance to multiple drugs as well as genes encoding resistance to bacitracin and aminoglycosides were the most frequently identified ARGs in the analyzed bacteria, including on mobile genetic elements. Multidrug resistance was observed in 17 bacterial taxa, whereas ARGs were identified in 32 bacterial taxa identified in the soil microbiome. The results of the study conclude that the application of poultry manure supplemented with antibiotics initially affects soil microbiome and resistome diversity but finally, the soil shows resilience and returns to its original state after time, with most antibiotic resistance genes disappearing. This phenomenon is of great importance in sustainable soil health after manure application.


Assuntos
Antibacterianos , Solo , Animais , Solo/química , Antibacterianos/farmacologia , Esterco/microbiologia , Genes Bacterianos , Aves Domésticas/genética , Promoção da Saúde , Resistência Microbiana a Medicamentos/genética , Bactérias/genética , Criação de Animais Domésticos , Microbiologia do Solo
19.
New Phytol ; 240(5): 2035-2049, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37691273

RESUMO

Recent studies on root traits have shown that there are two axes explaining trait variation belowground: the collaboration axis with mycorrhizal partners and the conservation ('fast - slow') axis. However, it is yet unknown whether these trait axes affect the assembly of soilborne fungi. We expect saprotrophic fungi to link to the conservation axis of root traits, whereas pathogenic and arbuscular mycorrhizal fungi link to the collaboration axis, but in opposite directions, as arbuscular mycorrhizal fungi might provide pathogen protection. To test these hypotheses, we sequenced rhizosphere fungal communities and measured root traits in monocultures of 25 grassland plant species, differing in age. Within the fungal guilds, we evaluated fungal species richness, relative abundance and community composition. Contrary to our hypotheses, fungal diversity and relative abundance were not strongly related to the root trait axes. However, saprotrophic fungal community composition was affected by the conservation gradient and pathogenic community composition by the collaboration gradient. The rhizosphere AMF community composition did not change along the collaboration gradient, even though the root trait axis was in line with the root mycorrhizal colonization rate. Overall, our results indicate that in the long term, the root trait axes are linked with fungal community composition.


Assuntos
Micorrizas , Rizosfera , Raízes de Plantas/microbiologia , Pradaria , Micorrizas/fisiologia , Plantas/microbiologia , Fungos/fisiologia , Microbiologia do Solo , Solo
20.
J Hazard Mater ; 458: 131948, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37392645

RESUMO

Nanoformulation should minimise the usage of pesticides and limit their environmental footprint. The risk assessment of two nanopesticides with fungicide captan as an active organic substance and ZnO35-45 nm or SiO220-30 nm as nanocarriers was evaluated using the non-target soil microorganisms as biomarkers. The first time for that kind of nanopesticides next-generation sequencing (NGS) of bacterial 16 S rRNA and fungal ITS region and metagenomics functional predictions (PICRUST2) was made to study structural and functional biodiversity. During a 100-day microcosm study in soil with pesticide application history, the effect of nanopesticides was compared to pure captan and both nanocarriers. Nanoagrochemicals affected microbial composition, especially Acidobacteria-6 class, and alpha diversity, but the observed effect was generally more substantial for pure captan. As for beta diversity, the negative impact was detected only in response to captan and still observed on day 100. Fungal community in the orchard soil showed only a decrease in phylogenetic diversity in captan set-up since day 30. PICRUST2 analysis confirmed several times lower impact of nanopesticides considering the abundance of functional pathways and genes encoding enzymes. Furthermore, the overall data indicated that using SiO220-30 nm as a nanocarrier speeds up a recovery process compared to ZnO35-45 nm.


Assuntos
Captana , Praguicidas , Microbiologia do Solo , Microbiota/efeitos dos fármacos , Nanoestruturas , Praguicidas/toxicidade , Medição de Risco , Captana/toxicidade , Biomarcadores , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA